Pacific Journal of Mathematics

ISOMORPHISMS OF TYPE A AFFINE HECKE ALGEBRAS AND MULTIVARIABLE ORTHOGONAL POLYNOMIALS

T.H. BAKER AND P.J. FORRESTER

Volume 194 No. 1

May 2000

ISOMORPHISMS OF TYPE A AFFINE HECKE ALGEBRAS AND MULTIVARIABLE ORTHOGONAL POLYNOMIALS

T.H. BAKER AND P.J. FORRESTER

We examine two isomorphisms between affine Hecke algebras of type A associated with parameters q^{-1} , t^{-1} and q, t. One of them maps the non-symmetric Macdonald polynomials $E_{\eta}(x; q^{-1}, t^{-1})$ onto $E_{\eta}(x; q, t)$, while the other maps them onto non-symmetric analogues of the multivariable Al-Salam & Carlitz polynomials. Using the properties of $E_{\eta}(x; q^{-1}, t^{-1})$, the corresponding properties of these latter polynomials can then be elucidated.

1. Introduction.

In several recent works [28]-[29], [9]-[10], eigenstates of the rational (type A) Calogero-Sutherland model have been investigated from an algebraic point of view. In particular it has been shown that the algebra governing the eigenfunctions of the *periodic* Calogero-Sutherland model (namely the type A degenerate affine Hecke algebra augmented by type A Dunkl operators) is isomorphic to its *rational* model counterpart. This enables information to be gleaned about the properties of the eigenfunctions in the rational case (the (non-)symmetric Hermite polynomials) from the corresponding periodic eigenfunctions (the (non-)symmetric Jack polynomials).

To summarize the argument, consider the type A Dunkl operators

$$d_i := \frac{\partial}{\partial x_i} + \frac{1}{\alpha} \sum_{p \neq i} \frac{1 - s_{ip}}{x_i - x_p}$$

which, along with the operators representing multiplication by the variable x_i and the elementary transpositions s_{ij} , satisfy the following commutation relations

(1.1)
$$[d_i, x_j] = \begin{cases} -\frac{1}{\alpha} s_{ij} & i \neq j \\ 1 + \frac{1}{\alpha} \sum_{p \neq i} s_{ip} & i = j \\ d_i s_{ip} & = s_{ip} d_p & [d_i, s_{jp}] = 0, \quad i \neq j, p. \end{cases}$$

It is easily checked that the map ρ defined by

(1.2)
$$\rho(x_i) = x_i - \frac{1}{2}d_i, \qquad \rho(d_i) = d_i, \qquad \rho(s_{ij}) = s_{ij}$$

is an isomorphism of the algebra (1.1) [28].

Now, the non-symmetric Jack polynomials $E_{\eta}(x)$, indexed by compositions $\eta := (\eta_1, \ldots, \eta_n)$ can be defined [23] as the unique eigenfunctions of the mutually commuting Cherednik operators

(1.3)
$$\xi_i := \alpha x_i d_i + \sum_{p>i} s_{ip} - n + 1$$

with a unique expansion of the form

(1.4)
$$E_{\eta}(x) = x^{\eta} + \sum_{\nu < \eta} c_{\eta\nu} x^{\nu}.$$

Here, the partial order < is defined on compositions by: $\nu < \eta$ iff $\nu^+ < \eta^+$ with respect to the dominance order (where ν^+ is the unique partition associated to ν etc) or $\nu^+ = \eta^+$, $\nu \neq \eta$ and $\sum_{i=1}^p (\eta_i - \nu_i) \ge 0$, for all $p = 1, \ldots, n$. The polynomial $E_{\eta}(x)$ is an eigenfunction of ξ_i given by (1.3) with eigenvalue

(1.5)
$$\bar{\eta}_i = \alpha \eta_i - \#\{k < i | \eta_k \ge \eta_i\} - \#\{k > i | \eta_k > \eta_i\}.$$

Using the isomorphism (1.2) it follows that the polynomials [27, 24, 10]

$$E_{\eta}^{(H)}(x) := E_{\eta}(\rho(x)) \cdot 1$$

are eigenfunctions of the operators

(1.6)
$$h_i = \rho(\xi_i) = \xi_i - \frac{\alpha}{2} d_i^2$$

which are precisely the eigenoperators of the non-symmetric Hermite polynomials [2]. The orthogonality of these latter polynomials with respect to the usual multivariable Hermite inner product then follows from the fact that the operator (1.6) is self-adjoint with respect to the inner product

(1.7)
$$\langle f,g \rangle := \prod_{i=1}^{n} \int_{-\infty}^{\infty} dx_i \, e^{-x_i^2} \prod_{1 \le j < k \le n} |x_j - x_k|^{2/\alpha} \, f(x) \, g(x).$$

In this work, we provide a similar analysis of the Macdonald case. As such, we introduce an isomorphism of the q-analogue of the algebra (1.1), namely the subalgebra $S_{q,t} := \{T_i, \omega, D_i, x_i\}$ of the algebra of endomorphisms of the polynomial ring $\mathbb{Q}(q, t)[x_1, \ldots, x_n]$. Here, $\{T_i, \omega\}$ generate a subalgebra isomorphic to the (type A) affine Hecke algebra, while $\{D_i\}$ are the q-Dunkl operators introduced in [3, 14]. To describe this mapping, we need to introduce some further concepts.

The generalization of the formalism of non-symmetric Jack polynomials to the Macdonald case involves replacing the Cherednik operators (1.3) by their *q*-analogues which can be realized as a commutative subalgebra of the affine Hecke algebra [18]. In the type A case, one can describe this using the Demazure-Lustig operators

(1.8)
$$T_i := t + \frac{tx_i - x_{i+1}}{x_i - x_{i+1}} (s_i - 1)$$
 $i = 1, \dots, n-1$

(1.9)
$$T_0 := t + \frac{qtx_n - x_1}{qx_n - x_1} (s_0 - 1)$$

along with the operator

(1.10)
$$\omega := s_{n-1} \cdots s_2 s_1 \tau_1 = s_{n-1} \cdots s_i \tau_i s_{i-1} \cdots s_1.$$

Here τ_i is the operator which replaces x_i by qx_i , $s_i := s_{i,i+1}$ for $1 \le i \le n-1$ and $s_0 := \omega s_1 \omega^{-1}$. The affine Hecke algebra is then generated by elements T_i , $0 \le i \le n-1$ and ω , satisfying the relations

(1.11)
$$(T_i - t)(T_i + 1) = 0$$

 $(1.12) T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$

$$(1.13) T_i T_j = T_j T_i |i-j| \ge 2$$

(1.14) $\omega T_i = T_{i-1} \omega.$

There is a commutative subalgebra generated by elements of the form [5, 6]

(1.15)
$$Y_i := t^{-n+i} T_i \cdots T_{n-1} \omega T_1^{-1} \cdots T_{i-1}^{-1}$$

which have the following relations with the generators T_i for $1 \le i \le n-1$. (1.16)

$$T_i Y_{i+1} = tY_i T_i^{-1}, \quad T_i Y_i = Y_{i+1} T_i + (t-1)Y_i, \quad [T_i, Y_j] = 0, \quad j \neq i, i+1.$$

The non-symmetric Macdonald polynomials $E_{\eta}(x; q, t)$ are defined as the simultaneous eigenfunctions of the commuting operators Y_i with an expansion of the form (1.4). The corresponding eigenvalue is $t^{\bar{\eta}_i}$ with $\bar{\eta}_i$ given in (1.5), and $t^{\alpha} = q$. From now on, we drop the dependence on q and t and just write $E_{\eta}(x) \equiv E_{\eta}(x; q, t)$ when the meaning is unambiguous.

Define the following degree-raising operator

(1.17)
$$e_i := t^{i-1} T_i \cdots T_{n-1} x_n \,\omega \, T_1^{-1} \cdots T_{i-1}^{-1}.$$

Using (1.12)-(1.14) it can be shown that the operators e_i form a set of mutually commuting operators. Our first result is:

Theorem 1.1. We have

$$E_{\eta}(e_1, \dots, e_n; q^{-1}, t^{-1}) \cdot 1 = \alpha_{\eta}(q, t) E_{\eta}(x_1, \dots, x_n; q, t)$$

where

(1.18)
$$\alpha_{\eta}(q,t) = q^{\sum_{i} {\eta_{i} \choose 2}} t^{\sum_{i} (n-i)\eta_{i}^{+} - \ell(w_{\eta})}$$

with $\ell(w_{\eta})$ the length of the (unique) minimal permutation sending η to η^+ .

The symmetric Al-Salam & Carlitz (ASC) polynomials were examined in [1] as q-analogues of multivariable Hermite polynomials. There are two families of ASC polynomials, denoted $U_{\lambda}^{(a)}(x;q,t)$ and $V_{\lambda}^{(a)}(x;q,t)$, which are simply related by

(1.19)
$$V_{\lambda}^{(a)}(x;q^{-1},t^{-1}) = U_{\lambda}^{(a)}(x;q,t).$$

The polynomials $V_{\lambda}^{(a)}$ can be defined as the unique polynomials of the form

$$V_{\lambda}^{(a)}(x;q,t) = P_{\lambda}(x;q,t) + \sum_{\mu < \lambda} b_{\lambda\mu} P_{\mu}(x;q,t)$$

which are orthogonal with respect to the inner product

(1.20)
$$\langle f, g \rangle^{(V)} := \int_{[1,\infty]^n} f(x)g(x) \, d_q \mu^{(V)}(x),$$
$$d_q \mu^{(V)}(x) := \Delta_q^{(k)}(x) \prod_{l=1}^n w_V(x_l;q) d_q x_l.$$

Here, $P_{\lambda}(x;q,t)$ denotes the symmetric Macdonald polynomial [19] and we use the notation for q-integrals

(1.21)
$$\int_{1}^{\infty} f(x)d_{q}x := (1-q)\sum_{n=0}^{\infty} f(q^{-n})q^{-n}$$

while

(1.22)
$$w_V(x;q) = \frac{(q;q)_{\infty}(\frac{1}{a};q)_{\infty}(qa;q)_{\infty}}{(x;q)'_{\infty}(\frac{x}{a};q)_{\infty}} \\ = \prod_{p=-(k-1)}^k \prod_{1 \le i < j \le n} (x_i - q^p x_j),$$

where the dash in $(x; q)'_{\infty}$ denotes that any vanishing factor is to be deleted, and it is assumed a < 0. Moreover, in (1.20) and in what follows, we assume $t = q^k$, where k is a positive integer.

The polynomials $U_{\lambda}^{(a)}$ are orthogonal with respect to the inner product

(1.23)
$$\langle f|g\rangle^{(U)} := \int_{[a,1]^n} f(x)g(x) \, d_q \mu^{(U)}(x),$$
$$d_q \mu^{(U)}(x) := \Delta_q^{(k)}(x) \prod_{l=1}^n w_U(x_l;q) d_q x_l$$

where $\Delta_q^{(k)}$ is given by (1.22) and

(1.24)
$$w_U^{(a)}(x;q) := \frac{(qx;q)_{\infty}(\frac{qx}{a};q)_{\infty}}{(q;q)_{\infty}(a;q)_{\infty}(\frac{q}{a};q)_{\infty}}$$

(1.25)
$$\int_{a}^{1} f(x) d_{q} x := (1-q) \left(\sum_{n=0}^{\infty} f(q^{n})q^{n} - a \sum_{n=0}^{\infty} f(aq^{n})q^{n} \right), \quad (a < 0).$$

This can be regarded as a consequence of (1.19), and the formulas

(1.26)
$$\frac{1}{1-q} \int_{a}^{1} w_{U}^{(a)}(x;q) f(x) \, d_{q}x \Big|_{q \mapsto q^{-1}} = \frac{1}{1-q} \int_{1}^{\infty} w_{V}^{(a)}(x;q) f(x) \, d_{q}x$$

(1.27)
$$\Delta_{q^{-1}}^{(k)}(x) = q^{-kn(n-1)}\Delta_q^{(k)}(x^R)$$

where $x^R = (x_n, x_{n-1}, \ldots, x_1)$. The formula (1.26) is established in [1, eq. (2.23)], while (1.27) follows immediately from the definition (1.22).

Non-symmetric analogues of the ASC polynomials can be introduced in the following manner: Consider the following q-analogues of the type A Dunkl operators [8] examined in [3],

(1.28)
$$D_i := x_i^{-1} \left(1 - t^{n-1} T_i^{-1} \cdots T_{n-1}^{-1} \omega T_1^{-1} \cdots T_{i-1}^{-1} \right)$$

and let

(1.29)
$$E_i := D_i + (1 + a^{-1})t^{n-1}Y_i - a^{-1}e_i.$$

The operators E_i mutually commute, and our second main result is that:

Theorem 1.2. The polynomials

(1.30)
$$E_{\eta}^{(V)}(x;q,t) = \frac{(-a)^{|\eta|}}{\alpha_{\eta}(q,t)} E_{\eta}(E;q^{-1},t^{-1}) \cdot 1$$

where $\alpha_{\eta}(q,t)$ is given by (1.18) are the unique polynomials with an expansion of the form

$$E_{\eta}^{(V)}(x;q,t) = E_{\eta}(x;q,t) + \sum_{|\nu| < |\eta|} c_{\eta\nu} E_{\nu}(x;q,t)$$

which are orthogonal with respect to the inner product (1.20). Furthermore, these polynomials are simultaneous eigenfunctions of the commuting family of eigenoperators

(1.31)
$$h_i = Y_i + (1+a)t^{1-n}D_i + at^{2-2n}D_iY_i^{-1}D_i$$

with eigenvalue $t^{\bar{\eta}_i}$.

An immediate consequence of Thm. 1.2, (1.19), and (1.26), (1.27) is:

Corollary 1.3. The polynomials

(1.32)
$$E_{\eta}^{(U)}(x;q,t) := E_{\eta}^{(V)}(x^{R};q^{-1},t^{-1})$$

are the unique polynomials with an expansion of the form

$$E_{\eta}^{(U)}(x;q,t) = E_{\eta}(x^{R};q^{-1},t^{-1}) + \sum_{|\nu| < |\eta|} d_{\eta\nu} E_{\nu}(x^{R};q^{-1},t^{-1})$$

which are orthogonal with respect to the inner product (1.23). These polynomials are simultaneous eigenfunctions of the operators \hat{h}_i , where \hat{h}_i denotes the operator (1.31) modified by the involution $\hat{}$, which is defined by the mappings $q \mapsto q^{-1}$, $t \mapsto t^{-1}$ and $x_i \mapsto x_{n+1-i}$.

In Section 2, we examine the various properties of non-symmetric Macdonald polynomials used in subsequent calculations, including raising and lowering operators, and introduce a non-symmetric analogue of Kaneko's kernel [11]. We finish the section with a proof of Thm. 1.1. An isomorphism between Hecke algebras is introduced in Section 3, facilitating a proof of Thm. 1.2. Various properties of these non-symmetric ASC polynomials are then described including their normalization and a generating function. We conclude by clarifying their relationship to the non-symmetric analogues of the shifted Macdonald polynomials.

2. Non-symmetric Macdonald polynomials.

In this section we gather together some (old and new) results concerning non-symmetric Macdonald polynomials $E_{\eta}(x)$ in preparation of the proof of Thm. 1.1, as well as the forthcoming section on the non-symmetric ASC polynomials.

For future reference we note that the operators T_i and ω defined by (1.8) and (1.10) have the properties

$$T_{i}^{-1} x_{i+1} = t^{-1} x_{i} T_{i} \qquad T_{i}^{-1} x_{i} = x_{i+1} T_{i}^{-1} + (t^{-1} - 1) x_{i}$$

$$(2.1) T_{i} x_{i} = t x_{i+1} T_{i}^{-1} \qquad T_{i} x_{i+1} = x_{i} T_{i} + (t - 1) x_{i+1}$$

$$\omega x_{1} = q x_{n} \omega \qquad \omega x_{i+1} = x_{i} \omega$$

valid for $1 \le i \le n-1$. Also note the following action of T_i on monomials (2.2)

$$T_{i} x_{i}^{a} x_{i+1}^{b} = \begin{cases} (1-t)x_{i}^{a-1} x_{i+1}^{b+1} + \dots + (1-t)x_{i}^{b+1} x_{i+1}^{a-1} + x_{i}^{b} x_{i+1}^{a} & a > b \\ t x_{i}^{a} x_{i+1}^{a} & a = b \\ (t-1)x_{i}^{a} x_{i+1}^{b} + \dots + (t-1)x_{i}^{b-1} x_{i+1}^{a+1} + t x_{i}^{b} x_{i+1}^{a} & a < b. \end{cases}$$

There exists a variant of the q-Dunkl operator (1.28) which is relevant to the forthcoming discussion. With $\hat{}$ denoting the involution defined in the statement of Corollary 1.3, this operator is defined as

(2.3)

$$\mathcal{D}_{i} := -q\hat{D}_{n+1-i} \\
= -qx_{i}^{-1}\left(1 - t^{-n+1}T_{i-1}\cdots T_{1}\omega^{-1}T_{n-1}\cdots T_{i}\right) \\
= qt^{-2n+i+1}D_{i}Y_{i}^{-1}T_{i}\cdots T_{n-1}T_{n-1}\cdots T_{i}.$$

In obtaining the first equality in (2.3), the facts that

(2.4)
$$\hat{T}_i = T_{n-i}^{-1} \quad \text{and} \quad \hat{\omega} = \omega^{-1}$$

have been used in applying the operation $\hat{}$ to (1.28), while the second equality can be verified by substituting for Y_i^{-1} using (1.15) and for D_i using (1.28) and comparing with the first equality.

Since the D_i commute, it follows from the definition of \mathcal{D}_i that the $\{\mathcal{D}_i\}$ also form a commuting set. Moreover, using (2.4), one can check that the operators \mathcal{D}_i possess the same relations with the generators T_i , ω as do the D_i , namely

(2.5)
$$T_i \mathcal{D}_{i+1} = t \mathcal{D}_i T_i^{-1}, \quad T_i \mathcal{D}_i = \mathcal{D}_{i+1} T_i + (t-1) \mathcal{D}_i, \quad 1 \le i \le n-1$$
$$[T_i, \mathcal{D}_j] = 0, \qquad \qquad j \ne i, i+1$$
$$\mathcal{D}_n \, \omega = q \, \omega \, \mathcal{D}_1, \qquad \mathcal{D}_i \, \omega = \omega \, \mathcal{D}_{i+1} \qquad 1 \le i \le n-1.$$

To conclude the preliminaries, we follow Sahi [25] and introduce the generalized arm and leg (co-)lengths for a node $s \in \eta$ via

$$a(s) = \eta_i - j \quad l(s) = \#\{k > i | j \le \eta_k \le \eta_i\} + \#\{k < i | j \le \eta_k + 1 \le \eta_i\}$$

$$a'(s) = j - 1 \quad l'(s) = \#\{k > i | \eta_k > \eta_i\} + \#\{k < i | \eta_k \ge \eta_i\}$$

and define the quantities

$$d_{\eta}(q,t) := \prod_{s \in \eta} \left(1 - q^{a(s)+1} t^{l(s)+1} \right) \qquad l(\eta) := \sum_{s \in \eta} l(s)$$

$$(2.7) \quad d'_{\eta}(q,t) := \prod_{s \in \eta} \left(1 - q^{a(s)+1} t^{l(s)} \right) \qquad l'(\eta) := \sum_{s \in \eta} l'(s)$$

$$e_{\eta}(q,t) := \prod_{s \in \eta} \left(1 - q^{a'(s)+1} t^{n-l'(s)} \right) \qquad a(\eta) := \sum_{s \in \eta} a(s).$$

The statistics $l(\eta)$, $l'(\eta)$ and $a(\eta)$ generalize the quantity

(2.8)
$$b(\lambda) := \sum_{i} (i-1)\lambda_i = \sum_{i} \binom{\lambda'_i}{2}$$

from partitions to compositions. From [25] these quantities have the following properties

Lemma 2.1. Let $\Phi \eta := (\eta_2, ..., \eta_n, \eta_1 + 1)$. We have

$$\frac{d_{\Phi\eta}(q,t)}{d_{\eta}(q,t)} = \frac{e_{\Phi\eta}(q,t)}{e_{\eta}(q,t)} = 1 - qt^{n+\bar{\eta}_{1}}, \quad \frac{d'_{\Phi\eta}(q,t)}{d'_{\eta}(q,t)} = 1 - qt^{n-1+\bar{\eta}_{1}}, \\
e_{s_{i}\eta}(q,t) = e_{\eta}(q,t), \\
\frac{d_{s_{i}\eta}(q,t)}{d_{\eta}(q,t)} = \frac{1 - t^{\delta_{i,\eta}+1}}{1 - t^{\delta_{i,\eta}}}, \quad \frac{d'_{s_{i}\eta}(q,t)}{d'_{\eta}(q,t)} = \frac{1 - t^{\delta_{i,\eta}}}{1 - t^{\delta_{i,\eta}-1}} \\
for \ \eta_{i} > \eta_{i+1}, \quad \delta_{i,\eta} := \bar{\eta}_{i} - \bar{\eta}_{i+1} \\
a(\Phi\eta) = \eta_{1} + a(\eta), \quad l(\Phi\eta) = l(\eta) + \#\{k > 1 | \eta_{k} \le \eta_{1}\}$$

$$\begin{aligned} l'(\Phi\eta) &= l'(\eta) + n - 1 - \#\{k > 1 | \eta_k \le \eta_1\} \\ a(s_i\eta) &= a(\eta) \qquad l'(s_i\eta) = l'(\eta) \quad l(s_i\eta) = l(\eta) + 1 \quad \text{for } \eta_i > \eta_{i+1}. \end{aligned}$$

A consequence of the first two equations in the final line is that

(2.9)
$$l'(\eta) = l'(\eta^+) = b(\eta^+), \quad a(\eta) = a(\eta^+) = b((\eta^+)')$$

where $(\eta^+)'$ denotes the partition conjugate to η^+ .

2.1. Raising Operators and Lowering Operators.

There are two distinct raising operators which have a very simple action on non-symmetric Macdonald polynomials. Define [13, 3]

(2.10)
$$\begin{aligned} \Phi_1 &:= x_n \, \omega, \\ \Phi_2 &:= x_n \, T_{n-1}^{-1} \cdots T_2^{-1} T_1^{-1}. \end{aligned}$$

A direct calculation reveals that for i = 1, 2

$$\begin{array}{rcl} Y_n \, \Phi_i &=& q \Phi_i \, Y_1 \\ Y_j \, \Phi_i &=& \Phi_i \, Y_{j+1} & \qquad 1 \leq j \leq n-1 \end{array}$$

whence $\Phi_i E_\eta$ is a constant multiple of $E_{\Phi\eta}$, where $\Phi\eta := (\eta_2, \ldots, \eta_n, \eta_1 + 1)$. This constant is determined by looking at the coefficient of $x^{\Phi\eta}$ with the result that

$$\Phi_{1} E_{\eta} = q^{\eta_{1}} E_{\Phi\eta},
\Phi_{2} E_{\eta} = t^{-\#\{i|\eta_{i} \le \eta_{1}\}} E_{\Phi\eta}.$$

Remark. These operators are simply related via $\Phi_1 = t^{n-1}\Phi_2 Y_1$. Of course any function of the operators Y_i multiplied by Φ_1 will be a raising operator for the non-symmetric Macdonald polynomials but these two are in some sense the simplest.

In a similar manner, one can use the q-Dunkl operators (1.28) to construct lowering operators as follows,

(2.11)
$$\begin{aligned} \Psi_1 &:= \omega^{-1} D_n, \\ \Psi_2 &:= T_1 T_2 \cdots T_{n-1} D_n. \end{aligned}$$

 Ψ_2 was introduced previously in [3]. These operators intertwine with the Cherednik operators as

$$Y_1 \Psi_i = q^{-1} \Psi_i Y_n$$

$$Y_j \Psi_i = \Psi_i Y_{j-1}$$

$$2 \le j \le n$$

and it is seen that

$$\begin{split} \Psi_1 E_\eta &= q^{-\eta_n + 1} (1 - t^{n-1 + \eta_n}) E_{\Psi \eta}, \\ \Psi_2 E_\eta &= t^{\#\{i|\eta_i < \eta_n\}} (1 - t^{n-1 + \bar{\eta}_n}) E_{\Psi \eta} \end{split}$$

. . .

where $\Psi \eta := (\eta_n - 1, \eta_1, ..., \eta_{n-1}).$

2.2. Kernel.

Let \sim denote the involution on the ring of polynomials with coefficients in $\mathbb{C}(q,t)$, which acts on the the coefficients by sending $q \mapsto q^{-1}$, $t \mapsto t^{-1}$, and extend it to act on operators in the obvious way. Define the kernel

(2.12)
$$\mathcal{K}_{A}(x;y;q,t) = \sum_{\eta} q^{a(\eta)} t^{(n-1)|\eta| - l'(\eta)} \frac{d_{\eta}}{d'_{\eta}e_{\eta}} E_{\eta}(x) \widetilde{E}_{\eta}(y).$$

It follows from (2.7) that this kernel is related to the previously introduced kernel [3]

(2.13)
$$K_A(x;y;q,t) = \sum_{\eta} \frac{d_{\eta}}{d'_{\eta}e_{\eta}} E_{\eta}(x)\widetilde{E}_{\eta}(y)$$

((2.13) was denoted by \mathcal{K}_A in [3], but for the present purpose it is desirable to use this notation for (2.12)) by means of

(2.14)
$$\widetilde{\mathcal{K}}_A(x;y;q,t) = K_A(-qy;x;q,t).$$

The kernel $\mathcal{K}_A(x; y; q, t)$ satisfies the following properties:

Theorem 2.2.

(a)
$$(T_i^{\pm 1})^{(x)} \mathcal{K}_A(x;y;q,t) = \left(\widetilde{T_i^{\mp 1}}\right)^{(y)} \mathcal{K}_A(x;y;q,t)$$

(b) $\Psi_1^{(x)} \mathcal{K}_A(x;y;q,t) = \widetilde{\Phi_2}^{(y)} \mathcal{K}_A(x;y;q,t)$
(c) $\mathcal{D}_i^{(x)} \mathcal{K}_A(x;y;q,t) = y_i \mathcal{K}_A(x;y;q,t).$

Proof. The proof of this result follows the same line of reason as in [3, Thm. 5.2], using the facts that

(2.15)
$$x_i = t^{-n+i} T_i^{-1} \cdots T_{n-1}^{-1} \widetilde{\Phi_2} \widetilde{T_1} \cdots \widetilde{T_{i-1}}$$

(2.16)
$$\mathcal{D}_i = t^{-n+i} T_{i-1}^{-1} \cdots T_1^{-1} \Psi_1 T_{n-1} \cdots T_i^{-1}$$

We recall from [3] that the analogue of property (c) for the kernel $K_A(x; y; q, t)$ is

(2.17)
$$D_i^{(x)} K_A(x; y; q, t) = y_i K_A(x; y; q, t).$$

A feature of both property (c) and (2.17) is that the q-Dunkl operator \mathcal{D}_i (resp. D_i) act on the left set of variables *only*. However, by applying the operation \sim and using (2.14), we can form similar identities where they act on the right set of variables, namely:

Corollary 2.3.

(2.18)
$$(\widetilde{\mathcal{D}}_{i})^{(x)} K_{A}(z;x;q,t) = -q^{-1}z_{i} K_{A}(z;x;q,t)$$

(2.19)
$$(\widetilde{D}_i)^{(y)} \mathcal{K}_A(x;y;q,t) = -qx_i \mathcal{K}_A(x;y;q,t).$$

2.3. First isomorphism.

Returning to the proof of Thm. 1.1, we claim that it follows from the subsequent

Proposition 2.4. Let $\mathcal{R}_{q,t}$ be the subalgebra of the algebra of endomorphism on the polynomial ring $\mathbb{Q}(q,t)[x_1,\ldots,x_n]$ generated by the elements $\{T_i,\omega,x_i\}$ with relations given by (1.11)-(1.14), (2.1) The map $\phi:\mathcal{R}_{q^{-1},t^{-1}} \longrightarrow \mathcal{R}_{q,t}$ defined by

(2.20)
$$\phi(\widetilde{\omega^{-1}}) = T_1 \cdots T_{n-1} \,\omega \, T_1^{-1} \cdots T_{n-1}^{-1}, \quad \phi(x_i) = e_i, \quad \phi(\widetilde{T_i^{\pm 1}}) = T_i^{\pm 1}.$$

is an algebra isomorphism.

Proof. Note that a simple consequence of the definition of ϕ given above, is the relation

(2.21)
$$\phi(\widetilde{Y_i^{-1}}) = Y_i$$

The proof that ϕ is indeed an isomorphism follows by a standard calculation. $\hfill \Box$

Proof of Thm. 1.1. We know that $E_{\eta}(x; q^{-1}, t^{-1})$ is an eigenfunction of $\widetilde{Y_i}^{-1}$. This is shown by utilizing the relations amongst the operators $\{\tilde{Y}_i^{-1}, \tilde{T}_i^{\pm 1}, x_i\}$ to move the operators $\widetilde{Y_i}^{-1}$ through the terms in $E_{\eta}(x; q^{-1}, t^{-1})$, until one obtains $\widetilde{Y_i}^{-1} \cdot 1 = t^{-n+1} \cdot 1$. By adopting this viewpoint in the eigenvalue equation (considered as an identity in $\mathcal{R}_{q^{-1},t^{-1}}$)

$$Y_i^{-1} E_{\eta}(x; q^{-1}, t^{-1}) \cdot 1 = t^{\bar{\eta}_i} E_{\eta}(x; q^{-1}, t^{-1}) \cdot 1$$

and applying the map ϕ to both sides it then follows from (2.20), (2.21) that $E_{\eta}(e; q^{-1}, t^{-1}) \cdot 1$ is an eigenfunction of $\phi(Y_i^{-1}) = Y_i$, with leading order term x^{η} and hence must be proportional to $E_{\eta}(x; q, t)$.

To determine the proportionality constant $\alpha_{\eta}(q, t)$ say, it follows from the action of T_i given by (2.2) that

$$e_1^{\eta_1} e_2^{\eta_2} \cdots e_n^{\eta_n} \cdot 1 = q^{f(\eta)} t^{g(\eta)} x^{\eta} + \sum_{\nu < \eta} b_{\eta\nu} x^{\nu}$$

where $f(\eta) = \sum_{i} \begin{pmatrix} \eta_i \\ 2 \end{pmatrix}$ and

$$g(q) = \sum_{i=1}^{n} (\eta_i - 1)(i-1) + \sum_{i=0}^{\eta_{n-1}} \chi(\eta_n \le i) + \sum_{i=0}^{\eta_{n-2}} \chi(\eta_n \le i) + \chi(\eta_{n-1} \le i)$$

(2.22)
$$+\cdots + \sum_{i=0}^{n} \chi(\eta_n \le i) + \cdots + \chi(\eta_2 \le i)$$

where $\chi(P) = 1$ if P is true, and zero otherwise. The simplification $g(q) = \sum_i (n-i)\eta_i^+ - \ell(w_\eta)$ then follows from the above expression by induction on $\ell(w_\eta)$.

3. Al-Salam & Carlitz polynomials.

The isomorphism ϕ introduced in the previous section can be generalized to another isomorphism ψ_a such that $\psi_a(x_i)$ includes not just degree-raising parts, but degree-preserving and lowering parts as well. It will turn out that this isomorphism is precisely what is needed to obtain non-symmetric analogues of the Al-Salam&Carlitz polynomials in the same way as was done for the Hermite case.

As previously mentioned, the symmetric ASC polynomials $V_{\lambda}^{(a)}$ can be defined via their orthogonality with respect to the inner product (1.20). We remark that under this inner product we have the important result that the adjoint operators of $T_i^{\pm 1}$, ω are given by

(3.1)
$$(T_i^{\pm 1})^* = T_i^{\pm 1}, \qquad (\omega^{-1})^* = \frac{t^{n-1}}{aq} \,\omega \,(x_1 - q)(x_1 - aq).$$

The ASC polynomials $V_{\lambda}^{(a)}$ can equivalently be defined by means of the generating function [1]

$$\prod_{i=1}^{n} \frac{1}{\rho_a(t^{-(n-1)}x_i;q)} {}_0\psi_0(x;y;q,t) = \sum_{\lambda} \frac{(-1)^{|\lambda|} q^{b(\lambda')} V_{\lambda}^{(a)}(y;q,t) P_{\lambda}(x;q,t)}{d'_{\lambda}(q,t) P_{\lambda}(1,t,\dots,t^{n-1};q,t)}.$$

Here, $\rho_a(x) := (x;q)_{\infty}(ax;q)_{\infty}, b(\lambda)$ is defined by (2.8) and

$$P_{\lambda}(1, t, \dots, t^{n-1}; q, t) = t^{l(\lambda)} \prod_{s \in \lambda} \frac{(1 - q^{a'(s)} t^{n-l'(s)})}{(1 - q^{a(s)} t^{l(s)+1})}$$
$${}_{0}\psi_{0}(x; y; q, t) := \sum_{\lambda} \frac{(-1)^{|\lambda|} q^{b(\lambda)}}{d'_{\lambda}(q, t) P_{\lambda}(1, t, \dots, t^{n-1}; q, t)} P_{\lambda}(x; q, t) P_{\lambda}(y; q, t).$$

This latter kernel was previously introduced by Kaneko [11] in connection with hypergeometric solutions of systems of q-difference equations.

Similarly the ASC polynomials $U_{\kappa}^{(a)}$ can be defined by the generating function [1]

$$\rho_a(x_1;q) \cdots \rho_a(x_n;q) \,_0 \mathcal{F}_0(x;y;q,t) = \sum_{\kappa} \frac{t^{b(\kappa)} U_{\kappa}^{(a)}(y;q,t) P_{\kappa}(x;q,t)}{d'_{\kappa}(q,t) P_{\kappa}(1,t,\dots,t^{n-1};q,t)}$$

where the hypergeometric function ${}_{0}\mathcal{F}_{0}$ is defined by

(3.4)
$$_{0}\mathcal{F}_{0}(x;y;q,t) := \sum_{\kappa} \frac{t^{b(\kappa)}}{d'_{\kappa}(q,t)P(1,t,\ldots,t^{n-1};q,t)} P_{\kappa}(x;q,t)P_{\kappa}(y;q,t).$$

3.1. Second isomorphism.

Consider the involution $\hat{}$ on polynomials and operators defined in the statement of Corollary 1.3. The operator E_i introduced in (1.29) has its origins in this involution, namely,

(3.5)
$$E_i := (\hat{D}_{n+1-i})^* := \left(-\frac{1}{q}\mathcal{D}_i\right)^*.$$

The form (1.29) follows from (3.5) by making use of the adjoint formulae (3.1). The relations between the operators E_i and the operators $\{D_i, T_i, \omega\}$, can be derived using (3.5). Thus, for example, application of the adjoint operation * to the relations involving \mathcal{D}_i , T_i gives, in place of the first relation in (2.5),

(3.6)
$$T_i^{-1} E_i T_i^{-1} = t^{-1} E_{i+1}.$$

Now consider the following mapping $\psi_a: \{\widetilde{\omega}^{-1}, \widetilde{T}_i, x_i, \widetilde{\mathcal{D}}_i\} \longrightarrow \{\omega, T_i, x_i, d_i\}$ where each set of operators defines a certain algebra of endomorphisms on the ring $\mathbb{Q}(q, t)[x_1, \ldots, x_n]$, defined by

$$(3.7) \quad \psi_a(x_i) = E_i,$$

$$\psi_a(\widetilde{\omega}^{-1}) = T_1 \cdots T_{n-1} \left(Y_n + (1+a)t^{1-n}D_n + at^{2-2n}D_nY_nD_n \right),$$

$$\psi_a(\widetilde{T}_i^{-1}) = T_i,$$

$$\psi_a(\widetilde{\mathcal{D}}_i) = -at^{n+1-2i}T_{i-1} \cdots T_1T_1 \cdots T_{i-1}E_i^* T_i^{-1} \cdots T_{n-1}^{-1}T_{n-1}^{-1} \cdots T_i^{-1}.$$

Then Theorem 1.2 will follow from:

Proposition 3.1. The map ψ_a is an algebra isomorphism.

Proof. The proof of this result consists of checking that the operators $\psi_a(u)$ given in (3.7) satisfy the same relations as the original operators u, given by (1.11)-(1.14), (2.1) and (2.5), (after application of the involution $\tilde{}$). For example, the first formula in (2.1), after application of the involution $\tilde{}$, reads

$$\tilde{T}_i^{-1}x_{i+1} = tx_i\tilde{T}_i.$$

Now applying the mapping ψ_a gives

$$T_i E_{i+1} = t E_i T_i^{-1}.$$

But this is equivalent to (3.6) so the algebra is indeed preserved. The calculations involved in checking the other relations are typically more involved; however they are similar to those undertaken in [3], and so for brevity will be omitted.

As with the relationship between Prop. 2.4 and the proof of Thm. 1.1 we are in a position to complete the:

Proof of Thm. 1.2. From Thm. 1.1, and the definition (1.29) of the operators E_i it follows that $E_{\eta}^{(V)}$ has leading term $E_{\eta}(x;q,t)$. In addition, it follows from (3.7) that

(3.8)
$$\psi_a(\widetilde{Y_i^{-1}}) = Y_i + (1+a)t^{1-n}D_i + at^{2-2n}D_iY_i^{-1}D_i$$

and from Prop. 3.1, that these are eigenoperators for the non-symmetric ASC polynomials defined by (1.30). The corresponding eigenvalue is simply $t^{\bar{\eta}_i}$. By writing these operators out explicitly, it is seen that they are self-adjoint w.r.t. the inner product (1.20). Hence by standard arguments, the polynomials (1.30) are orthogonal w.r.t. (1.20).

3.2. Normalization.

The images of the raising and lowering operators (2.10), (2.11) (after application of $\tilde{}$) under the map ψ_a are guaranteed, by virtue of Prop. 3.1, to be raising and lowering operators for the polynomials $E_{\eta}^{(V)}(x)$.

In particular, using (2.16) and (3.7) we see that

$$\psi_a(\widetilde{\Psi_1}) = aq^{-1}t^{1-n}\,\Psi_1$$

so that Ψ_1 remains a raising operator for the polynomials $E_{\eta}^{(V)}$. By examination of the leading terms, we must have

(3.9)
$$\Psi_1 E_{\eta}^{(V)} = q^{\eta_n + 1} \frac{d'_{\eta}}{d'_{\Psi\eta}} E_{\Psi\eta}^{(V)}$$

Also, use of (2.15) and (3.7) gives

$$\psi_a(\widetilde{\Phi_2}) = -q^{-1} \, \Psi_1^*$$

so that Ψ_1^* is a raising operator for $E_{\eta}^{(V)}$. Indeed,

(3.10)
$$\Psi_1^* E_{\eta}^{(V)} = a^{-1} t^{n-1} q^{\eta_1 + 1} E_{\Phi \eta}^{(V)}.$$

By an argument similar to that used in [4, Prop. 3.6] it follows from (3.9) and (3.10) that

(3.11)
$$\left\langle E_{\Phi\eta}^{(V)}, E_{\Phi\eta}^{(V)} \right\rangle^{(V)} = at^{1-n}q^{-2\eta_1-1}\frac{d'_{\Phi\eta}}{d'_{\eta}} \left\langle E_{\eta}^{(V)}, E_{\eta}^{(V)} \right\rangle^{(V)}$$

Also, we have

(3.12)
$$\left\langle E_{s_i\eta}^{(V)}, E_{s_i\eta}^{(V)} \right\rangle^{(V)} = \frac{(1 - t^{\delta_{i\eta} - 1})(1 - t^{\delta_{i\eta} + 1})}{t(1 - t^{\delta_{i\eta}})^2} \left\langle E_{\eta}^{(V)}, E_{\eta}^{(V)} \right\rangle^{(V)}$$

The solution of the recurrence relations (3.11), (3.12) gives:

Proposition 3.2.

(3.13)
$$\mathcal{N}_{\eta}^{(V)} := \left\langle E_{\eta}^{(V)}, E_{\eta}^{(V)} \right\rangle^{(V)} = \left(aq^{-1}t^{2-2n}\right)^{|\eta|} q^{-2a(\eta)}t^{l(\eta)+l'(\eta)} \frac{d_{\eta}' e_{\eta}}{d_{\eta}} \mathcal{N}_{0}^{(V)}$$

where for $t = q^k$, [1]

$$\mathcal{N}_0^{(V)} = (1-q)^n a^{kn(n-1)/2} t^{-2k\binom{n}{3}-k\binom{n}{2}} \prod_{l=1}^n \frac{(q;q)_{kl}}{(q;q)_k}.$$

By using the formulas (1.32), (1.26) and (1.27) we see that the norm $\mathcal{N}_{\eta}^{(U)}$ of the non-symmetric ASC polynomials $E_{\eta}^{(U)}$ with respect to the inner product (1.23) is given by simply replacing q, t by q^{-1}, t^{-1} in (3.13). Use of (2.7) then gives:

Corollary 3.3.

(3.14)
$$\mathcal{N}_{\eta}^{(U)} := \left\langle E_{\eta}^{(U)}, E_{\eta}^{(U)} \right\rangle^{(U)} = \left(at^{n-1}\right)^{|\eta|} q^{a(\eta)}t^{-l(\eta)}\frac{d_{\eta}' e_{\eta}}{d_{\eta}} \mathcal{N}_{0}^{(U)}$$

where for $t = q^k$, [1]

$$\mathcal{N}_0^{(U)} = (1-q)^n (-a)^{kn(n-1)/2} t^{k\binom{n}{3} - \frac{k-1}{2}\binom{n}{2}} \prod_{l=1}^n \frac{(q;q)_{kl}}{(q;q)_k}$$

3.3. Generating function.

The raising operator expression (1.30) facilitates the derivation of the generating function for the non-symmetric ASC polynomials. Also required will be the *q*-symmetrization of (2.12).

Proposition 3.4. Let [18] $U^+ = \sum_{\sigma} T_{\sigma}$ where $T_{\sigma} := T_{i_1} \cdots T_{i_p}$ for a reduced word decomposition $\sigma = s_{i_1} \cdots s_{i_p}$. We have

(3.15)
$$(U^+)^{(x)} \mathcal{K}_A(x;y;q,t) = [n]_t!_0 \psi_0(x;-t^{n-1}y;q,t)$$

where $_{0}\psi_{0}$ is defined by (3.2).

Proof. We remark that this is the analogue of the result [3, Prop. 5.4]

(3.16)
$$(U^+)^{(x)} K_A(x;y;q,t) = [n]_t!_0 F_0(x;y;q,t).$$

In fact in our proof of (3.15) we will use the formula

(3.17)
$$U^+ E_{\eta}(x) = [n]_t! t^{l(\eta)} \frac{e_{\eta}}{P_{\lambda}(t^{\delta}) d_{\eta}} P_{\lambda}(x), \qquad \lambda = \eta^+$$

which was deduced $[\mathbf{3}, \text{eqs.} (5.8)\&(5.18)]$ as a corollary of (3.16). Thus we apply U^+ to (2.12) and use (3.17) to compute its action. Simplifying the result using the first equation in (2.9) and the formula $[\mathbf{18}]$

(3.18)
$$P_{\lambda}(y) = \sum_{\eta: \eta^+ = \lambda} \frac{d'_{\lambda}}{d'_{\eta}} E_{\eta}(y)$$

the result then follows.

Consider now the generating function

$$F_1(y;z) = \sum_{\nu} A_{\nu} E_{\nu}^{(V)}(y) \widetilde{E}_{\nu}(z)$$

where

(3.19)
$$A_{\nu} = (a/q)^{|\nu|} \frac{\mathcal{N}_{0}^{(V)}}{\alpha_{\nu}(q,t)\mathcal{N}_{\nu}^{(V)}} = q^{a(\nu)}t^{(n-1)|\nu|-l'(\nu)} \frac{d_{\nu}}{d_{\nu}'e_{\nu}}.$$

Here we have used the fact that $l(\eta) = l(\eta^+) + \ell(w_\eta)$ to rewrite $\alpha_\eta(q, t)$ as defined by (1.18) as

$$\alpha_{\eta}(q,t) = q^{a(\eta)} t^{(n-1)|\eta| - l(\eta)}$$

Clearly

$$\left\langle F_1(y;z), E_{\eta}^{(V)}(y) \right\rangle_y^{(V)} = (a/q)^{|\eta|} \frac{\mathcal{N}_0^{(V)}}{\alpha_{\eta}(q,t)} \widetilde{E}_{\eta}(z)$$

Next note the integration formula

$$\langle \mathcal{K}_{A}(y;z),1\rangle_{y}^{(V)} = \frac{1}{[n]_{t}!} \langle U_{y}^{+} \mathcal{K}_{A}(y;z),1\rangle_{y}^{(V)}$$

$$= \langle_{0}\psi_{0}(y;-t^{n-1}z),1\rangle_{y}^{(V)} = \mathcal{N}_{0}^{(V)}\prod_{i=1}^{n}\rho_{a}(-z_{i})$$

which follows from the symmetrization formula (3.15), the fact that U_y^+ is self adjoint w.r.t. $\langle , \rangle_y^{(V)}$ and an integral formula for the kernel $_0\psi_0(y;z)$ given in [1, Prop 4.8], and consider the generating function

$$F_2(y;z) = \prod_{i=1}^n \frac{1}{\rho_a(-z_i)} \mathcal{K}(y;z)$$

We have

$$\begin{split} \left\langle F_2(y;z), E_{\eta}^{(V)}(y) \right\rangle_y^{(V)} &= \frac{(-a)^{|\eta|}}{\alpha_{\eta}(q,t)} \prod_i \frac{1}{\rho_a(-z_i)} \left\langle \mathcal{K}(y;z), \widetilde{E}_{\eta}(E^{(y)}) \right\rangle_y^{(V)} \\ &= \frac{(a/q)^{|\eta|}}{\alpha_{\eta}(q,t)} \prod_i \frac{1}{\rho_a(-z_i)} \left\langle \widetilde{E}_{\eta}(\mathcal{D}^{(y)}) \mathcal{K}(y;z), 1 \right\rangle_y^{(V)} \\ &= \frac{(a/q)^{|\eta|}}{\alpha_{\eta}(q,t)} \prod_i \frac{1}{\rho_a(-z_i)} \widetilde{E}_{\eta}(z) \left\langle \mathcal{K}(y;z), 1 \right\rangle_y^{(V)} \\ &= (a/q)^{|\eta|} \frac{\mathcal{N}_0^{(V)}}{\alpha_{\eta}(q,t)} \widetilde{E}_{\eta}(z). \end{split}$$

In the above chain of equalities, we have used (1.30), (3.5), the kernel property Thm. 2.2 (c) and (3.20) respectively. The non-symmetric ASC polynomials $E_{\eta}^{(V)}(y)$ are a complete basis for polynomials in y and hence from above we have $F_1 = F_2$. That is, we have the generating function for nonsymmetric ASC polynomials $E_{\nu}^{(V)}$.

Proposition 3.5. With A_{ν} given by (3.19)

(3.21)
$$\prod_{i=1}^{n} \frac{1}{\rho_a(-z_i)} \mathcal{K}_A(y;z) = \sum_{\nu} A_{\nu} E_{\nu}^{(V)}(y) \widetilde{E}_{\nu}(z).$$

We remark that this generating function could also be derived in a manner similar to that used in the symmetric case [1], namely by applying the operator $(\widetilde{Y_i^{-1}})^{(z)}$ to both sides of (3.21) and deducing that $E_{\eta}^{(V)}(y)$ is an eigenfunction of

(3.22)
$$h_i = \psi_a(Y_i^{-1}) = Y_i T_{i-1} \cdots T_1 (1 + \mathcal{D}_1) (1 + a\mathcal{D}_1) T_1^{-1} \cdots T_{i-1}^{-1}$$

with leading term $E_{\eta}(y)$ (some manipulation using (2.5) and (2.3) casts this into the form given in (1.31)). Note also that by applying the operation $\hat{}$ with the respect to the *y*-variables in (3.21) and using the formula (2.14) as well as

$$\frac{1}{\rho_a(x;q)}\bigg|_{q\mapsto q^{-1}} = \rho_a(qx;q),$$

(see e.g. [1]) we deduce the generating function formula for the polynomials $E_{\nu}^{(U)}$.

Corollary 3.6.

(3.23)
$$\prod_{i=1}^{n} \rho_a(z_i) K_A(z; y^R; q, t) = \sum_{\nu} \frac{d_{\nu}}{d'_{\nu} e_{\nu}} E_{\nu}^{(U)}(y) E_{\nu}(z).$$

The generating function formulas in turn imply a further class of operator formulas relating the ASC polynomials and the non-symmetric Jack polynomials (c.f. [1, eqs. (3.9)&(3.10)]).

Corollary 3.7. We have

(3.24)
$$E_{\eta}^{(V)}(y) = \prod_{i=1}^{n} \frac{1}{\rho_{a}(-\mathcal{D}_{i}^{(y)})} E_{\eta}(y)$$

(3.25)
$$E_{\eta}^{(U)}(y) = \prod_{i=1}^{n} \rho_a \left(-q \widetilde{\mathcal{D}_i^{(y)}} \right) \widetilde{E}_{\eta}(y^R).$$

Proof. The first identity follows from (3.21) by using Thm. 2.2 (c) and comparing coefficients of $\tilde{E}_{\eta}(z)$, while the second identity follows similarly from (3.23) and (2.18).

As further applications of the generating functions we will present some evaluation formulas for $E_{\eta}^{(V)}$ at the special points $t^{\bar{\delta}-n+1}$ and $at^{\bar{\delta}-n+1}$, where $t^{\bar{\delta}} := (1, t, t^2, \ldots, t^{n-1})$.

Proposition 3.8. We have

$$(3.26) E_{\eta}^{(V)}(t^{\bar{\delta}-n+1}) = (-a)^{|\eta|}q^{-a(\eta)}t^{l'(\eta)-(n-1)|\eta|}E_{\eta}(t^{\bar{\delta}})$$

$$(3.27) E_{\eta}^{(V)}(at^{o-n+1}) = (-1)^{|\eta|}q^{-a(\eta)}t^{\nu}t^{(\eta)-(n-1)|\eta|}E_{\eta}(t^{o})$$

where

(3.28)
$$E_{\eta}(t^{\bar{\delta}}) = t^{l(\eta)} \frac{e_{\eta}}{d_{\eta}}.$$

Proof. The formula (3.28) is a special case of a result of Cherednik [7] (see also [20]). For the derivation of (3.26) and (3.27) we follow the strategy of the proof of the analogous result in the symmetric case [1, Prop. 4.3]. First, note from the definition (1.8) that in general

$$T_i f(t^{\overline{\delta}}) = t f(t^{\overline{\delta}}),$$

and so

$$(U^+f)(t^{\bar{\delta}}) = (U^+1)f(t^{\bar{\delta}}) = [n]_t!f(t^{\bar{\delta}}).$$

Use of this latter formula in (3.15) with $y = t^{\delta}$ gives

(3.29)
$$\mathcal{K}_A(t^{\bar{\delta}}; z; q, t) = {}_0\psi_0(t^{\bar{\delta}}; -t^{n-1}z; q, t) = \prod_{i=1}^n (-t^{n-1}z_i; q)_{\infty}$$

and similarly, from (3.16)

(3.30)
$$K_A(t^{\bar{\delta}}; z; q, t) = {}_0F_0(t^{\bar{\delta}}; z; q, t) = \frac{1}{\prod_{i=1}^n (z_i; q)_{\infty}},$$

where the final equalities in (3.29) and (3.30) are known results [17, 12]. Now set $y = t^{\overline{\delta}-n+1}$ in the generating function (3.15). Use of (3.29) with z replaced by $t^{-n+1}z$, and then use of (3.30) allows the l.h.s. of the resulting expression to be written

$$\frac{1}{\prod_{i=1}^{n}(-az_{i};q)_{\infty}} = K_{A}(t^{\bar{\delta}}; -az;q,t) = \sum_{\eta} \frac{(-a)^{|\eta|} d_{\eta}}{d_{\eta}' e_{\eta}} E_{\eta}(t^{\bar{\delta}}) \widetilde{E}_{\eta}(z).$$

Equating with $\widetilde{E}_{\eta}(z)$ on the r.h.s. of the resulting expression gives (3.26). The formula (3.27) follows similarly, by substituting $y = at^{\overline{\delta}-n+1}$ in (3.15).

3.4. Relationship to the symmetric ASC polynomials.

The non-symmetric ASC polynomials are related to the corresponding symmetric ASC polynomials in an analogous way to the relationship (3.17) between the non-symmetric and symmetric Macdonald polynomials.

Proposition 3.9. Let

$$a_{\eta}(q,t) = [n]_t! t^{\ell(\eta)} \frac{e_{\eta}}{P_{\eta^+}(t^{\bar{\delta}})d_{\eta}}$$

We have

(3.31)
$$U^{+}E_{\eta}^{(V)}(y) = a_{\eta}(q,t)V_{\eta^{+}}^{(a)}(y;q,t)$$

(3.32)
$$U^{+}E_{\eta}^{(U)}(y) = a_{\eta}(q,t)U_{\eta^{+}}^{(a)}(y;q,t).$$

Proof. Consider the action of the U^+ operator on (3.24) and (3.25). From the first three equations of (2.5) one can check that T_i commutes with any symmetric function of the \mathcal{D}_i . Thus the action of U^+ can be commuted to act to the right of $\prod_i \rho_a(-\frac{1}{q}\tilde{\mathcal{D}}_i)$ and $1/\prod_i \rho_a(-\mathcal{D}_i)$. Use of (3.17) then gives

$$\begin{array}{lll} U^{+}E_{\eta}^{(V)}(y) &=& a_{\eta}(q,t)\frac{1}{\prod_{i}\rho_{a}(-\mathcal{D}_{i})}P_{\eta^{+}}(y) = a_{\eta}(q,t)\frac{1}{\prod_{i}\rho_{a}(q\widetilde{D}_{i})}P_{\eta^{+}}(y) \\ U^{+}E_{\eta}^{(U)}(y) &=& a_{\eta}(q,t)\prod_{i}\rho_{a}(-q\widetilde{\mathcal{D}}_{i})P_{\eta^{+}}(y) = a_{\eta}(q,t)\prod_{i}\rho_{a}(D_{i})P_{\eta^{+}}(y), \end{array}$$

where in obtaining the first equality in the second formula we have used the fact that $\tilde{P}_{\eta}(y^R) = P_{\eta}(y)$, while the second equalities in both formulas make use of (2.3) and the fact that P_{η^+} is a symmetric function. But the resulting operator formulas are precisely representations obtained in [1, Eq. (3.9)&(3.10)] for the symmetric ASC polynomials.

We can also relate the eigenoperators h_i for the non-symmetric ASC polynomials $E_{\eta}^{(V)}$ to the eigenoperator [1, Eq. (3.28)]

$$(3.33) \quad \mathcal{H} = t^{1-n} \sum_{i=1}^{n} Y_{i}^{-1} - (1+a) \sum_{i=1}^{n} t^{1-i} D_{i} Y_{i}^{-1} + a \sum_{i=1}^{n} t^{1-i} D_{i}^{2} Y_{i}^{-1} + a(1-t^{-1}) \sum_{1 \le i < j \le n} t^{1-i} D_{j} D_{i} Y_{i}^{-1}$$

for the symmetric ASC polynomials $U_{\lambda}^{(a)}$.

Proposition 3.10. Let h_i be given by (1.31) and \mathcal{H} by (3.33). When acting on symmetric functions

$$\sum_{i=1}^{n} h_i = t^{1-n} \widetilde{\mathcal{H}}$$

Proof. From Theorem 1.2, by summing over i in (1.31) we have

$$\sum_{i=1}^{n} h_i E^{(V)}(x;q,t) = t^{1-n} e(\eta^+) E^{(V)}(x;q,t),$$

where $e(\eta^+) = \sum_{i=1}^n t^{\bar{\eta}_i} = \sum_{i=1}^n q^{\eta_i^+} t^{n-i}$. We would next like to apply the operator U^+ to both sides of this eigenvalue equation. For this purpose we require the fact that T_i commutes with $\sum_{i=1}^n h_i$ (this follows from (1.16),

36

and the fact that these same equations apply with the Y_i replaced by D_i). Thus, making use of (3.31), this operation gives

$$\sum_{i=1}^{n} h_i V_{\eta^+}^{(a)}(x;q,t) = t^{1-n} e(\eta^+) V_{\eta^+}^{(a)}(x;q,t).$$

But from [1] we know that this same eigenvalue equation applies with $\sum_{i=1}^{n} h_i$ replaced by $t^{1-n} \tilde{\mathcal{H}}$. The result now follows from the fact that $\{V_{\eta^+}^{(a)}\}$ are a basis for symmetric functions.

We remark that an alternative proof is to establish directly that when acting on symmetric functions

(3.34)
$$\sum_{i=1}^{n} \tilde{Y}_{i}^{-1} = \sum_{i=1}^{n} Y_{i}$$

(3.35)
$$-\sum_{i=1}^{n} t^{-1+i} \tilde{D}_i \tilde{Y}_i^{-1} = \sum_{i=1}^{n} D_i$$

(3.36)
$$\sum_{i=1}^{n} t^{-1+i} \tilde{D}_{i}^{2} \tilde{Y}_{i}^{-1} + (1-t) \sum_{1 \le i < j \le n} t^{-1+i} \tilde{D}_{j} \tilde{D}_{i} \tilde{Y}_{i}^{-1}$$
$$= t^{1-n} \sum_{i=1}^{n} D_{i} Y_{i}^{-1} D_{i}.$$

3.5. Non-symmetric shifted Macdonald polynomials.

In [1] it was observed that the symmetric ASC polynomials $V_{\lambda}^{(a)}(x)$ coincide (up to a factor and change of variables) with the shifted Macdonald polynomials when a = 0. We show now that this behaviour carries over to the non-symmetric case.

Following Knop [14], Knop and Sahi [15] and Sahi [26], the non-symmetric shifted Macdonald polynomials $G_{\eta}(z)$ are defined, in the notation of [14], as the unique polynomial with expansion

$$G_{\eta}(z;q,t) = \widetilde{E}_{\eta}(z) + \sum_{|\nu| < |\eta|} b_{\eta\nu} \widetilde{E}_{\nu}(z)$$

which vanishes at the points $z = t^{\bar{\xi}}$ for all compositions $\xi \neq \eta$ such that $|\xi| \leq |\eta|$. Here $t^{\bar{\xi}}$ is given by (1.5). Equivalently [13, 22] they can be defined as eigenfunctions of the "inhomogeneous" Cherednik operators

$$\Xi_i = \tilde{Y}_i + \tilde{D}_i$$

where the operators are defined with the variables z_i . For such polynomials, Knop [14] defined a raising operator $\Phi_K = (z_n - t^{1-n})\omega^{-1}$ with a simple action on $G_{\eta}(z;q,t)$. It is easily seen that

$$\lim_{a \to 0} \frac{-a}{q} \Psi_1^* = \widetilde{\Phi}_K \bigg|_{z_i = t^{n-1} x_i}, \qquad \lim_{a \to 0} h_i = \widetilde{\Xi}_i \bigg|_{z_i = t^{n-1} x_i}$$

which immediately implies the sought relationship between G_{η} and $E_{\eta}^{(V)}$.

Proposition 3.11.

(3.37)
$$E_{\eta}^{(V)}(x;q,t)\Big|_{a=0} = t^{-(n-1)|\eta|} G_{\eta}(t^{n-1}x;q^{-1},t^{-1})$$

or equivalently

(3.38)
$$E_{\eta}^{(U)}(x;q,t)\Big|_{a=0} = t^{(n-1)|\eta|}G_{\eta}(t^{1-n}x;q,t).$$

One immediate application of (3.37) is the evaluation of $G_{\eta}(0;q,t)$, which follows from (3.27). This is a special case of a result of Sahi [26, Th. 1.1], in which an evaluation formula is given for $G_{\eta}(\alpha t^{\bar{\delta}};q,t)$, for a general scalar α . In fact use of (3.37) also allows this more general evaluation formula to be deduced.

Proposition 3.12. With
$$(\alpha)_{\lambda}^{(q,t)} := \prod_{s \in \lambda} (t^{l'(s)} - q^{a'(s)}\alpha)$$
 we have
 $G_{\eta}(t^{-\bar{\delta}}\alpha;q,t) = \alpha^{|\eta|} (1/\alpha)_{\eta^+}^{(q,t)} t^{-(n-1)|\eta|} \frac{e_{\eta}}{d_{\eta}}.$

Proof. Choosing a = 0 and $y = t^{n-1-\bar{\delta}}\alpha$ in (3.23), and using (3.30) and (3.38), we see that

$$\sum_{\eta} \alpha^{-|\eta|} t^{(n-1)|\eta|} \frac{d_{\eta}}{d'_{\eta} e_{\eta}} G_{\eta}(t^{-\bar{\delta}}\alpha;q,t) E_{\eta}(z) = \prod_{i=1}^{n} \frac{(z_i/\alpha;q)_{\infty}}{(z_i;q)_{\infty}}.$$

But we know that [17, 12]

$$\prod_{i=1}^{n} \frac{(z_i/\alpha;q)_{\infty}}{(z_i;q)_{\infty}} = \sum_{\lambda} \frac{(1/\alpha)_{\lambda}^{(q,t)}}{d'_{\lambda}} P_{\lambda}(z;q,t) = \sum_{\eta} \frac{(1/\alpha)_{\eta^+}^{(q,t)}}{d'_{\eta}} E_{\eta}(z).$$

The result follows by equating coefficients of $E_{\eta}(z)$.

3.6. *q*-binomial coefficients.

Sahi [26] uses the polynomials G_{η} to introduce non-symmetric *q*-binomial coefficients $\begin{bmatrix} \eta \\ \nu \end{bmatrix}_{q,t}$ according to

(3.39)
$$\begin{bmatrix} \eta \\ \nu \end{bmatrix}_{q,t} := \frac{G_{\nu}(t^{\bar{\eta}})}{G_{\nu}(t^{\bar{\nu}})}$$

 $(\bar{\eta}_i \text{ is defined by (1.5)})$. Our generating function characterization of the ASC polynomials, and thus by Proposition 3.11 of the polynomials G_{η} , makes it natural to extend Lassalle's [16] definition of the symmetric q-binomial

coefficients to the non-symmetric case by defining the non-symmetric qbinomial coefficients $\binom{\eta}{\nu}_{a,t}$ according to the generating function formula

(3.40)
$$\widetilde{E}_{\nu}(x)\prod_{i=1}^{n}\frac{1}{(x_{i};q)_{\infty}}=\sum_{\eta}\binom{\eta}{\nu}_{q,t}t^{l(\eta)-l(\nu)}\frac{d_{\nu}'}{d_{\eta}'}\widetilde{E}_{\eta}(x).$$

We can then use the generating function (3.15) to relate these binomial coefficients to the polynomials G_{η} .

Proposition 3.13. With $\binom{\eta}{\nu}_{a,t}$ defined by (3.40), we have

(3.41)
$$\frac{G_{\eta}(x)}{G_{\eta}(0)} = \sum_{\nu} {\eta \choose \nu}_{q^{-1},t^{-1}} \frac{\widetilde{E}_{\nu}(x)}{G_{\nu}(0)}.$$

Proof. Multiply both sides of (3.40) by $q^{a(\nu)}t^{(n-1)|\nu|-l'(\nu)}\frac{d_{\nu}}{d'_{\nu}e_{\nu}}E_{\nu}(y)$ and sum over ν , rewriting the l.h.s. according to (3.15). Now equate coefficients of $\widetilde{E}_{\nu}(x)$ on both sides. The result then follows upon using (3.28) and (3.37).

Since (3.41) is a formula satisfied by the non-symmetric *q*-binomial coefficients of Sahi [26, Cor. 1.3], and this formula suffices to implicitly define these coefficients, we have that

(3.42)
$$\begin{pmatrix} \eta \\ \nu \end{pmatrix}_{q,t} = \begin{bmatrix} \eta \\ \nu \end{bmatrix}_{q,t}$$

Finally, let us present some formulas relating the coefficients $\binom{\eta}{\nu}_{q,t}$ to their symmetric counterparts $\binom{\kappa}{\mu}_{q,t}$, which can be characterized by either of the formulas [16, 21]

$$(3.43) P_{\mu}(x;q,t) \prod_{i=1}^{n} \frac{1}{(x_{i};q)_{\infty}} = \sum_{\lambda} {\binom{\lambda}{\mu}}_{q,t} t^{b(\lambda)-b(\mu)} \frac{d'_{\mu}}{d'_{\lambda}} P_{\lambda}(x;q,t),$$

$$(3.43) P_{\mu}(x;q,t) \prod_{i=1}^{n} \frac{1}{(x_{i};q)_{\infty}} = \sum_{\lambda} {\binom{\lambda}{\mu}}_{q,t} t^{b(\lambda)-b(\mu)} \frac{d'_{\mu}}{d'_{\lambda}} P_{\lambda}(x;q,t),$$

(3.44)
$$\frac{P_{\lambda}(y;q^{-},t^{-})}{P_{\lambda}^{*}(0;q^{-1},t^{-1})} = \sum_{\mu} {\binom{\lambda}{\mu}}_{q,t} \frac{P_{\mu}(y;q,t)}{P_{\lambda}^{*}(0;q^{-1},t^{-1})}.$$

Here P_{λ}^* is the shifted Macdonald polynomial, which is related to the symmetric ASC polynomial $V_{\lambda}^{(0)}$ by [1, Prop. 4.4]

(3.45)
$$P_{\lambda}^{*}(yt^{-\bar{\delta}+n-1};q^{-1},t^{-1}) = t^{(n-1)|\lambda|}V_{\lambda}^{(0)}(y;q,t).$$

Proposition 3.14. With $\eta^+ = \kappa$, $\nu^+ = \mu$,

(3.46)
$$\sum_{\nu:\nu^{+}=\mu} {\eta \choose \nu}_{q,t} = {\kappa \choose \mu}_{q,t},$$

(3.47)
$$\frac{d'_{\kappa}}{d'_{\mu}}\frac{P_{\kappa}(t^{\delta})}{P_{\mu}(t^{\bar{\delta}})}\frac{d'_{\nu}}{E_{\nu}(t^{\bar{\delta}})}\sum_{\eta:\eta^{+}=\kappa} {\eta \choose \nu}_{q,t}\frac{E_{\eta}(t^{\delta})}{d'_{\eta}} = {\kappa \choose \mu}_{q,t}.$$

Proof. The proof follows the strategy given in [1] for the proof of the corresponding results in the $q = t^{\alpha}$, $q \to 1$ limit (binomial coefficients associated with non-symmetric Jack polynomials). For (3.46) we apply the U^+ operator to (3.41), making use of (3.17) and (3.31). Use of the fact that

$$\frac{a_{\nu}}{E_{\nu}^{(V)}(0)} = \frac{[n]_t!}{V_{\eta^+}^{(0)}(0;q,t)}$$

and (3.45) then gives

$$\frac{P_{\lambda}^{*}(xt^{-\delta};q^{-1},t^{-1})}{P_{\lambda}^{*}(0;q^{-1},t^{-1})} = \sum_{\nu} {\eta \choose \nu}_{q,t} \frac{P_{\nu^{+}}(x;q,t)}{P_{\nu^{+}}^{*}(0;q^{-1},t^{-1})}.$$

Comparison with (3.44) implies (3.46) The identity (3.47) follows similarly, by applying U^+ to (3.40) and comparing with (3.43).

Acknowledgements.

The authors thank the referee for helpful comments. They acknowledge the financial support of the Australian Research Council.

References

- T.H. Baker and P.J. Forrester, Multivariable Al-Salam & Carlitz polynomials associated with type A q-Dunkl operators, q-alg/9706006, to appear in Math. Nach.
- [2] _____, The Calogero-Sutherland model and polynomials with prescribed symmetry, Nucl. Phys., B 492 (1997), 682-716.
- [3] _____, A q-analogue of the type A Dunkl operator and integral kernel, Int. Math. Res. Not., 14 (1997), 667-686.
- [4] _____, Non-symmetric Jack polynomials and integral kernels, Duke. J. Math., 95 (1998), 1-50.
- [5] I. Cherednik, A unification of the Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras, Inv. Math., 106 (1991), 411-432.
- [6] _____, Integration of quantum many-body problems by affine Knizhnik-Zamolodchikov equations, Commun. Math. Phys., **106** (1994), 65-95.
- [7] _____, Non-symmetric Macdonald polynomials, Int. Math. Res. Not., 10 (1995), 483-515.
- [8] C.F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc., 311 (1989), 167-183.
- [9] S. Kakei, Common algebraic structure for the Calogero-Sutherland models, J. Phys., A 29 (1996), 619-624.
- [10] _____, Intertwining operators for a degenerate double affine Hecke algebra and multivariable orthogonal polynomials, J. Math. Phys., 39 (1998), 4993-5006.
- [11] J. Kaneko, Selberg integrals and hypergeometric functions associated with Jack polynomials, SIAM J. Math. Anal., 24 (1993), 1086-1110.

40

- [12] _____, q-Selberg integrals and Macdonald polynomials, Ann. Sci. Éc. Norm. Sup., 4^e série, **29** (1996), 1086-1110.
- [13] F. Knop, Integrality of two variable Kostka functions, J. Reine Ang. Math., 482 (1997), 177-189.
- [14] _____, Symmetric and non-symmetric quantum Capelli polynomials, Commentarii Mathematici Helvetici, 72 (1997), 84-100.
- [15] F. Knop and S. Sahi, Difference equations and symmetric polynomials defined by their zeros, Int. Math. Res. Not., 10 (1996), 473-486.
- [16] M. Lassalle, Coefficients binomiaux généralisés et polynômes de Macdonald, preprint.
- [17] I.G. Macdonald, Hypergeometric functions, Unpublished manuscript.
- [18] _____, Affine Hecke algebras and orthogonal polynomials, Séminaire Bourbaki, 47ème année, Publ. I. R. M. A. Strasbourg, **797** (1994-95).
- [19] _____, Symmetric functions and Hall polynomials. Oxford University Press, Oxford, 2nd edition, 1995.
- [20] K. Mimachi and M. Noumi, A reproducing kernel for nonsymmetric Macdonald polynomials, Duke Math. J., 91 (1998), 621-634.
- [21] A. Okounkov, Binomial formula for Macdonald polynomials, Math. Res. Lett., 4 (1997), 533-553.
- [22] _____, Shifted Macdonald polynomials: q-integral representation and combinatorial formula, Comp. Math., 112 (1998), 147-182.
- [23] E.M. Opdam, Harmonic analysis for certain representations of graded Hecke algebras, Acta Math., 175 (1995), 75-121.
- [24] M. Rösler, Generalized Hermite polynomials and the heat equation for Dunkl operators, Commun. Math. Phys., 192 (1998), 519-541.
- [25] S. Sahi, A new scalar product for nonsymmetric Jack polynomials, Int. Math. Res. Not., 20 (1996), 997-1004.
- [26] _____, The binomial formula for nonsymmetric Macdonald polynomials, Duke J. Math., 94 (1998), 465-477.
- [27] K. Takemura, The Yangian symmetry in the spin Calogero model and its applications, J. Phys., A 30 (1997), 6185-6204.
- [28] H. Ujino and M. Wadati, Algebraic construction of the eigenstates for the second conserved operator of the quantum Calogero model, J. Phys. Soc. Japan, 65 (1996), 653-656.
- [29] _____, Orthogonality of the Hi-Jack polynomials associated with the Calogero model,
 J. Phys. Soc. Japan, 66 (1997), 345-350.

Received December 9, 1997 and revised June 25, 1999.

KYOTO UNIVERSITY KYOTO 606-8502 JAPAN *E-mail address*: tbaker@kurims.kyoto-u.ac.jp

UNIVERSITY OF MELBOURNE PARKVILLE 3052 AUSTRALIA *E-mail address*: matpjf@ms.unimelb.edu.au