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ISOMORPHISMS OF TYPE A AFFINE HECKE ALGEBRAS
AND MULTIVARIABLE ORTHOGONAL POLYNOMIALS

T.H. Baker and P.J. Forrester

We examine two isomorphisms between affine Hecke alge-
bras of type A associated with parameters q−1, t−1 and q, t.
One of them maps the non-symmetric Macdonald polynomi-
als Eη(x; q−1, t−1) onto Eη(x; q, t), while the other maps them
onto non-symmetric analogues of the multivariable Al-Salam
& Carlitz polynomials. Using the properties of Eη(x; q−1, t−1),
the corresponding properties of these latter polynomials can
then be elucidated.

1. Introduction.

In several recent works [28]-[29], [9]-[10], eigenstates of the rational (type A)
Calogero-Sutherland model have been investigated from an algebraic point
of view. In particular it has been shown that the algebra governing the
eigenfunctions of the periodic Calogero-Sutherland model (namely the type
A degenerate affine Hecke algebra augmented by type A Dunkl operators)
is isomorphic to its rational model counterpart. This enables information
to be gleaned about the properties of the eigenfunctions in the rational case
(the (non-)symmetric Hermite polynomials) from the corresponding periodic
eigenfunctions (the (non-)symmetric Jack polynomials).

To summarize the argument, consider the type A Dunkl operators

di :=
∂

∂xi
+

1
α

∑
p6=i

1− sip

xi − xp

which, along with the operators representing multiplication by the variable
xi and the elementary transpositions sij , satisfy the following commutation
relations

[di, xj ] =

{
− 1

αsij i 6= j

1 + 1
α

∑
p6=i sip i = j

(1.1)

di sip = sip dp [di, sjp] = 0, i 6= j, p.

It is easily checked that the map ρ defined by

ρ(xi) = xi −
1
2
di, ρ(di) = di, ρ(sij) = sij(1.2)
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is an isomorphism of the algebra (1.1) [28].
Now, the non-symmetric Jack polynomials Eη(x), indexed by composi-

tions η := (η1, . . . , ηn) can be defined [23] as the unique eigenfunctions of
the mutually commuting Cherednik operators

ξi := αxidi +
∑
p>i

sip − n+ 1(1.3)

with a unique expansion of the form

Eη(x) = xη +
∑
ν<η

cην x
ν .(1.4)

Here, the partial order < is defined on compositions by: ν < η iff ν+ <
η+ with respect to the dominance order (where ν+ is the unique partition
associated to ν etc) or ν+ = η+, ν 6= η and

∑p
i=1(ηi − νi) ≥ 0, for all

p = 1, . . . , n. The polynomial Eη(x) is an eigenfunction of ξi given by (1.3)
with eigenvalue

η̄i = αηi −#{k < i|ηk ≥ ηi} −#{k > i|ηk > ηi}.(1.5)

Using the isomorphism (1.2) it follows that the polynomials [27, 24, 10]

E(H)
η (x) := Eη(ρ(x)) · 1

are eigenfunctions of the operators

hi = ρ(ξi) = ξi −
α

2
d2

i(1.6)

which are precisely the eigenoperators of the non-symmetric Hermite poly-
nomials [2]. The orthogonality of these latter polynomials with respect to
the usual multivariable Hermite inner product then follows from the fact
that the operator (1.6) is self-adjoint with respect to the inner product

〈f, g〉 :=
n∏

i=1

∫ ∞

−∞
dxi e

−x2
i

∏
1≤j<k≤n

|xj − xk|2/α f(x) g(x).(1.7)

In this work, we provide a similar analysis of the Macdonald case. As
such, we introduce an isomorphism of the q-analogue of the algebra (1.1),
namely the subalgebra Sq,t := {Ti, ω,Di, xi} of the algebra of endomor-
phisms of the polynomial ring Q(q, t)[x1, . . . , xn]. Here, {Ti, ω} generate a
subalgebra isomorphic to the (type A) affine Hecke algebra, while {Di} are
the q-Dunkl operators introduced in [3, 14]. To describe this mapping, we
need to introduce some further concepts.

The generalization of the formalism of non-symmetric Jack polynomials
to the Macdonald case involves replacing the Cherednik operators (1.3) by
their q-analogues which can be realized as a commutative subalgebra of the
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affine Hecke algebra [18]. In the type A case, one can describe this using
the Demazure-Lustig operators

Ti := t+
txi − xi+1

xi − xi+1
(si − 1) i = 1, . . . , n− 1(1.8)

T0 := t+
qtxn − x1

qxn − x1
(s0 − 1)(1.9)

along with the operator

ω := sn−1 · · · s2 s1τ1 = sn−1 · · · siτisi−1 · · · s1.(1.10)

Here τi is the operator which replaces xi by qxi, si := si,i+1 for 1 ≤ i ≤ n−1
and s0 := ωs1ω

−1. The affine Hecke algebra is then generated by elements
Ti, 0 ≤ i ≤ n− 1 and ω, satisfying the relations

(Ti − t) (Ti + 1) = 0(1.11)
Ti Ti+1 Ti = Ti+1 Ti Ti+1(1.12)

Ti Tj = Tj Ti |i− j| ≥ 2(1.13)
ω Ti = Ti−1 ω.(1.14)

There is a commutative subalgebra generated by elements of the form [5, 6]

Yi := t−n+i Ti · · ·Tn−1 ω T
−1
1 · · ·T−1

i−1(1.15)

which have the following relations with the generators Ti for 1 ≤ i ≤ n− 1.

Ti Yi+1 = tYi T
−1
i , Ti Yi = Yi+1 Ti + (t− 1)Yi, [Ti, Yj ] = 0, j 6= i, i+ 1.

(1.16)

The non-symmetric Macdonald polynomials Eη(x; q, t) are defined as the si-
multaneous eigenfunctions of the commuting operators Yi with an expansion
of the form (1.4). The corresponding eigenvalue is tη̄i with η̄i given in (1.5),
and tα = q. From now on, we drop the dependence on q and t and just write
Eη(x) ≡ Eη(x; q, t) when the meaning is unambiguous.

Define the following degree-raising operator

ei := ti−1Ti · · ·Tn−1 xn ω T
−1
1 · · ·T−1

i−1.(1.17)

Using (1.12)-(1.14) it can be shown that the operators ei form a set of
mutually commuting operators. Our first result is:

Theorem 1.1. We have

Eη(e1, . . . , en; q−1, t−1) . 1 = αη(q, t)Eη(x1, . . . , xn; q, t)

where

αη(q, t) = q
P

i(
ηi
2

)t
P

i(n−i)η+
i −`(wη)(1.18)

with `(wη) the length of the (unique) minimal permutation sending η to η+.
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The symmetric Al-Salam & Carlitz (ASC) polynomials were examined
in [1] as q-analogues of multivariable Hermite polynomials. There are two
families of ASC polynomials, denoted U

(a)
λ (x; q, t) and V

(a)
λ (x; q, t), which

are simply related by

V
(a)
λ (x; q−1, t−1) = U

(a)
λ (x; q, t).(1.19)

The polynomials V (a)
λ can be defined as the unique polynomials of the form

V
(a)
λ (x; q, t) = Pλ(x; q, t) +

∑
µ<λ

bλµPµ(x; q, t)

which are orthogonal with respect to the inner product

〈f, g〉(V ) :=
∫

[1,∞]n
f(x)g(x) dqµ

(V )(x),(1.20)

dqµ
(V )(x) := ∆(k)

q (x)
n∏

l=1

wV (xl; q)dqxl.

Here, Pλ(x; q, t) denotes the symmetric Macdonald polynomial [19] and we
use the notation for q-integrals∫ ∞

1
f(x)dqx := (1− q)

∞∑
n=0

f(q−n)q−n(1.21)

while

wV (x; q) =
(q; q)∞( 1

a ; q)∞(qa; q)∞
(x; q)′∞(x

a ; q)∞

∆(k)
q (x1, . . . , xn) :=

k∏
p=−(k−1)

∏
1≤i<j≤n

(xi − qpxj),(1.22)

where the dash in (x; q)′∞ denotes that any vanishing factor is to be deleted,
and it is assumed a < 0. Moreover, in (1.20) and in what follows, we assume
t = qk, where k is a positive integer.

The polynomials U (a)
λ are orthogonal with respect to the inner product

〈f |g〉(U) :=
∫

[a,1]n
f(x)g(x) dqµ

(U)(x),(1.23)

dqµ
(U)(x) := ∆(k)

q (x)
n∏

l=1

wU (xl; q)dqxl

where ∆(k)
q is given by (1.22) and

w
(a)
U (x; q) :=

(qx; q)∞( qx
a ; q)∞

(q; q)∞(a; q)∞( q
a ; q)∞

(1.24)
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a
f(x) dqx := (1− q)

( ∞∑
n=0

f(qn)qn − a
∞∑

n=0

f(aqn)qn

)
, (a < 0).(1.25)

This can be regarded as a consequence of (1.19), and the formulas

1
1− q

∫ 1

a
w

(a)
U (x; q)f(x) dqx

∣∣∣
q 7→q−1

=
1

1− q

∫ ∞

1
w

(a)
V (x; q)f(x) dqx(1.26)

∆(k)
q−1(x) = q−kn(n−1)∆(k)

q (xR)(1.27)

where xR = (xn, xn−1, . . . , x1). The formula (1.26) is established in
[1, eq. (2.23)], while (1.27) follows immediately from the definition (1.22).

Non-symmetric analogues of the ASC polynomials can be introduced in
the following manner: Consider the following q-analogues of the type A
Dunkl operators [8] examined in [3],

Di := x−1
i

(
1− tn−1 T−1

i · · ·T−1
n−1 ω T

−1
1 · · ·T−1

i−1

)
(1.28)

and let

Ei := Di + (1 + a−1)tn−1 Yi − a−1 ei.(1.29)

The operators Ei mutually commute, and our second main result is that:

Theorem 1.2. The polynomials

E
(V )
η (x; q, t) =

(−a)|η|

αη(q, t)
Eη(E; q−1, t−1) · 1(1.30)

where αη(q, t) is given by (1.18) are the unique polynomials with an expan-
sion of the form

E(V )
η (x; q, t) = Eη(x; q, t) +

∑
|ν|<|η|

cην Eν(x; q, t)

which are orthogonal with respect to the inner product (1.20). Furthermore,
these polynomials are simultaneous eigenfunctions of the commuting family
of eigenoperators

hi = Yi + (1 + a)t1−nDi + at2−2nDiY
−1
i Di(1.31)

with eigenvalue tη̄i.

An immediate consequence of Thm. 1.2, (1.19), and (1.26), (1.27) is:

Corollary 1.3. The polynomials

E
(U)
η (x; q, t) := E(V )

η (xR; q−1, t−1)(1.32)

are the unique polynomials with an expansion of the form

E(U)
η (x; q, t) = Eη(xR; q−1, t−1) +

∑
|ν|<|η|

dην Eν(xR; q−1, t−1)
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which are orthogonal with respect to the inner product (1.23). These polyno-
mials are simultaneous eigenfunctions of the operators ĥi, where ĥi denotes
the operator (1.31) modified by the involution ,̂ which is defined by the map-
pings q 7→ q−1, t 7→ t−1 and xi 7→ xn+1−i.

In Section 2, we examine the various properties of non-symmetric Mac-
donald polynomials used in subsequent calculations, including raising and
lowering operators, and introduce a non-symmetric analogue of Kaneko’s
kernel [11]. We finish the section with a proof of Thm. 1.1. An isomor-
phism between Hecke algebras is introduced in Section 3, facilitating a proof
of Thm. 1.2. Various properties of these non-symmetric ASC polynomials
are then described including their normalization and a generating function.
We conclude by clarifying their relationship to the non-symmetric analogues
of the shifted Macdonald polynomials.

2. Non-symmetric Macdonald polynomials.

In this section we gather together some (old and new) results concerning
non-symmetric Macdonald polynomials Eη(x) in preparation of the proof
of Thm. 1.1, as well as the forthcoming section on the non-symmetric ASC
polynomials.

For future reference we note that the operators Ti and ω defined by (1.8)
and (1.10) have the properties

T−1
i xi+1 = t−1xi Ti T−1

i xi = xi+1 T
−1
i + (t−1 − 1)xi

Ti xi = txi+1 T
−1
i Ti xi+1 = xi Ti + (t− 1)xi+1(2.1)

ω x1 = qxnω ω xi+1 = xi ω

valid for 1 ≤ i ≤ n− 1. Also note the following action of Ti on monomials

Ti x
a
i x

b
i+1 =


(1− t)xa−1

i xb+1
i+1 + · · ·+ (1− t)xb+1

i xa−1
i+1 + xb

ix
a
i+1 a > b

txa
i x

a
i+1 a = b

(t− 1)xa
i x

b
i+1 + · · ·+ (t− 1)xb−1

i xa+1
i+1 + txb

ix
a
i+1 a < b.

(2.2)

There exists a variant of the q-Dunkl operator (1.28) which is relevant to
the forthcoming discussion. With ˆ denoting the involution defined in the
statement of Corollary 1.3, this operator is defined as

Di := −qD̂n+1−i

= −qx−1
i

(
1− t−n+1Ti−1 · · ·T1ω

−1Tn−1 · · ·Ti

)
= qt−2n+i+1DiY

−1
i Ti · · ·Tn−1Tn−1 · · ·Ti.(2.3)

In obtaining the first equality in (2.3), the facts that

T̂i = T−1
n−i and ω̂ = ω−1(2.4)
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have been used in applying the operation ˆ to (1.28), while the second equal-
ity can be verified by substituting for Y −1

i using (1.15) and for Di using
(1.28) and comparing with the first equality.

Since the Di commute, it follows from the definition of Di that the {Di}
also form a commuting set. Moreover, using (2.4), one can check that the
operators Di possess the same relations with the generators Ti, ω as do the
Di, namely

TiDi+1 = tDiT
−1
i , TiDi = Di+1Ti + (t− 1)Di, 1 ≤ i ≤ n− 1(2.5)

[Ti,Dj ] = 0, j 6= i, i+ 1
Dn ω = q ωD1, Di ω = ωDi+1 1 ≤ i ≤ n− 1.

To conclude the preliminaries, we follow Sahi [25] and introduce the gen-
eralized arm and leg (co-)lengths for a node s ∈ η via

a(s) = ηi − j l(s) = #{k > i|j ≤ ηk ≤ ηi} + #{k < i|j ≤ ηk + 1 ≤ ηi}
(2.6)

a′(s) = j − 1 l′(s) = #{k > i|ηk > ηi} + #{k < i|ηk ≥ ηi}
and define the quantities

dη(q, t) :=
∏
s∈η

(
1− qa(s)+1tl(s)+1

)
l(η) :=

∑
s∈η

l(s)

d′η(q, t) :=
∏
s∈η

(
1− qa(s)+1tl(s)

)
l′(η) :=

∑
s∈η

l′(s)(2.7)

eη(q, t) :=
∏
s∈η

(
1− qa′(s)+1tn−l′(s)

)
a(η) :=

∑
s∈η

a(s).

The statistics l(η), l′(η) and a(η) generalize the quantity

b(λ) :=
∑

i

(i− 1)λi =
∑

i

(
λ′i
2

)
(2.8)

from partitions to compositions. From [25] these quantities have the follow-
ing properties

Lemma 2.1. Let Φη := (η2, . . . , ηn, η1 + 1). We have

dΦη(q, t)
dη(q, t)

=
eΦη(q, t)
eη(q, t)

= 1− qtn+η̄1 ,
d′Φη(q, t)
d′η(q, t)

= 1− qtn−1+η̄1 ,

esiη(q, t) = eη(q, t),

dsiη(q, t)
dη(q, t)

=
1− tδi,η+1

1− tδi,η
,

d′siη(q, t)
d′η(q, t)

=
1− tδi,η

1− tδi,η−1

for ηi > ηi+1, δi,η := η̄i − η̄i+1

a(Φη) = η1 + a(η), l(Φη) = l(η) + #{k > 1|ηk ≤ η1}
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l′(Φη) = l′(η) + n− 1−#{k > 1|ηk ≤ η1}
a(siη) = a(η) l′(siη) = l′(η) l(siη) = l(η) + 1 for ηi > ηi+1.

A consequence of the first two equations in the final line is that

l′(η) = l′(η+) = b(η+), a(η) = a(η+) = b((η+)′)(2.9)

where (η+)′ denotes the partition conjugate to η+.

2.1. Raising Operators and Lowering Operators.
There are two distinct raising operators which have a very simple action

on non-symmetric Macdonald polynomials. Define [13, 3]

Φ1 := xn ω,

Φ2 := xn T
−1
n−1 · · ·T

−1
2 T−1

1 .(2.10)

A direct calculation reveals that for i = 1, 2

Yn Φi = qΦi Y1

Yj Φi = Φi Yj+1 1 ≤ j ≤ n− 1

whence ΦiEη is a constant multiple of EΦη, where Φη := (η2, . . . , ηn, η1 +1).
This constant is determined by looking at the coefficient of xΦη with the
result that

Φ1Eη = qη1 EΦη,

Φ2Eη = t−#{i|ηi≤η1}EΦη.

Remark. These operators are simply related via Φ1 = tn−1Φ2 Y1. Of
course any function of the operators Yi multiplied by Φ1 will be a raising
operator for the non-symmetric Macdonald polynomials but these two are
in some sense the simplest.

In a similar manner, one can use the q-Dunkl operators (1.28) to construct
lowering operators as follows,

Ψ1 := ω−1Dn,

Ψ2 := T1T2 · · ·Tn−1Dn.(2.11)

Ψ2 was introduced previously in [3]. These operators intertwine with the
Cherednik operators as

Y1 Ψi = q−1Ψi Yn

Yj Ψi = Ψi Yj−1 2 ≤ j ≤ n

and it is seen that

Ψ1Eη = q−ηn+1(1− tn−1+η̄n)EΨη,

Ψ2Eη = t#{i|ηi<ηn}(1− tn−1+η̄n)EΨη

where Ψη := (ηn − 1, η1, . . . , ηn−1).
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2.2. Kernel.
Let ˜ denote the involution on the ring of polynomials with coefficients

in C(q, t), which acts on the the coefficients by sending q 7→ q−1, t 7→ t−1,
and extend it to act on operators in the obvious way. Define the kernel

KA(x; y; q, t) =
∑

η

qa(η)t(n−1)|η|−l′(η) dη

d′ηeη
Eη(x)Ẽη(y).(2.12)

It follows from (2.7) that this kernel is related to the previously introduced
kernel [3]

KA(x; y; q, t) =
∑

η

dη

d′ηeη
Eη(x)Ẽη(y)(2.13)

((2.13) was denoted by KA in [3], but for the present purpose it is desirable
to use this notation for (2.12)) by means of

K̃A(x; y; q, t) = KA(−qy;x; q, t).(2.14)

The kernel KA(x; y; q, t) satisfies the following properties:

Theorem 2.2.

(a) (T±1
i )(x)KA(x; y; q, t) =

(
T̃∓1

i

)(y)

KA(x; y; q, t)

(b) Ψ(x)
1 KA(x; y; q, t) = Φ̃2

(y)
KA(x; y; q, t)

(c) D(x)
i KA(x; y; q, t) = yiKA(x; y; q, t).

Proof. The proof of this result follows the same line of reason as in [3, Thm.
5.2], using the facts that

xi = t−n+i T̃−1
i · · · T̃−1

n−1Φ̃2T̃1 · · · T̃i−1(2.15)

Di = t−n+iT−1
i−1 · · ·T

−1
1 Ψ1 Tn−1 · · ·Ti.(2.16)

�

We recall from [3] that the analogue of property (c) for the kernel
KA(x; y; q, t) is

D
(x)
i KA(x; y; q, t) = yiKA(x; y; q, t).(2.17)

A feature of both property (c) and (2.17) is that the q-Dunkl operator Di

(resp. Di) act on the left set of variables only. However, by applying the
operation ˜ and using (2.14), we can form similar identities where they act
on the right set of variables, namely:

Corollary 2.3.

(D̃i)(x) KA(z;x; q, t) = −q−1zi KA(z;x; q, t)(2.18)

(D̃i)(y) KA(x; y; q, t) = −qxi KA(x; y; q, t).(2.19)
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2.3. First isomorphism.
Returning to the proof of Thm. 1.1, we claim that it follows from the

subsequent

Proposition 2.4. Let Rq,t be the subalgebra of the algebra of endomor-
phism on the polynomial ring Q(q, t)[x1, . . . , xn] generated by the elements
{Ti, ω, xi} with relations given by (1.11)-(1.14), (2.1) The map φ : Rq−1,t−1

−→ Rq,t defined by

φ(ω̃−1) = T1 · · ·Tn−1 ω T
−1
1 · · ·T−1

n−1, φ(xi) = ei, φ(T̃±1
i ) = T∓1

i .(2.20)

is an algebra isomorphism.

Proof. Note that a simple consequence of the definition of φ given above, is
the relation

φ(Ỹ −1
i ) = Yi.(2.21)

The proof that φ is indeed an isomorphism follows by a standard calculation.
�

Proof of Thm. 1.1. We know that Eη(x; q−1, t−1) is an eigenfunction of Ỹ −1
i .

This is shown by utilizing the relations amongst the operators {Ỹ −1
i ,

T̃±1
i , xi} to move the operators Ỹ −1

i through the terms in Eη(x; q−1, t−1),

until one obtains Ỹ −1
i · 1 = t−n+1 · 1. By adopting this viewpoint in the

eigenvalue equation (considered as an identity in Rq−1,t−1)

Ỹ −1
i Eη(x; q−1, t−1) · 1 = tη̄i Eη(x; q−1, t−1) · 1

and applying the map φ to both sides it then follows from (2.20), (2.21) that

Eη(e; q−1, t−1)·1 is an eigenfunction of φ(Ỹ −1
i ) = Yi, with leading order term

xη and hence must be proportional to Eη(x; q, t).
To determine the proportionality constant αη(q, t) say, it follows from the

action of Ti given by (2.2) that

eη1
1 e

η2
2 · · · eηn

n · 1 = qf(η) tg(η) xη +
∑
ν<η

bηνx
ν

where f(η) =
∑

i(
ηi
2
) and

g(q) =
n∑

i=1

(ηi − 1)(i− 1) +
ηn−1∑
i=0

χ(ηn ≤ i) +
ηn−2∑
i=0

χ(ηn ≤ i) + χ(ηn−1 ≤ i)

+ · · ·+
η1∑
i=0

χ(ηn ≤ i) + · · ·+ χ(η2 ≤ i)(2.22)

where χ(P ) = 1 if P is true, and zero otherwise. The simplification g(q) =∑
i(n − i)η+

i − `(wη) then follows from the above expression by induction
on `(wη). �
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3. Al-Salam & Carlitz polynomials.

The isomorphism φ introduced in the previous section can be generalized
to another isomorphism ψa such that ψa(xi) includes not just degree-raising
parts, but degree-preserving and lowering parts as well. It will turn out
that this isomorphism is precisely what is needed to obtain non-symmetric
analogues of the Al-Salam&Carlitz polynomials in the same way as was done
for the Hermite case.

As previously mentioned, the symmetric ASC polynomials V (a)
λ can be

defined via their orthogonality with respect to the inner product (1.20). We
remark that under this inner product we have the important result that the
adjoint operators of T±1

i , ω are given by

(T±1
i )∗ = T±1

i , (ω−1)∗ =
tn−1

aq
ω (x1 − q)(x1 − aq).(3.1)

The ASC polynomials V (a)
λ can equivalently be defined by means of the

generating function [1]

n∏
i=1

1
ρa(t−(n−1)xi; q)

0ψ0(x; y; q, t) =
∑

λ

(−1)|λ|qb(λ′)V
(a)
λ (y; q, t)Pλ(x; q, t)

d′λ(q, t)Pλ(1, t, . . . , tn−1; q, t)
.

Here, ρa(x) := (x; q)∞(ax; q)∞, b(λ) is defined by (2.8) and

Pλ(1, t, . . . , tn−1; q, t) = tl(λ)
∏
s∈λ

(1− qa′(s)tn−l′(s))
(1− qa(s)tl(s)+1)

(3.2)

0ψ0(x; y; q, t) :=
∑

λ

(−1)|λ|qb(λ)

d′λ(q, t)Pλ(1, t, . . . , tn−1; q, t)
Pλ(x; q, t)Pλ(y; q, t).

This latter kernel was previously introduced by Kaneko [11] in connection
with hypergeometric solutions of systems of q-difference equations.

Similarly the ASC polynomials U (a)
κ can be defined by the generating

function [1]

ρa(x1; q) · · · ρa(xn; q) 0F0(x; y; q, t) =
∑

κ

tb(κ)U
(a)
κ (y; q, t)Pκ(x; q, t)

d′κ(q, t)Pκ(1, t, . . . , tn−1; q, t)

(3.3)

where the hypergeometric function 0F0 is defined by

0F0(x; y; q, t) :=
∑

κ

tb(κ)

d′κ(q, t)P (1, t, . . . , tn−1; q, t)
Pκ(x; q, t)Pκ(y; q, t).(3.4)
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3.1. Second isomorphism.
Consider the involution ˆ on polynomials and operators defined in the

statement of Corollary 1.3. The operator Ei introduced in (1.29) has its
origins in this involution, namely,

Ei := (D̂n+1−i)∗ :=
(
−1
q
Di

)∗
.(3.5)

The form (1.29) follows from (3.5) by making use of the adjoint formulae
(3.1). The relations between the operators Ei and the operators {Di, Ti, ω},
can be derived using (3.5). Thus, for example, application of the adjoint
operation ∗ to the relations involving Di, Ti gives, in place of the first
relation in (2.5),

T−1
i Ei T

−1
i = t−1Ei+1.(3.6)

Now consider the following mapping ψa :{ω̃−1, T̃i, xi, D̃i}−→{ω, Ti, xi, di}
where each set of operators defines a certain algebra of endomorphisms on
the ring Q(q, t)[x1, . . . , xn], defined by

ψa(xi) = Ei,(3.7)

ψa(ω̃−1) = T1 · · ·Tn−1

(
Yn + (1 + a)t1−nDn + at2−2nDnYnDn

)
,

ψa(T̃−1
i ) = Ti,

ψa(D̃i) = −atn+1−2iTi−1 · · ·T1T1 · · ·Ti−1E
∗
i T

−1
i · · ·T−1

n−1T
−1
n−1 · · ·T

−1
i .

Then Theorem 1.2 will follow from:

Proposition 3.1. The map ψa is an algebra isomorphism.

Proof. The proof of this result consists of checking that the operators ψa(u)
given in (3.7) satisfy the same relations as the original operators u, given by
(1.11)-(1.14), (2.1) and (2.5), (after application of the involution ˜). For
example, the first formula in (2.1), after application of the involution ˜ ,
reads

T̃−1
i xi+1 = txiT̃i.

Now applying the mapping ψa gives

TiEi+1 = tEiT
−1
i .

But this is equivalent to (3.6) so the algebra is indeed preserved. The calcu-
lations involved in checking the other relations are typically more involved;
however they are similar to those undertaken in [3], and so for brevity will
be omitted. �

As with the relationship between Prop. 2.4 and the proof of Thm. 1.1 we
are in a position to complete the:
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Proof of Thm. 1.2. From Thm. 1.1, and the definition (1.29) of the operators
Ei it follows that E(V )

η has leading term Eη(x; q, t). In addition, it follows
from (3.7) that

ψa(Ỹi
−1) = Yi + (1 + a)t1−nDi + at2−2nDi Y

−1
i Di(3.8)

and from Prop. 3.1, that these are eigenoperators for the non-symmetric
ASC polynomials defined by (1.30). The corresponding eigenvalue is simply
tη̄i . By writing these operators out explicitly, it is seen that they are self-
adjoint w.r.t. the inner product (1.20). Hence by standard arguments, the
polynomials (1.30) are orthogonal w.r.t. (1.20). �

3.2. Normalization.
The images of the raising and lowering operators (2.10), (2.11) (after

application of )̃ under the map ψa are guaranteed, by virtue of Prop. 3.1,
to be raising and lowering operators for the polynomials E(V )

η (x).
In particular, using (2.16) and (3.7) we see that

ψa(Ψ̃1) = aq−1t1−n Ψ1

so that Ψ1 remains a raising operator for the polynomials E(V )
η . By exami-

nation of the leading terms, we must have

Ψ1E
(V )
η = qηn+1

d′η
d′Ψη

E
(V )
Ψη .(3.9)

Also, use of (2.15) and (3.7) gives

ψa(Φ̃2) = −q−1 Ψ∗
1

so that Ψ∗
1 is a raising operator for E(V )

η . Indeed,

Ψ∗
1E

(V )
η = a−1tn−1qη1+1E

(V )
Φη .(3.10)

By an argument similar to that used in [4, Prop. 3.6] it follows from (3.9)
and (3.10) that〈

E
(V )
Φη , E

(V )
Φη

〉(V )
= at1−nq−2η1−1

d′Φη

d′η

〈
E(V )

η , E(V )
η

〉(V )
.(3.11)

Also, we have〈
E

(V )
siη , E

(V )
siη

〉(V )
=

(1− tδiη−1)(1− tδiη+1)
t(1− tδiη)2

〈
E(V )

η , E(V )
η

〉(V )
.(3.12)

The solution of the recurrence relations (3.11), (3.12) gives:

Proposition 3.2.

N (V )
η :=

〈
E(V )

η , E(V )
η

〉(V )
=
(
aq−1t2−2n

)|η|
q−2a(η)tl(η)+l′(η)

d′η eη

dη
N (V )

0

(3.13)
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where for t = qk, [1]

N (V )
0 = (1− q)nakn(n−1)/2t−2k(n

3 )−k(n
2 )

n∏
l=1

(q; q)kl

(q; q)k
.

By using the formulas (1.32), (1.26) and (1.27) we see that the norm
N (U)

η of the non-symmetric ASC polynomials E(U)
η with respect to the inner

product (1.23) is given by simply replacing q, t by q−1, t−1 in (3.13). Use of
(2.7) then gives:

Corollary 3.3.

N (U)
η :=

〈
E(U)

η , E(U)
η

〉(U)
=
(
atn−1

)|η|
qa(η)t−l(η)

d′η eη

dη
N (U)

0(3.14)

where for t = qk, [1]

N (U)
0 = (1− q)n(−a)kn(n−1)/2tk(

n
3 )− k−1

2 (n
2 )

n∏
l=1

(q; q)kl

(q; q)k
.

3.3. Generating function.
The raising operator expression (1.30) facilitates the derivation of the

generating function for the non-symmetric ASC polynomials. Also required
will be the q-symmetrization of (2.12).

Proposition 3.4. Let [18] U+ =
∑

σ Tσ where Tσ := Ti1 · · ·Tip for a re-
duced word decomposition σ = si1 · · · sip. We have

(U+)(x) KA(x; y; q, t) = [n]t!0ψ0(x;−tn−1y; q, t)(3.15)

where 0ψ0 is defined by (3.2).

Proof. We remark that this is the analogue of the result [3, Prop. 5.4]

(U+)(x) KA(x; y; q, t) = [n]t!0F0(x; y; q, t).(3.16)

In fact in our proof of (3.15) we will use the formula

U+Eη(x) = [n]t!tl(η) eη
Pλ(tδ)dη

Pλ(x), λ = η+(3.17)

which was deduced [3, eqs. (5.8)&(5.18)] as a corollary of (3.16). Thus we
apply U+ to (2.12) and use (3.17) to compute its action. Simplifying the
result using the first equation in (2.9) and the formula [18]

Pλ(y) =
∑

η:η+=λ

d′λ
d′η

Eη(y),(3.18)

the result then follows. �
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Consider now the generating function

F1(y; z) =
∑

ν

AνE
(V )
ν (y) Ẽν(z)

where

Aν = (a/q)|ν|
N (V )

0

αν(q, t)N (V )
ν

= qa(ν)t(n−1)|ν|−l′(ν) dν

d′νeν
.(3.19)

Here we have used the fact that l(η) = l(η+) + `(wη) to rewrite αη(q, t) as
defined by (1.18) as

αη(q, t) = qa(η) t(n−1)|η|−l(η).

Clearly 〈
F1(y; z), E(V )

η (y)
〉(V )

y
= (a/q)|η|

N (V )
0

αη(q, t)
Ẽη(z).

Next note the integration formula

〈KA(y; z), 1〉(V )
y =

1
[n]t!

〈
U+

y KA(y; z), 1
〉(V )

y

=
〈
0ψ0(y;−tn−1z), 1

〉(V )

y
= N (V )

0

n∏
i=1

ρa(−zi)(3.20)

which follows from the symmetrization formula (3.15), the fact that U+
y is

self adjoint w.r.t. 〈 , 〉(V )
y and an integral formula for the kernel 0ψ0(y; z)

given in [1, Prop 4.8], and consider the generating function

F2(y; z) =
n∏

i=1

1
ρa(−zi)

K(y; z).

We have〈
F2(y; z), E(V )

η (y)
〉(V )

y
=

(−a)|η|

αη(q, t)

∏
i

1
ρa(−zi)

〈
K(y; z), Ẽη(E(y))

〉(V )

y

=
(a/q)|η|

αη(q, t)

∏
i

1
ρa(−zi)

〈
Ẽη(D(y))K(y; z), 1

〉(V )

y

=
(a/q)|η|

αη(q, t)

∏
i

1
ρa(−zi)

Ẽη(z) 〈K(y; z), 1〉(V )
y

= (a/q)|η|
N (V )

0

αη(q, t)
Ẽη(z).

In the above chain of equalities, we have used (1.30), (3.5), the kernel prop-
erty Thm. 2.2 (c) and (3.20) respectively. The non-symmetric ASC poly-
nomials E(V )

η (y) are a complete basis for polynomials in y and hence from
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above we have F1 = F2. That is, we have the generating function for non-
symmetric ASC polynomials E(V )

ν .

Proposition 3.5. With Aν given by (3.19)
n∏

i=1

1
ρa(−zi)

KA(y; z) =
∑

ν

AνE
(V )
ν (y) Ẽν(z).(3.21)

We remark that this generating function could also be derived in a manner
similar to that used in the symmetric case [1], namely by applying the

operator (Ỹ −1
i )(z) to both sides of (3.21) and deducing that E(V )

η (y) is an
eigenfunction of

hi = ψa(Ỹ −1
i ) = Yi Ti−1 · · ·T1 (1 +D1) (1 + aD1)T−1

1 · · ·T−1
i−1(3.22)

with leading term Eη(y) (some manipulation using (2.5) and (2.3) casts this
into the form given in (1.31)). Note also that by applying the operation ˆ
with the respect to the y-variables in (3.21) and using the formula (2.14) as
well as

1
ρa(x; q)

∣∣∣∣
q 7→q−1

= ρa(qx; q),

(see e.g. [1]) we deduce the generating function formula for the polynomials
E

(U)
ν .

Corollary 3.6.
n∏

i=1

ρa(zi)KA(z; yR; q, t) =
∑

ν

dν

d′νeν
E(U)

ν (y)Eν(z).(3.23)

The generating function formulas in turn imply a further class of oper-
ator formulas relating the ASC polynomials and the non-symmetric Jack
polynomials (c.f. [1, eqs. (3.9)&(3.10)]).

Corollary 3.7. We have

E(V )
η (y) =

n∏
i=1

1

ρa(−D(y)
i )

Eη(y)(3.24)

E(U)
η (y) =

n∏
i=1

ρa

(
− qD̃(y)

i

)
Ẽη(yR).(3.25)

Proof. The first identity follows from (3.21) by using Thm. 2.2 (c) and com-
paring coefficients of Ẽη(z), while the second identity follows similarly from
(3.23) and (2.18). �

As further applications of the generating functions we will present some
evaluation formulas for E(V )

η at the special points tδ̄−n+1 and atδ̄−n+1, where
tδ̄ := (1, t, t2, . . . , tn−1).
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Proposition 3.8. We have

E(V )
η (tδ̄−n+1) = (−a)|η|q−a(η)tl

′(η)−(n−1)|η|Eη(tδ̄)(3.26)

E(V )
η (atδ̄−n+1) = (−1)|η|q−a(η)tl

′(η)−(n−1)|η|Eη(tδ̄)(3.27)

where

Eη(tδ̄) = tl(η) eη
dη
.(3.28)

Proof. The formula (3.28) is a special case of a result of Cherednik [7] (see
also [20]). For the derivation of (3.26) and (3.27) we follow the strategy of
the proof of the analogous result in the symmetric case [1, Prop. 4.3]. First,
note from the definition (1.8) that in general

Tif(tδ̄) = tf(tδ̄),

and so (
U+f

)
(tδ̄) = (U+ 1)f(tδ̄) = [n]t!f(tδ̄).

Use of this latter formula in (3.15) with y = tδ̄ gives

KA(tδ̄; z; q, t) = 0ψ0(tδ̄;−tn−1z; q, t) =
n∏

i=1

(−tn−1zi; q)∞,(3.29)

and similarly, from (3.16)

KA(tδ̄; z; q, t) = 0F0(tδ̄; z; q, t) =
1∏n

i=1(zi; q)∞
,(3.30)

where the final equalities in (3.29) and (3.30) are known results [17, 12].
Now set y = tδ̄−n+1 in the generating function (3.15). Use of (3.29) with z
replaced by t−n+1z, and then use of (3.30) allows the l.h.s. of the resulting
expression to be written

1∏n
i=1(−azi; q)∞

= KA(tδ̄;−az; q, t) =
∑

η

(−a)|η|dη

d′ηeη
Eη(tδ̄)Ẽη(z).

Equating with Ẽη(z) on the r.h.s. of the resulting expression gives (3.26).
The formula (3.27) follows similarly, by substituting y = atδ̄−n+1 in (3.15).

�

3.4. Relationship to the symmetric ASC polynomials.
The non-symmetric ASC polynomials are related to the corresponding

symmetric ASC polynomials in an analogous way to the relationship (3.17)
between the non-symmetric and symmetric Macdonald polynomials.

Proposition 3.9. Let

aη(q, t) = [n]t!t`(η) eη

Pη+(tδ̄)dη

.
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We have

U+E(V )
η (y) = aη(q, t)V

(a)
η+ (y; q, t)(3.31)

U+E(U)
η (y) = aη(q, t)U

(a)
η+ (y; q, t).(3.32)

Proof. Consider the action of the U+ operator on (3.24) and (3.25). From
the first three equations of (2.5) one can check that Ti commutes with any
symmetric function of the Di. Thus the action of U+ can be commuted to
act to the right of

∏
i ρa(−1

q D̃i) and 1/
∏

i ρa(−Di). Use of (3.17) then gives

U+E(V )
η (y) = aη(q, t)

1∏
i ρa(−Di)

Pη+(y) = aη(q, t)
1∏

i ρa(qD̃i)
Pη+(y)

U+E(U)
η (y) = aη(q, t)

∏
i

ρa(−qD̃i)Pη+(y) = aη(q, t)
∏

i

ρa(Di)Pη+(y),

where in obtaining the first equality in the second formula we have used
the fact that P̃η(yR) = Pη(y), while the second equalities in both formu-
las make use of (2.3) and the fact that Pη+ is a symmetric function. But
the resulting operator formulas are precisely representations obtained in [1,
Eq. (3.9)&(3.10)] for the symmetric ASC polynomials. �

We can also relate the eigenoperators hi for the non-symmetric ASC poly-
nomials E(V )

η to the eigenoperator [1, Eq. (3.28)]

(3.33) H = t1−n
n∑

i=1

Y −1
i − (1 + a)

n∑
i=1

t1−iDi Y
−1
i + a

n∑
i=1

t1−iD2
i Y

−1
i

+ a(1− t−1)
∑

1≤i<j≤n

t1−iDj Di Y
−1
i

for the symmetric ASC polynomials U (a)
λ .

Proposition 3.10. Let hi be given by (1.31) and H by (3.33). When acting
on symmetric functions

n∑
i=1

hi = t1−nH̃.

Proof. From Theorem 1.2, by summing over i in (1.31) we have
n∑

i=1

hiE
(V )(x; q, t) = t1−ne(η+)E(V )(x; q, t),

where e(η+) =
∑n

i=1 t
η̄i =

∑n
i=1 q

η+
i tn−i. We would next like to apply the

operator U+ to both sides of this eigenvalue equation. For this purpose we
require the fact that Ti commutes with

∑n
i=1 hi (this follows from (1.16),
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and the fact that these same equations apply with the Yi replaced by Di).
Thus, making use of (3.31), this operation gives

n∑
i=1

hi V
(a)
η+ (x; q, t) = t1−ne(η+)V (a)

η+ (x; q, t).

But from [1] we know that this same eigenvalue equation applies with∑n
i=1 hi replaced by t1−nH̃. The result now follows from the fact that {V (a)

η+ }
are a basis for symmetric functions.

We remark that an alternative proof is to establish directly that when
acting on symmetric functions

n∑
i=1

Ỹ −1
i =

n∑
i=1

Yi(3.34)

−
n∑

i=1

t−1+iD̃iỸ
−1
i =

n∑
i=1

Di(3.35)

n∑
i=1

t−1+iD̃2
i Ỹ

−1
i + (1− t)

∑
1≤i<j≤n

t−1+iD̃jD̃iỸ
−1
i(3.36)

= t1−n
n∑

i=1

DiY
−1
i Di.

�

3.5. Non-symmetric shifted Macdonald polynomials.
In [1] it was observed that the symmetric ASC polynomials V (a)

λ (x) co-
incide (up to a factor and change of variables) with the shifted Macdonald
polynomials when a = 0. We show now that this behaviour carries over to
the non-symmetric case.

Following Knop [14], Knop and Sahi [15] and Sahi [26], the non-symmet-
ric shifted Macdonald polynomials Gη(z) are defined, in the notation of [14],
as the unique polynomial with expansion

Gη(z; q, t) = Ẽη(z) +
∑
|ν|<|η|

bηνẼν(z)

which vanishes at the points z = tξ̄ for all compositions ξ 6= η such that
|ξ| ≤ |η|. Here tξ̄ is given by (1.5). Equivalently [13, 22] they can be
defined as eigenfunctions of the “inhomogeneous” Cherednik operators

Ξi = Ỹi + D̃i

where the operators are defined with the variables zi. For such polynomials,
Knop [14] defined a raising operator ΦK = (zn − t1−n)ω−1 with a simple
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action on Gη(z; q, t). It is easily seen that

lim
a→0

−a
q

Ψ∗
1 = Φ̃K

∣∣∣∣∣
zi=tn−1xi

, lim
a→0

hi = Ξ̃i

∣∣∣∣∣
zi=tn−1xi

which immediately implies the sought relationship between Gη and E(V )
η .

Proposition 3.11.

E
(V )
η (x; q, t)

∣∣∣
a=0

= t−(n−1)|η|Gη(tn−1x; q−1, t−1)(3.37)

or equivalently

E
(U)
η (x; q, t)

∣∣∣
a=0

= t(n−1)|η|Gη(t1−nx; q, t).(3.38)

One immediate application of (3.37) is the evaluation of Gη(0; q, t), which
follows from (3.27). This is a special case of a result of Sahi [26, Th. 1.1],
in which an evaluation formula is given for Gη(αtδ̄; q, t), for a general scalar
α. In fact use of (3.37) also allows this more general evaluation formula to
be deduced.

Proposition 3.12. With (α)(q,t)
λ :=

∏
s∈λ(tl

′(s) − qa′(s)α) we have

Gη(t−δ̄α; q, t) = α|η|(1/α)(q,t)
η+ t−(n−1)|η| eη

dη
.

Proof. Choosing a = 0 and y = tn−1−δ̄α in (3.23), and using (3.30) and
(3.38), we see that∑

η

α−|η|t(n−1)|η| dη

d′ηeη
Gη(t−δ̄α; q, t)Eη(z) =

n∏
i=1

(zi/α; q)∞
(zi; q)∞

.

But we know that [17, 12]

n∏
i=1

(zi/α; q)∞
(zi; q)∞

=
∑

λ

(1/α)(q,t)
λ

d′λ
Pλ(z; q, t) =

∑
η

(1/α)(q,t)
η+

d′η
Eη(z).

The result follows by equating coefficients of Eη(z). �

3.6. q-binomial coefficients.
Sahi [26] uses the polynomials Gη to introduce non-symmetric q-binomial

coefficients
[

η
ν

]
q,t

according to[η
ν

]
q,t

:=
Gν(tη̄)
Gν(tν̄)

(3.39)

(η̄i is defined by (1.5)). Our generating function characterization of the ASC
polynomials, and thus by Proposition 3.11 of the polynomials Gη, makes
it natural to extend Lassalle’s [16] definition of the symmetric q-binomial
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coefficients to the non-symmetric case by defining the non-symmetric q-
binomial coefficients

(
η
ν

)
q,t

according to the generating function formula

Ẽν(x)
n∏

i=1

1
(xi; q)∞

=
∑

η

(η
ν

)
q,t
tl(η)−l(ν)d

′
ν

d′η
Ẽη(x).(3.40)

We can then use the generating function (3.15) to relate these binomial
coefficients to the polynomials Gη.

Proposition 3.13. With
(

η
ν

)
q,t

defined by (3.40), we have

Gη(x)
Gη(0)

=
∑

ν

(η
ν

)
q−1,t−1

Ẽν(x)
Gν(0)

.(3.41)

Proof. Multiply both sides of (3.40) by qa(ν)t(n−1)|ν|−l′(ν) dν
d′νeν

Eν(y) and sum
over ν, rewriting the l.h.s. according to (3.15). Now equate coefficients
of Ẽν(x) on both sides. The result then follows upon using (3.28) and
(3.37). �

Since (3.41) is a formula satisfied by the non-symmetric q-binomial coef-
ficients of Sahi [26, Cor. 1.3], and this formula suffices to implicitly define
these coefficients, we have that(η

ν

)
q,t

=
[η
ν

]
q,t
.(3.42)

Finally, let us present some formulas relating the coefficients
(

η
ν

)
q,t

to

their symmetric counterparts
(

κ
µ

)
q,t

, which can be characterized by either

of the formulas [16, 21]

Pµ(x; q, t)
n∏

i=1

1
(xi; q)∞

=
∑

λ

(
λ

µ

)
q,t

tb(λ)−b(µ)
d′µ
d′λ

Pλ(x; q, t),(3.43)

P ∗λ (y; q−1, t−1)
P ∗λ (0; q−1, t−1)

=
∑

µ

(
λ

µ

)
q,t

Pµ(ytδ̄; q, t)
P ∗λ (0; q−1, t−1)

.(3.44)

Here P ∗λ is the shifted Macdonald polynomial, which is related to the sym-
metric ASC polynomial V (0)

λ by [1, Prop. 4.4]

P ∗λ (yt−δ̄+n−1; q−1, t−1) = t(n−1)|λ|V
(0)
λ (y; q, t).(3.45)

Proposition 3.14. With η+ = κ, ν+ = µ,∑
ν:ν+=µ

(η
ν

)
q,t

=
(
κ

µ

)
q,t

,(3.46)
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d′κ
d′µ

Pκ(tδ̄)
Pµ(tδ̄)

d′ν
Eν(tδ̄)

∑
η:η+=κ

(η
ν

)
q,t

Eη(tδ̄)
d′η

=
(
κ

µ

)
q,t

.(3.47)

Proof. The proof follows the strategy given in [1] for the proof of the corre-
sponding results in the q = tα, q → 1 limit (binomial coefficients associated
with non-symmetric Jack polynomials). For (3.46) we apply the U+ operator
to (3.41), making use of (3.17) and (3.31). Use of the fact that

aν

E
(V )
ν (0)

=
[n]t!

V
(0)
η+ (0; q, t)

and (3.45) then gives

P ∗λ (xt−δ̄; q−1, t−1)
P ∗λ (0; q−1, t−1)

=
∑

ν

(η
ν

)
q,t

Pν+(x; q, t)
P ∗

ν+(0; q−1, t−1)
.

Comparison with (3.44) implies (3.46) The identity (3.47) follows similarly,
by applying U+ to (3.40) and comparing with (3.43). �
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