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We first prove local weighted integral inequalities for dif-
ferential forms. Then, as applications of our local results,
we prove global weighted integral inequalities for differential
forms in Ls(µ)-averaging domains and John domains, respec-
tively, which can be considered as generalizations of the clas-
sical Poincaré-type inequality.

1. Introduction.

Differential forms are interesting and important generalizations of real func-
tions and distributions. Many interesting results and applications of differ-
ential forms have recently been found in some fields, such as tensor analysis,
potential theory, partial differential equations and quasiregular mappings,
see [B], [C], [D1], [HKM], [I], [IL] and [IM]. In many cases, we need to
know the integrability of differential forms and estimate the integrals for
differential forms. In this paper we prove local weighted Poincaré-type in-
equalities for differential forms in any kind of domains and global weighted
Poincaré-type inequalities for differential forms in John domains and Ls(µ)-
averaging domains, where µ is a measure defined by dµ = w(x)dx and
w ∈ Aλ

r . These integral inequalities can be used to study the integrability
of differential forms and estimate the integrals for differential forms. As
we know, A-harmonic tensors are the special differential forms which are
solutions to the A-harmonic equation for differential forms: d?A(x, du) = 0,
where A : Ω× ∧l(Rn) → ∧l(Rn) is an operator satisfying some conditions,
see [I], [IL] and [N]. So that all of the results about differential forms in
this paper remain true for A-harmonic tensors. Therefore, our new results
concerning differential forms are of interest in some fields, such as those
mentioned above.

Throughout this paper, we always assume Ω is a connected open subset
of Rn. Let e1, e2, . . . , en denote the standard unit basis of Rn. For l =
0, 1, . . . , n, the linear space of l-vectors, spanned by the exterior products
eI = ei1∧ei2∧· · · eil , corresponding to all ordered l-tuples I = (i1, i2, . . . , il),
1 ≤ i1 < i2 < · · · < il ≤ n, is denoted by ∧l = ∧l(Rn). The Grassman
algebra ∧ = ⊕∧l is a graded algebra with respect to the exterior products.
For α =

∑
αIeI ∈ ∧ and β =

∑
βIeI ∈ ∧, the inner product in ∧ is given
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by 〈α, β〉 =
∑

αIβI with summation over all l-tuples I = (i1, i2, . . . , il) and
all integers l = 0, 1, . . . , n. We define the Hodge star operator ?: ∧ → ∧
by the rule ?1 = e1 ∧ e2 ∧ · · · ∧ en and α ∧ ?β = β ∧ ?α = 〈α, β〉(?1) for all
α, β ∈ ∧. Hence the norm of α ∈ ∧ is given by the formula |α|2 = 〈α, α〉 =
?(α∧ ?α) ∈ ∧0 = R. The Hodge star is an isometric isomorphism on ∧ with
? : ∧l → ∧n−l and ? ? (−1)l(n−l) : ∧l → ∧l. Let 0 < p < ∞, we denote the
weighted Lp-norm of a measurable function f over E by

||f ||p,E,w =
(∫

E
|f(x)|pw(x)dx

)1/p

.

As we know, a differential l-form ω on Ω is a Schwartz distribution on
Ω with values in ∧l(Rn). In particular, for l = 0, ω is a real function or a
distribution. We denote the space of differential l-forms by D′(Ω,∧l). We
write Lp(Ω,∧l) for the l-forms ω(x) =

∑
I ωI(x)dxI =

∑
ωi1i2···il(x)dxi1 ∧

dxi2∧· · ·∧dxil with ωI ∈ Lp(Ω, R) for all ordered l-tuples I. Thus Lp(Ω,∧l)
is a Banach space with norm

||ω||p,Ω =
(∫

Ω
|ω(x)|pdx

)1/p

=

∫
Ω

(∑
I

|ωI(x)|2
)p/2

dx

1/p

.

Similarly, W 1
p (Ω,∧l) are those differential l-forms on Ω whose coefficients

are in W 1
p (Ω,R). The notations W 1

p,loc(Ω,R) and W 1
p,loc(Ω,∧l) are self-

explanatory. We denote the exterior derivative by d : D′(Ω,∧l)→D′(Ω,∧l+1)
for l = 0, 1, . . . , n. Its formal adjoint operator d? : D′(Ω,∧l+1) → D′(Ω,∧l)
is given by d? = (−1)nl+1 ? d? on D′(Ω,∧l+1), l = 0, 1, . . . , n.

We write R = R1. Balls are denoted by B and σB is the ball with the
same center as B and with diam (σB) = σdiam (B). The n-dimensional
Lebesgue measure of a set E ⊆ Rn is denoted by |E|. We call w a weight if
w ∈ L1

loc(R
n) and w > 0 a.e. Also in general dµ = wdx where w is a weight.

The following result appears in [IL]: Let Q ⊂ Rn be a cube or a ball. To each
y ∈ Q there corresponds a linear operator Ky : C∞(Q,∧l) → C∞(Q,∧l−1)
defined by

(Kyω)(x; ξ1, . . . , ξl) =
∫ 1

0
tl−1ω(tx + y − ty;x− y, ξ1, . . . , ξl−1)dt

and the decomposition

ω = d(Kyω) + Ky(dω).

We define another linear operator TQ : C∞(Q,∧l) → C∞(Q,∧l−1) by
averaging Ky over all points y in Q

TQω =
∫

Q
ϕ(y)Kyωdy,
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where ϕ ∈ C∞
0 (Q) is normalized by

∫
Q ϕ(y)dy = 1. We define the l-form

ωQ ∈ D′(Q,∧l) by

ωQ = |Q|−1

∫
Q

ω(y)dy, l = 0, and ωQ = d(TQω), l = 1, 2, . . . , n,

for all ω ∈ Lp(Q,∧l), 1 ≤ p < ∞.

2. Local weighted integral inequalities.

Definition 2.1. We say the weight w(x) > 0 satisfies the Aλ
r -condition,

r > 1 and λ > 0, and write w ∈ Aλ
r , if

sup
B

(
1
|B|

∫
B

wdx

)(
1
|B|

∫
B

w1/(1−r)dx

)λ(r−1)

< ∞

for any ball B ⊂ Rn.

The following generalized Hölder’s inequality will be used repeatedly.

Lemma 2.2. Let 0 < α < ∞, 0 < β < ∞ and s−1 = α−1 + β−1. If f and
g are measurable functions on Rn, then

‖fg‖s,Ω ≤ ‖f‖α,Ω · ‖g‖β,Ω

for any Ω ⊂ Rn.

We also need the following lemma [G].

Lemma 2.3. If w ∈ A1
r, r > 1, then there exist constants β > 1 and C,

independent of w, such that

‖w‖β,Q ≤ C|Q|(1−β)/β‖w‖1,Q

for any cube or any ball Q ⊂ Rn.

The following version of the Poincaré inequality appears in [N].

Lemma 2.4. Let u ∈ D′(Q,∧l) and du ∈ Lp(Q,∧l+1). Then u − uQ is in
W 1

p (Q,∧l) with 1 < p < ∞ and

‖u− uQ‖p,Q ≤ C(n, p)|Q|1/n‖du‖p,Q

for Q a cube or a ball in Rn, l = 0, 1, . . . , n.

Different versions of the classical Poincaré inequality have been estab-
lished in the study of the Sobolev space and differential forms, see [C], [S]
and [IL]. Susan G. Staples proves the Poincaré inequality in Ls-averaging
domains in [S]. Tadeusz Iwaniec and Adam Lutoborski prove the following
local Poincaré-type inequality in [IL] which plays a crucial rule in general-
izing the theory of Sobolev functions to differential forms.
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Lemma 2.5. Let u ∈ D′(Q,∧l) and du ∈ Lp(Q,∧l+1). Then u − uQ is in
Lnp/(n−p)(Q,∧l) and(∫

Q
|u− uQ|np/(n−p)dx

)(n−p)/np

≤ Cp(n)
(∫

Q
|du|pdx

)1/p

for Q a cube or a ball in Rn, l = 0, 1, . . . , n and 1 < p < n.

We now prove the following version of the local weighted Poincaré-type
inequality for differential forms.

Theorem 2.6. Let u ∈ D′(B,∧l) and du ∈ Lp(B,∧l+1), l = 0, 1, . . . , n.
Assume that 1 < s < p < ∞. Then exists a constant β > 1 such that if
w ∈ A1

r ∩A
s/p
p/k for some r > 1 and k with sβ/(β − 1) ≤ k < p, we have

(2.7)
(

1
|B|

∫
B
|u− uB|swdx

)1/s

≤ C|B|1/n

(
1
|B|

∫
B
|du|pwdx

)1/p

for all balls B ⊂ Rn. Here C is a constant independent of u and du.

Proof. Since w ∈ A1
r for some r > 1, by Lemma 2.3, there exist constants

β > 1 and C1 > 0, such that

(2.8) ‖w‖β,B ≤ C1|B|(1−β)/β‖w‖1,B

for any cube or any ball B ⊂ Rn. Choose t = sβ/(β−1), then 1 < s < t and
β = t/(t − s). Since 1/s = 1/t + (t − s)/st, by Hölder’s inequality, Lemma
2.4 and (2.8), we have

‖u− uB‖s,B,w =
(∫

B

(
|u− uB|w1/s

)s
dx

)1/s

(2.9)

≤
(∫

B
|u− uB|tdx

)1/t(∫
B

(
w1/s

)st/(t−s)
dx

)(t−s)/st

= ‖u− uB‖t,B ·
(∫

B
wt/(t−s)dx

)(t−s)/st

≤ C2|B|(1−β)/βs‖w‖1/s
1,B · ‖u− uB‖t,B

≤ C2|B|(1−β)/βs‖w‖1/s
1,B · C3|B|1/n‖du‖t,B

= C4|B|1/n|B|(1−β)/βs‖w‖1/s
1,B · ‖du‖t,B.

Now t = sβ/(β − 1) < p and 1/t = 1/p + (p− t)/pt, by Hölder’s inequality
again we obtain

‖du‖t,B =
(∫

B
|du|tdx

)1/t

(2.10)
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=
(∫

B

(
|du|w1/pw−1/p

)t
dx

)1/t

≤
(∫

B

(
|du|w1/p

)p
dx

)1/p
(∫

B

(
1
w

)t/(p−t)

dx

)(p−t)/pt

= ‖1/w‖1/p
t/(p−t),B

(∫
B
|du|pwdx

)1/p

.

Combining (2.9) and (2.10) yields

‖u− uB‖s,B,w(2.11)

≤ C4|B|1/n+(1−β)/βs‖w‖1/s
1,B · ‖1/w‖1/p

t/(p−t),B ·
(∫

B
|du|pwdx

)1/p

.

Note t = sβ/(β − 1) ≤ k, then p/k ≤ p/t. By Theorem 2.4 in [D2], we find
that w ∈ A

s/p
p/k ⊂ A

s/p
p/t . Therefore, we have

‖w‖1/s
1,B · ‖1/w‖1/p

t/(p−t),B(2.12)

=
(∫

B
wdx

)1/s
(∫

B

(
1
w

)t/(p−t)

dx

)(p−t)/pt

=

(∫
B

wdx

)(∫
B

(
1
w

)t/(p−t)

dx

)s(p−t)/pt
1/s

=
(
|B|1+s(p−t)/pt

)1/s

·

( 1
|B|

∫
B

wdx

)(
1
|B|

∫
B

(
1
w

)1/(p/t−1)

dx

)(s/p)(p/t−1)
1/s

≤ C5|B|1/s+1/t−1/p.

Substituting (2.12) in (2.11) implies

(2.13) ‖u− uB‖s,B,w ≤ C6|B|1/n+1/s−1/p

(∫
B
|du|pwdx

)1/p

.

We can write (2.13) as(
1
|B|

∫
B
|u− uB|sw(x)dx

)1/s

≤ C|B|1/n

(
1
|B|

∫
B
|du|pwdx

)1/p

.

This ends the proof of Theorem 2.6. �

We now prove other versions of the local weighted Poincaré-type inequal-
ity for differential forms.
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Theorem 2.14. Let u ∈ D′(B,∧l) and du ∈ Ln(B,∧l+1), l = 0, 1, . . . , n.
Then there exists a constant β > 1 such that if w ∈ A1

r∩A
s/n
n/s, where s = n/β

and r > 1, we have

(2.15)
(

1
|B|

∫
B
|u− uB|swdx

)1/s

≤ C|B|1/n

(
1
|B|

∫
B
|du|nwdx

)1/n

for all balls B ⊂ Rn. Here C is a constant independent of u and du.

Note that we can write (2.15) as

(2.15)′
(

1
|B|

∫
B
|u− uB|sdµ

)1/s

≤ C

(∫
B
|du|ndµ

)1/n

,

where dµ = w(x)dx.

Proof. Since w ∈ A1
r , r > 1, by Lemma 2.3, there exist constants β > 1 and

C1 > 0, such that

(2.16) ‖w‖β,B ≤ C1|B|(1−β)/β‖w‖1,B

for any cube or any ball B ⊂ Rn. Let s = n/β. Then β = n/s. Since
1/s = 1/n + (n − s)/ns, by Hölder’s inequality, Lemma 2.5 and (2.16), we
have (∫

B
|u− uB|swdx

)1/s

(2.17)

≤
(∫

B

(
w1/s

)n
dx

)1/n(∫
B
|u− uB|ns/(n−s)dx

)(n−s)/ns

= C2‖du‖s,B

(∫
B

wn/sdx

)1/n

= C2‖du‖s,B · ‖w‖1/s
β,B

≤ C3|B|(1−β)/sβ‖w‖1/s
1,B · ‖du‖s,B.

Using Hölder’s inequality again, we have

‖du‖s,B =
(∫

B

(
|du|w1/nw−1/n

)s
dx

)1/s

(2.18)

≤
(∫

B

(
|du|w1/n

)n
dx

)1/n
(∫

B

(
1
w

)s/(n−s)

dx

)(n−s)/ns

=
(∫

B
|du|nwdx

)1/n

·
∥∥∥(1/w)1/n

∥∥∥
ns/(n−s),B

.
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Combining (2.17) and (2.18) yields(∫
B
|u− uB|swdx

)1/s

(2.19)

≤ C3|B|(1−β)/sβ‖w‖1/s
1,B ·

∥∥∥(1/w)1/n
∥∥∥

ns/(n−s),B
·
(∫

B
|du|nwdx

)1/n

.

Since w ∈ A
s/n
n/s, then

‖w‖1/s
1,B ·

∥∥∥(1/w)1/n
∥∥∥

ns/(n−s),B

(2.20)

=
(∫

B

wdx

)1/s
(∫

B

(
1
w

)s/(n−s)

dx

)(n−s)/ns

=

(∫
B

wdx

)(∫
B

(
1
w

)1/(n/s−1)

dx

)(s/n)(n/s−1)
1/s

=

|B|1+(s/n)(n/s−1)

(
1
|B|

∫
B

wdx

)(
1
|B|

∫
B

(
1
w

)1/(n/s−1)

dx

)(s/n)(n/s−1)
1/s

≤ C4|B|2/s−1/n.

Substituting (2.20) in (2.19) and using n = sβ, we obtain(∫
B
|u− uB|swdx

)1/s

≤ C5|B|1/s

(∫
B
|du|nwdx

)1/n

,

that is(
1
|B|

∫
B
|u− uB|swdx

)1/s

≤ C5|B|1/n

(
1
|B|

∫
B
|du|nwdx

)1/n

.

We have completed the proof of Theorem 2.14. �

Theorem 2.21. Let u ∈ D′(B,∧l) and du ∈ Ln(B,∧l+1), l = 0, 1, . . . , n.
If 1 < s < n and w ∈ A1

n/s, then there exists a constant C, independent of
u and du, such that

(2.22)
(

1
|B|

∫
B
|u− uB|sws/ndx

)1/s

≤ C

(∫
B
|du|nwdx

)1/n

for any ball or any cube B ⊂ Rn.

The proof of Theorem 2.21 is similar to that of Theorem 2.14. For com-
pletion of the paper, we prove Theorem 2.21 as follows.
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Proof. Since 1/s = 1/n+(n−s)/ns, by Hölder’s inequality and Lemma 2.5,
we have (∫

B
|u− uB|sws/ndx

)1/s

(2.23)

≤
(∫

B

(
w1/n

)n
dx

)1/n(∫
B
|u− uB|ns/(n−s)dx

)(n−s)/ns

= ‖w1/n‖n,B · C1‖du‖s,B.

Using Hölder’s inequality again, we have

‖du‖s,B =
(∫

B

(
|du|w1/nw−1/n

)s
dx

)1/s

(2.24)

≤
(∫

B

(
|du|w1/n

)n
dx

)1/n
(∫

B

(
1
w

)s/(n−s)

dx

)(n−s)/ns

=
(∫

B
|du|nwdx

)1/n

·
∥∥∥(1/w)1/n

∥∥∥
ns/(n−s),B

.

Combining (2.23) and (2.24) yields(∫
B
|u− uB|sws/ndx

)1/s

(2.25)

≤ C1‖w1/n‖n,B ·
∥∥∥(1/w)1/n

∥∥∥
ns/(n−s),B

·
(∫

B
|du|nwdx

)1/n

.

Since w ∈ A1
n/s, then

‖w1/n‖n,B ·
∥∥∥(1/w)1/n

∥∥∥
ns/(n−s),B

(2.26)

=

(∫
B

wdx

)(∫
B

(
1
w

)s/(n−s)

dx

)(n−s)/s
1/n

=

|B|n/s

(
1
|B|

∫
B

wdx

)(
1
|B|

∫
B

(
1
w

)1/(n/s−1)

dx

)n/s−1
1/n

≤ C2|B|1/s.

Substituting (2.26) in (2.25), we obtain(∫
B
|u− uB|sws/ndx

)1/s

≤ C3|B|1/s

(∫
B
|du|nwdx

)1/n

,
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that is (
1
|B|

∫
B
|u− uB|sws/ndx

)1/s

≤ C3

(∫
B
|du|nwdx

)1/n

.

We have completed the proof of Theorem 2.21. �

3. Global weighted integral inequalities.

Susan G. Staples introduces the following Ls-averaging domains [S]: A
proper subdomain Ω ⊂ Rn is called an Ls-averaging domain, s ≥ 1, if
there exists a constant C such that(

1
|Ω|

∫
Ω
|u− uΩ|sdm

)1/s

≤ C sup
B⊂Ω

(
1
|B|

∫
B
|u− uB|sdm

)1/s

for all u ∈ Ls
loc(Ω). Here |Ω| is the n-dimensional Lebesgue measure of Ω.

Susan G. Staples proves the Poincaré inequality in Ls-averaging domains
in [S]. In [DN], we introduce Ls(µ)-averaging domains. We call a proper
subdomain Ω ⊂ Rn an Ls(µ)-averaging domain, s ≥ 1, if µ(Ω) < ∞ and
there exists a constant C such that(

1
µ(B0)

∫
Ω
|u− uB0 |sdµ

)1/s

≤ C sup
2B⊂Ω

(
1

µ(B)

∫
B
|u− uB|sdµ

)1/s

for some ball B0 ⊂ Ω and all u ∈ Ls
loc(Ω;∧l). Here the measure µ is

defined by dµ = w(x)dx, where w(x) is a weight and w(x) > 0 a.e., and
the supremum is over all balls 2B ⊂ Ω.

Now we prove the following global weighted Poincaré-type inequality in
Ls(µ)-averaging domains.

Theorem 3.1. Let u ∈ D′(Ω,∧l) and du ∈ Lp(Ω,∧l+1), l = 0, 1, . . . , n.
Assume that s > 1 and p > max{s, n}. Then exists a constant β > 1 such
that if w ∈ A1

r ∩ A
s/p
p/k, where r > 1, sβ/(β − 1) ≤ k < p and w ≥ η > 0, we

have

(3.2)
(

1
µ(Ω)

∫
Ω
|u− uB0 |swdx

)1/s

≤ Cµ(Ω)1/n

(
1

µ(Ω)

∫
Ω
|du|pwdx

)1/p

for any Ls(µ)-averaging domain Ω and some ball B0 with 2B0 ⊂ Ω. Here
the measure µ is defined by dµ = w(x)dx and C is a constant independent
of u and du.

Proof. Note

µ(B) =
∫

B
wdx ≥

∫
B

ηdx = η|B|,

then

(3.3) |B| ≤ C1µ(B),
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where C1 = 1/η. Since p > n, then 1/n− 1/p > 0 and from (3.3) we have

µ(B)−1/s|B|1/s+1/n−1/p ≤ µ(B)−1/s · (C1µ(B))1/s+1/n−1/p(3.4)

= C2µ(B)1/n−1/p

≤ C2µ(Ω)1/n−1/p.

By Theorem 2.6, the definition of Ls(µ)-averaging domains and (3.4), we
have (

1
µ(Ω)

∫
Ω
|u− uB0 |sdµ

)1/s

(3.5)

≤
(

1
µ(B0)

∫
Ω
|u− uB0 |sdµ

)1/s

≤ C3 sup
2B⊂Ω

(
1

µ(B)

∫
B
|u− uB|sdµ

)1/s

= C3 sup
2B⊂Ω

((
|B|

µ(B)

)1/s( 1
|B|

∫
B
|u− uB|sdµ

)1/s
)

≤ C3 sup
2B⊂Ω

((
|B|

µ(B)

)1/s

· C4|B|1/n

(
1
|B|

∫
B
|du|pwdx

)1/p
)

≤ C5 sup
2B⊂Ω

(
µ(B)−1/s|B|1/s+1/n−1/p

(∫
B
|du|pwdx

)1/p
)

≤ C5 sup
2B⊂Ω

(
C2µ(Ω)1/n−1/p

(∫
B
|du|pwdx

)1/p
)

≤ C6 sup
2B⊂Ω

(
µ(Ω)1/n−1/p

(∫
Ω
|du|pwdx

)1/p
)

= C6µ(Ω)1/n−1/p

(∫
Ω
|du|pwdx

)1/p

= C6µ(Ω)1/n

(
1

µ(Ω)

∫
Ω
|du|pwdx

)1/p

.

Hence, we obtain(
1

µ(Ω)

∫
Ω
|u− uB0 |sw(x)dx

)1/s

≤ Cµ(Ω)1/n

(
1

µ(Ω)

∫
Ω
|du|pwdx

)1/p

.

This completes the proof of Theorem 3.1. �

Definition 3.6. We call Ω, a proper subdomain of Rn, δ-John domain,
δ > 0, if there exists a point x0 ∈ Ω which can be joined with any other
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point x ∈ Ω by a continuous curve γ ⊂ Ω so that

d(ξ, ∂Ω) ≥ δ|x− ξ|

for each ξ ∈ γ. Here d(ξ, ∂Ω) is the Euclidean distance between ξ and ∂Ω.

As we know, John domains are bounded. Bounded quasiballs and bounded
uniform domains are John domains. Also we know that a δ-John domain
has the following properties [N].

Lemma 3.7. Let Ω ⊂ Rn be a δ-John domain. Then there exists a covering
V of Ω consisting of open cubes such that:

(i)
∑

Q∈V χσQ(x) ≤ NχΩ(x), σ > 1 and x ∈ Rn.
(ii) There is a distinguished cube Q0 ∈ V (called the central cube) which can

be connected with every cube Q ∈ V by a chain of cubes Q0, Q1, . . . , Qk

= Q from V such that for each i = 0, 1, . . . , k − 1,

Q ⊂ NQi.

There is a cube Ri ⊂ Rn (this cube does not need to be a member of V) such
that

Ri ⊂ Qi ∩Qi+1, and Qi ∪Qi+1 ⊂ NRi.

We also know that if w ∈ A1
r , then the measure µ defined by dµ = w(x)dx

is a doubling measure, that is,

µ(2B) ≤ Cµ(B)

for all balls B in Rn, see [HKM, p. 299]. Since the doubling property
implies µ(B) ≈ µ(Q) whenever Q is an open cube with B ⊂ Q ⊂

√
nB, we

may use cubes in place of balls whenever it is convenient to us.
Now we prove the following weighted global result in John domains.

Theorem 3.8. Let u ∈ D′(Ω,∧l) and du ∈ Ln(Ω,∧l+1), l = 0, 1, . . . , n. If
1 < s < n and w ∈ A1

n/s, then there exists a constant C, independent of u

and du, such that(
1
|Ω|

∫
Ω
|u− uQ|sws/ndx

)1/s

≤ C

(∫
Ω
|du|nwdx

)1/n

for any δ-John domain Ω ⊂ Rn. Here Q is any cube in the covering V of Ω
appearing in Lemma 3.7.

Proof. We can write (2.22) as

(3.9)
∫

Q
|u− uQ|sws/ndx ≤ C1|Q|

(∫
Q
|du|nwdx

)s/n

,
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where Q ⊂ Rn is any cube. Suppose σ > 1, by (3.9) and the condition i) in
Lemma 3.7, we have∫

Ω
|u− uQ|sws/ndx ≤

∑
Q∈V

∫
Q
|u− uQ|sws/ndx

≤ C1

∑
Q∈V

|Q|
(∫

Q
|du|nwdx

)s/n

≤ C1|Ω|
∑
Q∈V

(∫
σQ
|du|nwdx

)s/n

≤ C1|Ω|N
(∫

Ω
|du|nwdx

)s/n

= C2|Ω|
(∫

Ω
|du|nwdx

)s/n

.

Thus, we have(
1
|Ω|

∫
Ω
|u− uQ|sws/ndx

)1/s

≤ C3

(∫
Ω
|du|nwdx

)1/n

We have completed the proof of Theorem 3.8. �

Applying Theorem 2.14 and using the same method that we used in the
proof of Theorem 3.1, we have the following global result.

Theorem 3.10. Let u ∈ D′(Ω,∧l) and du ∈ Ln(Ω,∧l+1), l = 0, 1, . . . , n.
Then there exists a constant β > 1 such that if w ∈ A1

r ∩ A
s/n
n/s, where

s = n/β, r > 1 and w ≥ η > 0, we have

(3.11)
(

1
µ(Ω)

∫
Ω
|u− uB0 |swdx

)1/s

≤ Cµ(Ω)1/n

(
1

µ(Ω)

∫
Ω
|du|nwdx

)1/n

for any Ls(µ)-averaging domain Ω and some ball B0 with 2B0 ⊂ Ω. Here
the measure µ is defined by dµ = w(x)dx and C is a constant independent
of u and du.

Note that (3.11) is equivalent to

(3.11)′
(

1
µ(Ω)

∫
Ω
|u− uB0 |sdµ

)1/s

≤ C

(∫
Ω
|du|ndµ

)1/n

.

Proof. Since

µ(B) =
∫

B
wdx ≥

∫
B

ηdx = η|B|,
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then

(3.12)
|B|

µ(B)
≤ C1,

where C1 = 1/η. By Theorem 2.14, the definition of Ls(µ)-averaging do-
mains and (3.12), we have(

1
µ(Ω)

∫
Ω
|u− uB0 |sdµ

)1/s

≤
(

1
µ(B0)

∫
Ω
|u− uB0 |sdµ

)1/s

≤ C2 sup
2B⊂Ω

(
1

µ(B)

∫
B
|u− uB|sdµ

)1/s

= C2 sup
2B⊂Ω

((
|B|

µ(B)

)1/s( 1
|B|

∫
B
|u− uB|sdµ

)1/s
)

≤ C2 sup
2B⊂Ω

((
|B|

µ(B)

)1/s

C3

(∫
B
|du|ndµ

)1/n
)

≤ C4 sup
2B⊂Ω

(∫
Ω
|du|ndµ

)1/n

= C4

(∫
Ω
|du|ndµ

)1/n

.

Thus, we have(
1

µ(Ω)

∫
Ω
|u− uB0 |sdµ

)1/s

≤ C

(∫
Ω
|du|ndµ

)1/n

.

We have completed the proof of Theorem 3.10. �

Remark. Since Ls(µ)-averaging domains reduce to Ls-averaging domains
if w = 1 (so dµ = w(x)dx = dx), then Theorem 3.1 and Theorem 3.10 also
hold if Ω ⊂ Rn is an Ls-averaging domain.
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