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The basic result is the classification of first order invariant
elliptic differential operators on a quotient of a spin symmet-
ric space by a suitable discrete group: Such operators are all
twisted Dirac operators. As a consequence we obtain condi-
tions for the spectral symmetry to be equivariant. We also
show that the characteristic numbers of these spaces vanish,
a result previously obtained by Hirzebruch and Slodowy from
the study of elliptic genera.

1. Introduction.

Here we prove that any first order invariant elliptic operator on a space
Γ\M , where M = G/H is a spin symmetric space and Γ ⊂ G is a discrete
subgroup, is a twisted Dirac operator. Furthermore, we study the spectral
symmetry of such operators when Γ is co-compact giving simple conditions
for spectral symmetry and, if G is compact, when this spectral symmetry is
equivariant with respect to G.

A symmetric space is given as M = G/H where G and H are Lie groups
such that there is an involution θ on the Lie algebra, g, of G with fixed
set the Lie algebra h of H; and now M is compact if and only if G is
compact. (Since every compact group has a noncompact dual we see that
every compact symmetric space has a noncompact dual, and conversely.)
When G is compact we may take Γ = {1} and if G is not compact there are
always co-compact subgroups Γ, see [9].

Given a self-adjoint elliptic operator on a compact Riemannian manifold,
there is a complete set of eigenvalues with finite dimensional eigenspaces.
The eta function is defined as

(1.1) η(s) =
∑

λ

sign(λ)|λ|−s, for Re (s) � 0,

where the sum is over the nonzero eigenvalues λ with each repeated as
often as the dimension of the corresponding eigenspace. The eta invariant,
defined by analytic continuation, is η(0). This can be thought of as a second
order invariant related to the Â-genus. For the Â-genus there is the Atiyah-
Hirzebruch vanishing theorem when there is an S1-action [3]. No such result
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can be expected for η(0), as [15] shows, but it is known [8] that for a suitable
action of S1 × S1 there is vanishing for a ‘split’ Dirac operator. Here we
show the strong result that η(s) vanishes identically for symmetric spaces
G/H where rank G−rank H ≥ 2. In [10] Hirzebruch and Slodowy show
that the characteristic numbers of G/H vanish if rank H < rank G. (They
show very much more.) We can deduce this result as a consequence of ours
upon considering the product G/H × S3/Γ where Γ is a suitable subgroup
of S3. Eventually we show that such a result is a relatively simple algebraic
one, which is rather different from the subtle ones like the original result of
Atiyah-Hirzebruch and those concerning the vanishing of the elliptic genus.
This is discussed in the appendix: the example of SU(2). If a group acts
on M and the operator is invariant then there is an induced action on each
eigenspace. This gives rise to an equivariant version of both the eta function
and the eta invariant. Both depend upon the metric and have been much
studied, see [4] and [13]. Spectral symmetry, and especially equivariant
symmetry, imply η(s) = 0 and so show very strongly the vanishing of the
eta invariant. In the case of certain locally symmetric spaces of rank 1 the
eta function can be related to the geometry of Γ, [12] and [15].

Our results can be summarized as follows. In all cases M = G/H is a
spin symmetric space of either compact or noncompact type and Γ ⊂ G is
a co-compact discrete subgroup.

Theorem 1.1. If M is compact and D is a twisted Dirac operator on a ho-
mogeneous bundle over M , then D has spectral symmetry and this symmetry
is equivariant for the action of H.

For equivariant symmetry:

Theorem 1.2. If D is a twisted Dirac operator on Γ\M then there are two
cases:

(i) If rank G-rank H ≤ 1 D does not have G-equivariant spectral symme-
try.

(ii) If rank G-rank H ≥ 2 D has G-equivariant spectral symmetry.

The classification is given by:

Theorem 1.3. If D is a first order elliptic invariant operator on M , then
D is a twisted Dirac operator plus a bundle map.

Compare this to the results given in [16].
One aspect of Theorem 1.2 is that it divides symmetric spaces into three

classes. If rank G = rank H then, for the weight µ, index D+
µ = d(µ − ρn)

where d(α) is the dimension of the representation with highest weight α. So
here there is very definite non-vanishing. When rank G ≥ rank H + 2 there
is G-equivariant vanishing of the eta function if the dimension is odd (and
of the index if n is even). When rank G = rank H + 1 this does not hold,
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although it is possible that the eta invariant could vanish, but it does not
do so equivariantly.

The lack of symmetry for a first order invariant operator on Γ\M repre-
sents a secondary invariant of Γ. Since any such operator is a twisted Dirac
operator plus a bundle map, our results show that for operators with no
constant term all these secondary invariants vanish.

Section 2 establishes the basic definitions. Section 3 gives the proof of
Theorem 1.1. In Section 4 we prove Theorem 1.2 in the case when Γ = {1}
and M is compact. For G-equivariant symmetry passing from Γ = {1} to
any Γ is automatic. Section 5 gives the passage between the compact and
noncompact duals and the classification, Theorem 1.3, is obtained in Section
6. In Section 7 we give an application of these results to the classification of
first order elliptic operators on a compact Riemannian spin manifold. If the
operator acts invariantly on sections of a bundle associated with the frame
bundle by a representation, then the operator is a twisted Dirac operator
plus a bundle map. Finally, there are two appendices: The first describes
the case of SU(2) and the second discusses the difference rank of M = rank
G-rank H, which is not the same as the rank of M .

Both authors thank the referee for his suggestions and in particular for
pointing out that a result of [10] follows from one of theirs.

The first author was supported by the C.C. Hsiung fund.

2. The Dirac Operator on a Symmetric Space.

Let M = G/H be a symmetric space of compact or non-compact type. The
Lie algebra of G then decomposes: g = m ⊕ h; and the adjoint action of G
restricts to Ad : H → SO(m). We suppose that this lifts to spin: Ãd : H →
Spin(m). If not, then there is a cover H1 of H, which is either trivial or
twofold, such that H1 has an adjoint action which does lift and we can
replace G and H by suitable double covers if necessary, see [14, §2]. If G
is compact, using the negative of the Killing form to obtain a bi-invariant
metric on g, choose an orthonormal basis {E1, . . . , Em+h} for g such that
{Eα : 1 ≤ α ≤ m} is a basis for m and {Ei : m+ 1 ≤ i ≤ m+ h} is a basis
for h. In the non-compact case, take the negative of the Killing form on h.
Unless otherwise stated, we shall use Greek letters for indices in the range
1 to m and Latin for m+ 1 to m+ h. Further, let p0 = 1H be the element
of M which is the image of the identity element of G.

We construct the usual local vector fields on M , see [9, Ch. IV Lemma
3.2]. Pick a subset B ⊂ G such that π : B → Br(p0) homeomorphically onto
an open geodesic ball in M . There is an open subset U ⊂ H containing the
identity so that BU is an open neighbourhood of the identity in G. The
vector fields are then Eα transferred from m to M and are invariant under
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translation by B. Using the homogeneous structure we define coordinates
on Br(p) for each p ∈M .

Since M is a symmetric space, the decomposition g = m ⊕ h has the
properties [h, h] ⊂ h, [h,m] ⊂ m and [m,m] ⊂ h. In the compact case, the
connection on G associated to the bi-invariant metric is ∇XY = 1

2 [X,Y ],
for left invariant vector fields X and Y . Transferring this connection to M
yields a connection such that ∇EαEβ = 0 at p0, since [Eα, Eβ] ∈ h and so
is zero in M . Observe that this is only true at one point. However, the
formulae obtained are then true point by point. Similar formulae hold in
the non-compact case and will be dealt with in Section 5.

Since M is spin symmetric we have a homogeneous spin bundle on M . Let
∆ : Spin(m) → Aut S be the spin representation then the spin representation
of H is χ = ∆◦Ãd : H → Spin(m) → Aut S. The spin bundle is S = G×HS,
where H acts on S by χ and on G by right translation. Thus the sections
of S decompose: Γ(S) = (C∞(G)⊗ S)H where the superscript H indicates
that we take the subspace of C∞(G)⊗ S which is invariant under H.

More generally let π : H → AutV be a representation on a finite di-
mensional vector space V . Then construct the associated vector bundle
V = G ×H V over M = G/H. Give V an H-invariant inner product and
let ∇V be the Levi-Civita connection on V. The spin bundle twisted by V
is then S ⊗V which has the connection ∇ = ∇S ⊗ 1 + 1 ⊗ ∇V , where ∇S

is the spinor connection. The sections of S ⊗V can again be identified as:
Γ(S⊗V) = (C∞(G)⊗ S ⊗ V )H , where the H superscript indicates that we
take the H-invariant part.

Let {v1, . . . , vk} be a basis for V then, under the action of B, we have
locally a basis of sections for V. Denote these local sections by v1, . . . , vk.
Since the right action by H on G commutes with the left action by B on
G we have ∇V

Eα
vi = 0 for all Eα and vi, that is, the sections of V defined

locally by the action of B are parallel along the normal coordinates.
The twisted Dirac operator is defined by P : Γ(S ⊗ V) → Γ(S ⊗ V) is

defined by P =
∑
α

ωEα∇Eα . Here Eα acts by Clifford multiplication and

ω is the volume form on M , normalized as to sign, so ω = isE1 · · ·Em

with s = (m + 1)(m + 2)/2. The effect of this normalization is to give
ωEαω = Eα and ω2 = (−1)(m−1). If dim m is even, the space of spinors
splits S = S+ ⊕ S− and so P = P+ ⊕ P−. Now, because the connection
on M satisfies ∇EαEβ = 0 at the point p0, the spinor connection on a basic
spinor ψ = s⊗ 1 (where s ∈ S) is given by ∇Eαψ = 0. Thus, we have

(2.1) P (f ⊗ s⊗ v) =
∑
α

Eα(f)⊗ ωEαs⊗ v.

A direct calculation as in [14, Proposition 3.2], or the appendix of [5],
using the fact that the induced action of X ∈ h on S is given by χ(X) =
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−1
4Σα[X,Eα]Eα yields P 2 = (ΩG −ΩH)⊗ 1⊗ 1− 2ΣiEi ⊗ χ(Ei)⊗ 1, ΩG =

−ΣαE
2
α − ΣiE

2
i and ΩH = −ΣiE

2
i . Now, since we are acting on the H-

invariant elements of C∞(G)⊗ S, we get the following proposition:

Proposition 2.1. The square of the Dirac operator is P 2 = ΩG ⊗ 1 ⊗ 1 +
1⊗ χ(ΩH)⊗ 1.

Remark 2.2. The operators ΩG and ΩH are the Casimirs on G and H. In
principle, this gives the eigenvalues of P 2, and an explicit formula is given in
[14, Proposition 3.2]. However, since we do not have the assumption rank
G = rank H, the representation structure of χ adds complication to the
details.

For any operators A and B, we define the commutator to be [A,B] =
AB−BA and the anticommutator {A,B}=AB+BA. Let E= isE1 · · ·Em−1

with s = m(m−1)/2 and F = i2m−1Em. This normalization has been chosen
so that E2 = 1. For any Eα, [Eα, F ] ∈ h as elements of g. Thus, as vector
fields on M , [Eα, F ] = 0. Note that the operator E is defined as an element
in the Clifford algebra of g, while F is in g. Then E acts globally on M
by the spin structure while the action of F is defined in each coordinate
patch, Br(p), by right translation on C∞(G). The relationship of these to
the Dirac operator is given in the following two results:

Lemma 2.3. {P,E} = 2F ⊗ 1 acting on (C∞(G)⊗ S)H .

Proof. Here E acts on (C∞(G)⊗S)H by 1⊗E. The result is now obtained,
using E = i2m+1ωEm, by the following calculation:

{P,E} =
∑
α

Eα ⊗ (ωEαE + EωEα)

= i2m+1
∑
α

Eα ⊗ (ωEαωEm + ωEmωEα)

= i2m+1
∑
α

Eα ⊗ (EαEm + EmEα)

= i2m+1Em ⊗ 2E2
m

= 2F ⊗ 1.

�

Lemma 2.4. [P 2, E] = 0.

Proof. By Proposition 2.1 P 2 = ΩG⊗1⊗1+1⊗χ(ΩH)⊗1. Now ΩG⊗1⊗1
commutes with 1 ⊗ E ⊗ 1 and since ΩH is in the centre of the enveloping
algebra, χ(ΩH) commutes with E. Thus, P 2 commutes with E, obtaining
the result. �
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3. The Cartan Involution and Spectral Symmetry.

Using the Cartan involution we can easily obtain spectral symmetry for the
Dirac operator when G is compact and Ad lifts to spin. Let θ : G → G be
the Cartan involution. Then θ|H is the identity, and θ induces an inversion
map, also denoted by θ, on M : θ : M →M .

Lemma 3.1. The inversion map θ intertwines P and −P , i.e., Pθ = −θP .

Proof. The derivative dθ : m → m is multiplication by −1. Thus, for the
connection on M :

∇X ◦ θ = θ ◦ ∇dθ(X) = θ ◦ ∇−X = −θ ◦ ∇X .

Now if X ∈ m acts on S, by Clifford multiplication we have X ◦ θ(f ⊗ s) =
θf ⊗ Xs = θ ◦ X(f ⊗ s), on (C∞(G) ⊗ S)H . Since P =

∑
α

ωEα∇Eα the

result is immediate. �

Corollary 3.2. The Dirac operator has H-equivariant spectral symmetry.

Proof. If λ is an eigenvalue of P with eigenspace Vλ then −λ is also an eigen-
value with eigenspace V−λ then −λ is also an eigenvalue with eigenspace
V−λ = θVλ. Both eigenspaces are representation spaces for G and by re-
striction for H. Since θ|H is the identity, Vλ and V−λ are isomorphic as H
representation spaces. �

Remark 3.3. Note that θ is not the identity map on G and so the question
of G-equivariance is not addressed by this result.

4. The Space of Spinors and Symmetry in the Compact Case.

Let TG ⊂ G be a maximal torus of G such that TH = TG ∩ H is the
maximal torus of H. We fix these tori and express weights of representation
using them. Then we denote the positive roots of G by α1, . . . , αµ, which
are ordered so that α̃i = αi|TH (1 ≤ i ≤ ν) are the positive roots of H.

Define ρ = 1
2

µ∑
i=1

α̃i, ρk =
1
2

ν∑
i=1

α̃i and ρn = 1
2

µ∑
i=ν+1

α̃i so ρ = ρk + ρn, where

α̃i = αi|TH for all i.
The decomposition g = h ⊕ m gives rise to an adjoint representation

Ad : H → SO(m) which, by taking double covers as explained earlier,
we suppose lifts to spin: Ãd : H → Spin(m). The spin representation is
∆ : Spin(m) → AutS, which defines S; see [1] or [2] for a more detailed
description. Let m = dim(m), then dim S = 2k, k = [m/2], and χ = ∆◦ Ãd.
Then the weights of χ are given as follows: Let ±λ1, ±λ2, ±λ3, . . . ,±λk

be the nonzero weights of the standard representation of SO(m), ordered
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lexicographically. Then the weights of ∆ are

(4.1)
1
2
(±λ1 ± λ2 · · · ± λk).

If m is odd ∆ is irreducible; if m is even ∆ = ∆+ ⊕∆− with the parity of
the signs in (4.1) giving ∆+ (even number of −) and ∆− (odd number of
−). The weights of χ are then given by

(4.2)
1
2
(±αν+1 ± · · · ± αµ).

These are obtained, as in [14, §2] from (4.1) by replacing λi with αi if
ν + 1 ≤ i ≤ µ and all other λi by zero. The multiplicity of a weight is given
by the number of ways it occurs. Here αi are the weights of G ordered so
the first ν restrict to give weights of H.

Now consider the root space decomposition of g =
µ
⊕
i=1

gαi ⊕ tG and set

t0 = tG/tH . Then m can be decomposed as:

(4.3) m =
µ
⊕

i=ν+1
gαi ⊕ t0 = p⊕ t0.

Now dim p is even and let r = [12 dim t0] be the integer part of 1
2 dim t0. We

write S(m) for the spinor space of m, replacing S, and S(p) for that of p.

Lemma 4.1. If r = 0 then Vρn, the representation of H with highest weight
ρn, is an irreducible component of χ with multiplicity one.

Proof. Since r = 0 either dim t0 = 0 or dim t0 = 1. �

If dim t0 = 0 then m = p and from (4.2) it is immediate that Vρn occurs
with multiplicity one.

If dim t0 = 1 then S(m) = S(p) and these are equivalent as representations
of H, although not as representations of the underlying spin groups. Again,
the result of the lemma follows from (4.2).

Remark 4.2. If r ≥ 1 then dimS(m) = 2r dimS(p). Further, from (4.2),
we see that S(m) = 2rS(p) as representation spaces of H.

Using these results and the operators E and F of Section 2, we can now
prove Theorems 1.1 and 1.2 for a compact symmetric space.

Theorem 4.3. If dim t0 ≤ 1 then P does not have G-equivariant symmetry.

Proof. Suppose that P does have G-equivariant symmetry. Using the Peter-

Weyl theorem as in [6] (C∞(G) ⊗ S)H = Σ
∼
V λ ⊗ (

∼
V
∗
λ ⊗ S)H , so dim(

∼
V
∗
λ ⊗

S)H must be even as there are equal multiplicities for positive and negative
eigenvalues.

If λ is a weight for H which is also a weight for G, then we can form

the irreducible representation
∼
V λ of G. As a representation of H this is not
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necessarily irreducible and we decompose it:
∼
V λ = Vλ ⊕µ Vµ. The weights

that occur as highest weights for these representations of H must be weights

of
∼
V λ as a representation of G. Thus λ occurs with multiplicity one and if

µ also occurs then λ > µ: Moreover µ must be a weight for G, though it
may not be dominant. However, there will be a dominant weight for G in
the Weyl group orbit of µ and this will yield a representation of H.

Now consider the representation
∼
V ρn of G. This decomposes as a repre-

sentation of H :
∼
V ρn = Vρn ⊕µ Vµ. By Lemma 4.1, Vρn occurs in S with

multiplicity one. Thus dim(
∼
V
∗
ρn
⊗ S)H = 1 + Σµ dim(Vµ ⊗ S)H and so, for

some µ < λ, Vµ occurs in S with odd multiplicity. Without loss of gen-
erality, we may suppose µ is dominant and can repeat the argument with
µ replacing ρn. By induction, we can find a sequence of weights µi such
that µi+1 < µi and Vµi occurs in S with odd multiplicity. This is clearly
impossible, and so P does not have G-equivariant symmetry. �

Theorem 4.4. If dim t0 ≥ 2 then P has G-equivariant symmetry.

Proof. Let Up be the subspace of Cliff(m) spanned as a vector space by
Ei1 · · ·Eip , i1 < i2 < · · · < ip. Then if X ∈ Up for p 6= 0 we have trace
X|S = 0. Thus we have

(4.4) traceE|S = 0.

�

Now using m = p ⊕ t0, let ωp = E1 · · ·Ep where {E1, . . . , Ep} is an
orthonormal basis for p. Then E = isωpEp+1 · · ·Em−1 for s = m(m − 1)/2
and Ei ∈ t0, p + 1 ≤ i ≤ m − 1. Now if X ∈ t0 both X and ωp commute
with the action of H by χ. Thus, E is an H-map. Since E2 = 1, decompose
S = S+ ⊕ S− into +1 and −1 eigenspaces of E. Then dimS+ = dimS−,
since trace E|S = 0. By Remark 4.2 we have S = 2rS(p) so, since E is an
H-map, we have

(4.5) S+ ∼= S− ∼= 2r−1S(p).

Decompose the sections S : Γ(S) = ⊕(Ṽλ ⊗ Ṽλ∗ ⊗ S)H = ⊕(
∼
V λ ⊗ (

∼
V λ∗ ⊗

S)H) into isotypic components under the left action by G. By Proposition
2.1 P 2 = ΩG⊗1⊗1+1⊗1⊗ΩH , so each component is an invariant space for
P 2 and, since ΩH is constant on S the eigenspaces of P 2 on (Ṽλ⊗ Ṽλ∗⊗S)H

are of the form (W ⊗S)H . Now decompose (W ⊗S)H =
∑

i

(Wi⊗S)H into

eigenspaces of F ⊗ 1. Then using (4.5) we get eigenspaces for E:

(4.6) (Wi ⊗ S)H = (Wi ⊗ S+)H ⊕ (Wi ⊗ S−)H .
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Relative to the decomposition (4.6) there are the block forms E =
(

1 0
0 −1

)
and P =

(
a b
c d

)
. A simple calculation shows

(4.7) {P,E} =
(

2a 0
0 −2d

)
= 2F ⊗ 1,

with the last equality from Lemma 2.3. Since (Wi ⊕ S)H is an eigenspace
for F ⊗ 1, this is constant so a = −d. Now (W ⊗ S)H is an eigenspace
for P 2, so P has two eigenvalues α and −α on (W ⊗ S)H . Since trace
P |(Wi⊗S)H = 0 we see that P has spectral symmetry on (Wi⊗S)H . Thus
P has spectral symmetry on (Ṽλ ⊗ Ṽλ∗ ⊗ S)H . Now as a representation
space of G (Ṽλ ⊗ Ṽλ∗ ⊗ S)H = nṼλ and, since the eigenspaces of P are G
representation spaces, we see that each eigenspace of P on (Ṽλ ⊗ Ṽλ ⊗ S)H

is niṼλ as a representation space of G. Thus, the spectral symmetry of P is
G-equivariant symmetry.

We now consider the twisted Dirac operator. From (2.1) we have:

Lemma 4.5. Using normal coordinates PV = P ⊗ 1, where P is the Dirac
operator on S with no twisting.

Theorem 4.6. i. If dim t0 = 1 PV does not have G-equivariant spectral
symmetry.

ii. If dim t0 ≥ 2 PV has G-equivariant spectral symmetry.

Proof. Use Lemma 4.5. Then the proof of Theorem 4.3 extends routinely to
establish part i and the proof of Theorem 4.4 extends to give part ii. �

Finally, we observe that the results of Section 3 using the Cartan involu-
tion also extend to the case of twisted Dirac operators. This establishes the
following:

Theorem 4.7. The twisted Dirac operator has H-equivariant spectral sym-
metry in all cases.

5. The Noncompact Case.

Let M = G/H be a symmetric space of noncompact type and Γ ⊂ G be a
discrete co-compact group, so Γ\M is compact. Then, we use the compact
dual G∗ of G to show spectral symmetry for the Dirac operator P .

The Lie algebra of G decomposes:

(5.1) g = m⊕ h.

Let gC be the complexification of g, and g∗ be the compact dual g∗ ⊂ gC.
This has the following correspondence with g:

(5.2) X → X for x ∈ h, X → iX for X ∈ m.
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Denote by X∗ the element of g∗ corresponding to X ∈ g. There is then
a correspondence between the Dirac operator P on M and its dual P ∗ on
M∗ = G∗/H.

Lemma 5.1. (Pψ)∗ = P ∗ψ∗.

This follows directly from the definitions.
If PV is a twisted Dirac operator on Γ\M , then using the correspondence

of Lemma 5.1 yields the noncompact version of Theorem 4.6. This follows
since the equivariance of the symmetry on G/H means symmetry descends
to Γ\G/H.

Theorem 5.2. If rank G-rank H ≥ 2 then PV has spectral symmetry.

Notice that G does not act on Γ\G/H, so we cannot discuss equivariant
symmetry.

Finally we note that the result of Theorem 4.7 does not have a corre-
sponding noncompact version. This result uses the inversion map X → X−1

induced by G/H. However, this does not necessarily pass to a map of spinors
on Γ\M ; for example in the rank one case it fails. In the compact case we
can take Γ = {1} but this does not give a well-defined eta function in the
noncompact case.

6. First Order Invariant Elliptic Operators.

Let D be a first order invariant elliptic operator on a homogeneous bundle
E, with fibre E, over M . Then its symbol is a bilinear map:

(6.1) σ : m⊗ E → E.

This can be rewritten as σ : m → End(E) and the condition that D is
elliptic is equivalent to σ(x) is invertible if x 6= 0. Since E is a homogeneous
bundle, E is a complex vector space and, by a suitable choice of metric, we
have σ(Sm−1) ⊂ U(n) where Sm−1 is the unit sphere in m and U(n) is the
unitary group for n = dimE. By Lemma 4.1 of [7] we have:

Lemma 6.1. The symbol σ induces an action φ of spin(m) on E. Further,
φ is the standard action, so E = kS (if m is odd) or E = k+S

+ ⊕ k−S
− (if

m is even).

Remark 6.2. The action φ is defined by its restriction to m ⊗ m, which
generates spin(m). This is given by φ(X ⊗ Y ) = −σ(X)σ(Y )

t
.

As an application of Lemma 6.1, we have the following classification of
these operators:

Theorem 6.3. a. Let D be an invariant elliptic first order differential
operator on a homogeneous bundle over a spin symmetric space. Then, D
is a twisted Dirac operator, plus a bundle map.
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b. Furthermore, if θD = −Dθ, where θ is the reflection from the sym-
metric structure, then D is a twisted Dirac operator without the addition of
a bundle map.

Proof. a. The proof of this is the same as the proof of Theorem 4.2 in [7].
b. Let φ be a bundle map such that θφ = −φθ. Then to prove part b
we must show that φ = 0. Since φ is an even (zero) order map, we have
θφ = φθ. Thus, θφ = φθ = 0 and so φ = 0. �

Remark. If D is a twisted Dirac operator defined by using the Levi-Civita
connection, then θD = −Dθ. If D1 is a similar operator defined using a
different connection, then D − D1 is a bundle map. Thus, Theorem 6.3b
establishes the uniqueness of the Dirac operator which satisfies θD = −Dθ.

7. First Order Elliptic Invariant Operators on a Riemannian
Manifold.

Let M be a Riemannian manifold with frame bundle F . This has structure
group O(n) (SO(n) if M is orientable) where n = dimM . If π : O(n) →
AutE is a representation, then the associated bundle is E = F ×π E. Let
J1(E) be the first jet bundle. Then the action of O(n) on E extends to
an action on J1(E). An invariant first order differential operator is then
defined to be an O(n)-equivariant map:

(7.1) D : J1(E) → E.

Now consider the jet bundle exact sequence:

(7.2) 0 → T ⊗E i→ J1(E) P→ E → 0,

where T = T (M) is the tangent bundle of M . The symbol of D is then the
composition

(7.3) σ = D ◦ i.
Now we restrict to the case n ≥ 3. Since O(n) is compact and has trivial
prologation the exact sequence (7.2) has a splitting by an O(n) invariant
map s : E → J1(E). Then D gives rise to a bundle map φ = D ◦ s : E → E.
Thus, we can write D as the sum of a symbol map and a bundle map:

(7.4) D = σ + φ,

where all these maps are O(n) invariant and we have abused the notation
by omitting the implied maps p and the splitting.

Now M is uniformly 1-flat and so the question of classifying first order
operators is the same for all manifolds. Thus, it is sufficient to consider the
sphere Sn. Since Sn ∼= Spin(n + 1)/Spin(n) then, for n ≥ 3, we can use
Theorem 6.3 to obtain the result more generally. Note that by replacing M
with a suitable cover we can obtain a spin manifold.
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Theorem 7.1. Let M be a compact Riemannian spin manifold of dimen-
sion n ≥ 3. Then, if D is an invariant elliptic operator on a bundle asso-
ciated to a representation of Spin(n), D is a twisted Dirac operator plus a
bundle map.

Appendix: The Example of SU(2).

Let Vn be the irreducible representation of dimension n with πn : SU(2) →
Aut Vn. Then S = V2 and χ = π2. Rather than using normal coordinates on
SU(2)× SU(2)/SU(2) we use left translation to trivialize the spin bundle:

(A.1) Γ(S) = C∞(SU(2))⊗ S =
∞∑

n=1

Vn ⊗ V ∗n ⊗ S.

In this case V ∗n = Vn since the representations are self dual for SU(2). The
various group actions are

on the left `(g) = ν(g)⊗ 1⊗ 1 =
∑

πn(g)⊗ 1⊗ 1(A.2)

on the right r(g) = 1⊗ ν(g)⊗ χ =
∑

1⊗ πn(g)⊗ χ(g).

Now Vn ⊗ S = Vn+1 ⊕ Vn−1. Thus, the isotypic components for first the
left and then the right translation are

(A.3) Vn ⊗ V ∗n ⊗ S = Vn ⊗ Vn+1 ⊕ Vn ⊗ Vn−1.

These are invariant spaces for the Dirac Operator P and from [11] we see
these are in fact the eigenspaces of P :

Vn ⊗ Vn+1 with eigenvalue n+ 1/2(A.4)

Vn ⊗ Vn−1 with eigenvalue − n+ 1/2.

The inversion map, i(x) = x−1, acts on these by

(A.5) i : Vn ⊗ Vn+1 → Vn+1 ⊗ Vn.

This intertwines P and −P : Interchanging eigenvalue n− 1/2 on Vn−1⊗Vn

with −n+1/2 on Vn⊗Vn−1. Clearly, we have spectral symmetry for P , but
no SU(2)-equivariant symmetry for either the left or the right action.

If we regard SU(2) as a symmetric space SU(2) = SU(2) × SU(2)/H,
where H ∼= SU(2) as the diagonal subgroup, then the left action is by
SU(2)×1 and the right action by 1×SU(2). The groupH acts by the adjoint
action. Thus the eigenspaces Vn−1 ⊗ Vn and Vn ⊗ Vn−1 are H-equivariant
and the Dirac operator has equivariant symmetry for the adjoint action.

We apply this result to obtain the vanishing of the Â-genus for homo-
geneous spin manifold G/H of dimension 4k with rank H < rank G. Let
M = G/H × SU(2)/{±1}. Then the space of spinors on M decomposes

(A.6) ∆ = ∆+
X ⊗∆Y ⊕∆−

X ⊗∆Y ,
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where we write X for G/H and Y for SU(2)/{±1}. Using this decomposi-
tion, a direct calculuation yields:

Lemma A.1. ηM (S) = Â(X)ηY (S).

Proof. This follows from the corresponding decomposition for the Dirac op-
erator: PM = PX ⊗ ωY + ωX ⊗ PY , together with the observation that
∆+

X = ker PX ⊕
λ6=0

ker(P 2
X − λ) with the sum over nonzero λ. We note that

Â(X) is the index of the operator PX restricted to map ∆+
X to ∆−

X .
To see Â(X) = 0 we observe that the results of [8] apply to M so that

ηM (s) = 0. However, ηY (0) 6= 0 and so Â(X) = 0. �

Remark. We have identified SU(2) = S3 from the introduction and made
the specific choice Γ = {±1} of discrete subgroup. Of course other choices
are possible allowing consideration of the product G/H ×S3/Γ as discussed
in the introduction.

Appendix: Rank and Difference Rank.

Let M = G\H then the rank of M is the dimension of the maximal flat
totally geodesic submanifold of M . The difference rank of M is Rank G-
Rank H.

Lemma B.1. Rank M ≥ Difference rank M .

If rank M = difference rank M then M has split rank. The cases when
M has split rank are:

(1) If M = K ×K/K, these are spaces of type II.
(2) SU(2n)/Sp(n) where rank is n− 1.
(3) E6/F4 where rank is 2.

These results come from the classification in [9].
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