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Masashi Kobayashi

We study the Kobayashi-Royden metric and the Kobayashi
distance on a taut complex manifold. We prove that the de-
rivative of the Kobayashi distance is equal to the Kobayashi-
Busemann metric. This gives us the necessary and sufficient
condition of the convexity of the Kobayashi-Royden metric.

1. Introduction.

Let M be an m-dimensional complex manifold. We recall the definition of
the Kobayashi-Royden pseudo-metric on M :

FM (ξ) = inf{t > 0| ∃f ∈ O(∆,M) such that tf∗(d/dζ|ζ=0) = ξ},(1.1)

where ξ ∈ T pM is a holomorphic tangent vector, ∆ = {ζ ∈ C| |ζ| < 1}, and
O(∆,M) = {f : ∆ → M | f is a holomorphic mapping}. Then, FM has the
following properties:

(i) FM (ξ) ≥ 0 for any ξ ∈ T pM ;
(ii) FM (λξ) = |λ|FM (ξ) for any λ ∈ C;
(iii) FM is upper semi-continuous on the holomorphic tangent bundle T pM ,

moreover if M is taut, that is, O(∆,M) is a normal family;
(iv) FM is continuous on TM ;
(v) FM (ξ) = 0 if and only if ξ = 0.

Hence we see that FM is a metric on M , if M is taut.
Let v ∈ TpM be a real tangent vector. We can uniquely write v = ξ + ξ̄

with ξ ∈ T pM . We set FM (v) = 2FM (ξ). Then FM induce a pseudo-
distance dM on M as follows:

dM (p, q) = inf
c

{∫ 1

0
FM

(
c∗(d/dt)

)
dt

}
,(1.2)

where c runs over all piecewise smooth curves connecting p with q. This
pseudo-distance dM is called the integrated form of FM . Since the condition
dM (p, q) = 0 does not necessarily mean p = q in general, dM is not a
distance. We remark, however, that dM is a distance if M is taut (see [7]).

We define the indicatrix of FM at p by

IFM
(p) = {ξ ∈ T pM |FM (ξ) < 1}.(1.3)
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Note that FM is a seminorm at p if and only if its indicatrix at p is a convex
set. Hence we say that FM is convex at p, if it is a seminorm at p.

S. Kobayashi introduced a new infinitesimal pseudo-metric F̂M on M
which is the double dual of FM (see [3]). It is defined by

F̂M (ξ) = inf
{
t > 0

∣∣ t−1ξ ∈ ÎFM
(p)
}

(1.4)

for all ξ ∈ T pM , where ÎFM
(p) is the convex hull of IFM

(p). We call F̂M

the Kobayashi-Busemann pseudo-metric on M . F̂M is a seminorm at any
p ∈ M and F̂M is upper semi-continuous. Moreover F̂M is a metric if M is
taut. Because F̂M is a norm at any p ∈ M and continuous on TM , if FM

is so. We also set F̂M (v) = 2F̂M (ξ), where ξ ∈ T pM with v = ξ + ξ̄. Thus
the integrated form of F̂M are defined in the same way. S. Kobayashi in [3]
proved that the integrated form of F̂M is equal to that of FM .

The integrated form of FM is, as a matter of fact, equal to the Kobayashi
pseudo-distance (see [7]). It was originally defined as follows. First we define
the function d∗M on M ×M by

(1.5) d∗M (p, q) = inf{ρ(a, b)| ∃f ∈ O(∆,M)

such that a, b ∈ ∆, f(a) = p and f(b) = q},

where ρ is the Poincaré distance on ∆. We set d∗M (p, q) = ∞ if there is no
analytic disc connecting p with q. Note that d∗M (p, q) < ∞ if p is sufficiently
close to q. Next for each positive integer l, we introduce the following
function on M ×M :

d
(l)
M (p, q) = inf

{
l∑

j=1
d∗M (pj , pj+1)

∣∣∣ p1 = p, p2, . . . , pl, pl+1 = q ∈ M

}
.(1.6)

Now we have the Kobayashi pseudo-distance on M :

dM (p, q) = lim
l→∞

d
(l)
M (p, q).(1.7)

By definition we easily see that

d∗M (p, q) ≥ d
(2)
M (p, q) ≥ · · · ≥ d

(l)
M (p, q) ≥ · · · ≥ dM (p, q)(1.8)

for all p, q ∈ M . We remark that d∗M (p, q) = dM (p, q) if M is a convex
domain (see [4]).

Let h be a Hermitian metric on M . We fix a point p of M . Then, h
induces the exponential mapping exp: U → M where U ⊂ TM is a small
open neighborhood of 0 ∈ TpM . We define the derivative DdM by

DdM (v) = lim
u→v
t→0

dM (q, exp tu)
|t|

,(1.9)
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where u ∈ TqM , if the limit exists. We remark that this definition is inde-
pendent of the choice of h. We set DdM (ξ) = 2−1DdM (v) for ξ ∈ T pM ,
where v = ξ + ξ̄. Then DdM is a pseudo-metric on M .

Suppose D is a domain in Cm with the standard flat metric. We identify
TD with D × Cm. Then, if the derivative DdD exists, we have

DdD(p, ξ) = lim
(q,η)→(p,ξ)

t→0

dD(q, q + tη)
2 |t|

.(1.10)

The derivative of the Kobayashi metric pseudo-distance on M does not
always exist. We know, however, the following facts: If D is a domain in
Cm,

lim sup
(q,η)→(p,ξ)

t→0

dM (q, q + tη)
2 |t|

≤ FD(p, ξ)(1.11)

for each (p, v) ∈ D×Cm(see [1]). On the other hand, M.Y. Pang showed in
[6] that

2FD(p, ξ) = lim
t→0

d∗D(p, p + tξ)
|t|

(1.12)

for each ξ ∈ Cm when D is a taut domain in Cm.
Here we state our main theorem about the derivative of the Kobayashi

distance.

Main Theorem 1.1. If M is a taut complex manifold, then DdM exists
and

DdM = F̂M .(1.13)

This theorem gives us the following formula:

lim
(q,η)→(p,ξ)

t→0

dD(q, q + tη)
|t|

= 2F̂D(p, ξ)(1.14)

for each ξ ∈ Cm, if D is a taut domain in Cm. Considering the result of the
derivative of the function d∗M , which is Theorem 2.5, we have the following
corollary:

Corollary 1.2. Let M be a taut complex manifold. Then FM is convex at
p if and only if

lim
q,q′→p
q 6=q′

dM (q, q′)
d∗M (q, q′)

= 1.(1.15)

The point p ∈ M is called a Kobayashi simple point if there exists an open
neighborhood U of p such that dM (p, q) = d∗M (p, q) for all q ∈ U . For exam-
ple every point of a convex domain D in Cm is a Kobayashi simple point,
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because d∗D = dD. Corollary 1.2 implies that if p ∈ M is the Kobayashi
simple point, then FM is convex at p (cf. [6]).

Acknowledgment. I would like to express my sincere gratitude to Pro-
fessor Kiyoomi Kataoka, Professor Shoshichi Kobayashi, Professor Junjiro
Noguchi, and Professor Takushiro Ochiai for helpful discussions and sugges-
tions.

2. Proof of Main Theorem.

We keep the notation used in Section 1.

Definition 2.1. A holomorphic mapping f ∈ O(∆,M) is called an extremal
mapping with respect to points p, q ∈ M (resp. a holomorphic tangent vector
ξ ∈ T pM), if there exists t ∈ [0, 1) such that f(0) = p, f(t) = q and
d∗M (p, q) = ρ(0, t) (resp. FM (ξ)f∗(d/dζ|ζ=0) = ξ).

Note that in general an extremal mapping with respect to all p, q ∈ M or
ξ ∈ T pM does not necessarily exist. In [6] M.Y. Pang showed the following
theorem:

Theorem 2.2 (M.Y. Pang [6]). Let D ⊂ Cm be a domain containing the
origin, {pn} ⊂ D and {qn} ⊂ D sequences both convergent to the origin.
Suppose that fn ∈ O(∆, D) are extremal mappings with respect to pn, qn ∈ D
and that they converge to f ∈ O(∆, D) uniformly on compact subsets. Then
f ′(0) 6= 0 and f is an extremal mapping with respect to (0, f ′(0)). Moreover
the following identity holds:

lim
n→∞

d∗D(pn, qn)
‖pn − qn‖

=
2FD

(
0, f ′(0)

)
‖f ′(0)‖

,(2.1)

where ‖z‖ =
m∑

j=1

∣∣zj
∣∣2 for all z = (z1, . . . , zm) ∈ Cm.

Let p be a point of M . We fix an arbitrary holomorphic coordinate
neighborhood (U0, ϕ,∆m) about p such that ϕ(p) = 0. In fact, the following
theorem holds:

Theorem 2.3. Let {pn} ⊂ M and {qn} ⊂ M be sequences both convergent
to the point p of M . Suppose that fn ∈ O(∆,M) are extremal mappings with
respect to pn, qn ∈ M and that they converge to f ∈ O(∆,M) uniformly on
compact subsets. Then f∗(d/dζ|ζ=0) 6= 0 and f is an extremal mapping with
respect to f∗

(
d/dζ|ζ=0

)
. Moreover the following identity holds:

lim
n→∞

d∗M (pn, qn)
‖ϕ(pn)− ϕ(qn)‖

=
2FM

(
f∗(d/dζ|ζ=0)

)
‖(ϕ ◦ f)∗(d/dζ|ζ=0)‖

.(2.2)
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Though the proof of the preceding theorem is the same of Theorem 2.2, we
may recall the following theorem about the extension of regular holomorphic
mappings, which plays an important role in the proof:

Theorem 2.4 (H.L. Royden [8]). Let f be a holomorphic mapping of the
unit disk ∆ into an n-dimensional complex manifold M , and suppose that
f is regular at 0. Then, given r < 1, there exists a mapping F of ∆×∆n−1

into M , which is regular at 0 and whose restriction to ∆× {0} is f .

From here we assume that M is a taut complex manifold. Hence note that
there exists an extremal mapping with respect to any p, q ∈ M or ξ ∈ T pM .

Theorem 2.5. For any ε > 0 there exists an open neighborhood U ⊂ U0 of
p such that∣∣∣d∗M (q, q′)− 2FM

(
ϕ−1
∗
(
p, ϕ(q)− ϕ(q′)

))∣∣∣ < ε
∥∥ϕ(q)− ϕ(q′)

∥∥(2.3)

for all q, q′ ∈ U . Moreover the following identity holds:

Dd∗M = FM .(2.4)

Proof. For simplicity we assume that M is a domain in Cm. It is sufficient
to prove that for any ε > 0 there exists an open neighborhood of p such that
for any q, q′ ∈ U ∣∣d∗M (q, q′)− 2FM (p, q − q′)

∣∣ < ε
∥∥q − q′

∥∥ .(2.5)

Suppose the contrary; there exists a constant ε > 0 such that there are
distinct points qj , q

′
j ∈ B‖·‖(p, 1/j) = {q ∈ Cm ‖q − p‖ < 1/j} for each

positive integer j which satisfy the following inequality:∣∣d∗M (qj , q
′
j)− 2FM (p, qj − q′j)

∣∣ > ε
∥∥qj − q′j

∥∥ .(2.6)

Since M is taut, there exists the extremal mapping fj ∈ O(∆,M) with
respect to qj , q′j ∈ M such that fj(0) = qj and fj(cj) = q′j , where cj ∈ [0, 1),
for each pair of the points qj , q

′
j ∈ B‖·‖(0, 1/j). Choosing a subsequence of

the sequence {fj}, if necessary, we may assume that {fj} converge to f ∈
O(∆,M) uniformly on compact subsets, and −(qj−q′j)/

∥∥∥qj − q′j

∥∥∥ converges
to some ξ ∈ Cm with ‖ξ‖ = 1. It follows from Theorem 2.2 that f ′(0) 6= 0.
We easily see

f ′(0)
‖f ′(0)‖

= lim
j→∞

fj(0)− fj(cj)
0− cj

|0− cj |
‖fj(0)− fj(cj)‖

(2.7)

= lim
j→∞

−
qj − q′j∥∥∥qj − q′j

∥∥∥
= ξ.
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We take a sufficient large positive integer N satisfying∣∣∣∣∣∣d
∗
M (qj , q

′
j)∥∥∥qj − q′j

∥∥∥ − 2FM (q′, ξ)

∣∣∣∣∣∣ ≤ ε

2
(2.8)

and ∣∣∣∣∣∣2FM

q′,
qj − q′j∥∥∥qj − q′j

∥∥∥
− 2FM (p, ξ)

∣∣∣∣∣∣ ≤ ε

2
,(2.9)

for all j > N . Then, we have∣∣∣∣∣∣d
∗
M (qj , q

′
j)∥∥∥qj − q′j

∥∥∥ − 2FM

p,
qj − q′j∥∥∥qj − q′j

∥∥∥
∣∣∣∣∣∣(2.10)

≤

∣∣∣∣∣∣d
∗
M (qj , q

′
j)∥∥∥qj − q′j

∥∥∥ − 2FM (q′, ξ)

∣∣∣∣∣∣
+

∣∣∣∣∣∣2FM (q′, ξ)− 2FM

p,
qj − q′j∥∥∥qj − q′j

∥∥∥
∣∣∣∣∣∣

≤ ε.

This is a contradiction. Thus we finish the proof of the first part of this
theorem.

We fix a Hermitian metric h on M . Then the following facts are well-
known:

lim
u→v
t→0

ϕ(exp tu)− ϕ(q)
t

= ξ;(2.11)

lim
u→v
t→0

ϕ(exp tu)− ϕ(q)
‖ϕ(exp tu)− ϕ(q)‖

=
ξ

‖ϕ∗(ξ)‖
,(2.12)

where ξ ∈ T pM with v = ξ + ξ̄ and u ∈ TqM . It follows from the first part
of this theorem and the preceding facts that

Dd∗M (v) = lim
u→v
t→0

d∗M (q, exp tu)
|t|

(2.13)

= lim
u→v
t→0

d∗M (q, exp tu)
‖ϕ(exp tu)− ϕ(q)‖

‖ϕ(exp tu)− ϕ(q)‖
|t|

= 2FM

(
ξ/ ‖ϕ∗(ξ)‖

)
‖ϕ∗(ξ)‖

= FM (v).

Thereby we conclude the whole proof. �
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Lemma 2.6 (H.L. Royden [7]). Let h be a Hermitian metric on M and p a
point of M . Then, there exists a constant L′ > 0 such that for any ξ ∈ T pM

L′ ‖ξ‖h < FM (ξ),(2.14)

where ‖ξ‖h is the length of ξ induced by h.

Theorem 2.7 (S. Kobayashi [3]). For any ξ ∈ T pM there exist n holomor-
phic tangent vectors ξ1, . . . , ξn ∈ T pM (n ≤ 2m) satisfying the following :

(i) ξ1 . . . , ξn are linearly independent over R;

(ii) ξ =
n∑

j=1
ξj ;

(iii) F̂M (ξ) =
n∑

j=1
FM (ξj).

Lemma 2.8. Let p be a point of M . Then, there exists a constant L > 0
satisfying the following : For any ξ ∈ T pM we take ξ1, . . . , ξn ∈ T pM as in
the preceding theorem. Then the following inequality holds:

‖ξ‖h ≤ L

n∑
j=1

‖ξj‖h .(2.15)

Proof. Since F̂M is continuous, there exists a constant L′′ > 0 such that

L′′ ‖ξ‖h ≥ F̂M (ξ)(2.16)

for all ξ ∈ T pM . We take ξ1, . . . , ξn ∈ T pM as in Theorem 2.7. By
Lemma 2.6 we see

n∑
j=1

FM (ξj) ≥ L′
n∑

j=1

‖ξj‖h .(2.17)

Because of the preceding two inequalities, we have

L′′ ‖ξ‖h ≥ F̂M (ξ) =
n∑

j=1

FM (ξj) ≥ L′
n∑

j=1

‖ξj‖h .(2.18)

Thereby the proof is concluded. �

We recall the following fact:

Remark 2.9. We fix a positive integer l. Take any two points q, q′ of M

such that d
(l)
M (q, q′) < ∞. Because M is taut, there exist l + 1 points q1 =

q, q2, . . . , ql, ql+1 = q′ ∈ M such that d
(l)
M (q, q′) =

l∑
j=1

d∗M (qj , qj+1).

Lemma 2.10. For any open neighborhood W ⊂ U0 of p and positive integer
l, there exists an open neighborhood V ⊂ W of p satisfying the following :

For any q, q′ ∈ V , we take the l + 1 points q1, . . . , ql+1 as in Remark 2.9.
Then, q1, . . . , ql+1 are contained in W .
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Proof. Since M is taut, M is hyperbolic (i.e., dM is distance and the topology
induced by it is the same of M). Choosing a constant R > 0, we may assume
that W = BdM

(p, R) = {q ∈ M | dM (p, q) < R}. There exists a constant r >
0 satisfying ϕ−1

(
B‖·‖(0, r)

)
⊂ W , where B‖·‖(0, r) = {z ∈ Cm| ‖z‖ < r}.

Set V = ϕ−1
(
BdB‖·‖(0,r)

(0, R/4)
)
. For any two points q, q′ ∈ V , there exist

l + 1 points q1, . . . , ql+1 ∈ M as in Remark 2.9. Then, for any qj it follows
that

dM (p, qj) ≤dM (p, q) + dM (q, qj)(2.19)

≤dM (p, q) + d
(j)
M (q, qj)

≤dM (p, q) + d
(l)
M (q, q′).

Because the Kobayashi distance has the distance-decreasing property and
d

(l)
B‖·‖(0,r) = dB‖·‖(0,r), we have

dM (p, qj) ≤ dB‖·‖(0,r)

(
ϕ(p), ϕ(q)

)
+ dB‖·‖(0,r)

(
ϕ(q), ϕ(q′)

)
(2.20)

≤ dB‖·‖(0,r)

(
ϕ(p), ϕ(q)

)
+ dB‖·‖(0,r)

(
ϕ(q), ϕ(p)

)
+ dB‖·‖(0,r)

(
ϕ(p), ϕ(q′)

)
≤ (3/4)R.

Thus qj is contained in W . The proof is thereby concluded. �

Lemma 2.11. There exist an open neighborhood V of p and a constant
C > 0 such that for any points q, q′ ∈ V and positive integer l,

l∑
j=1

‖ϕ(qj)− ϕ(qj+1)‖ ≤ C
∥∥ϕ(q)− ϕ(q′)

∥∥ ,(2.21)

where q1, . . . , ql+1 are points of M chosen as in Remark 2.9.

Proof. Since M is taut, FM is continuous. The Kobayashi distance dM is
an integrated form of FM , therefore there exist an open neighborhood W of
p and a constant C ′ > 0 such that

C ′ ∥∥ϕ(q)− ϕ(q′)
∥∥ ≤ dM (q, q′)(2.22)

for any q, q′ ∈ W . We choose a sufficiently small open neighborhood V ⊂ W
of p as in the preceding lemma. For any q, q′ ∈ V we take l + 1 points
q1, . . . , ql+1 ∈ W as in Remark 2.9. Then, we have

C ′
l∑

j=1

‖ϕ(qj)− ϕ(qj+1)‖ ≤
l∑

j=1

dM (qj , qj+1)(2.23)

≤
l∑

j=1

d∗M (qj , qj+1) = d
(l)
M (q, q′) ≤ d∗M (q, q′).
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On the other hand, choosing a small constant R > 0, we may assume
that V = ϕ−1

(
B‖·‖(0, R)

)
and ϕ−1

(
B‖·‖(0, 2R)

)
⊂ W . Then, there exists a

constant C ′′ such that

dB‖·‖(0,2R)

(
ϕ(q), ϕ(q′)

)
≤ C ′′ ∥∥ϕ(q)− ϕ(q′)

∥∥(2.24)

for any q, q′ ∈ V . Thus, we have

d∗M (q, q′) ≤ dB‖·‖(0,2R)

(
ϕ(q), ϕ(q′)

)
≤ C ′′ ∥∥ϕ(q)− ϕ(q′)

∥∥ .(2.25)

Combining (2.23) and (2.25), we have

C ′
l∑

j=1

‖ϕ(qj)− ϕ(qj+1)‖ ≤ C ′′ ∥∥ϕ(q)− ϕ(q′)
∥∥ .(2.26)

Thereby we conclude the proof. �

The next lemma is a key to proving the Main Theorem.

Lemma 2.12. For any ε > 0 and positive integer l ≥ 2m, there exists an
open neighborhood U ⊂ U0 of p such that∣∣∣d(l)

M (q, q′)− 2F̂M

(
ϕ−1
∗
(
p, ϕ(q)− ϕ(q′)

))∣∣∣ < ε
∥∥ϕ(q)− ϕ(q′)

∥∥(2.27)

for all q, q′ ∈ U .

Proof. For simplicity we assume that M is a domain in Cm. We take
the distinct two points q, q′ ∈ U0 arbitrarily. We can choose the points
q1 = q, q2, . . . , ql, ql+1 = q′ ∈ M as in Remark 2.9, and n holomorphic tan-
gent vectors (p, ξ1), . . . , (p, ξn) ∈ M × Cm for (p, q − q′) ∈ M × Cm as in
Theorem 2.7, where n ≤ 2m. Clearly it follows that

l∑
j=1

d∗M (qj , qj+1) = d
(l)
M (q, q′) ≤

n∑
j=1

d∗M

(
q +

j−1∑
k=0

ξk, q +
j∑

k=1

ξk

)
,(2.28)

where ξ0 = 0. Thus we have

l∑
j=1

d∗M (qj , qj+1)
‖q − q′‖

=
d

(l)
M (q, q′)
‖q − q′‖

(2.29)

≤
n∑

j=1

d∗M

(
q +

j−1∑
k=0

ξk, q +
j∑

k=1

ξk

)
‖ξj‖

‖ξj‖
‖q − q′‖

.
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We easily see that

l∑
j=1

d∗M (qj , qj+1)
‖qj+1 − qj‖

‖qj+1 − qj‖
‖q − q′‖

(2.30)

=
d

(l)
M (q, q′)
‖q − q′‖

≤
n∑

j=1

d∗M

(
q +

j−1∑
k=0

ξk, q +
j∑

k=1

ξk

)
‖ξj‖

‖ξj‖
‖q − q′‖

.

We arbitrarily fix ε > 0. Then we take an open neighborhood U of p as in
Theorem 2.5. Then for any q, q′ ∈ U we have

l∑
j=1

(
2FM

(
p,

qj+1 − qj

‖qj+1 − qj‖

)
− ε

)
‖qj+1 − qj‖
‖q − q′‖

(2.31)

≤
d

(l)
M (q, q′)
‖q − q′‖

≤
n∑

j=1

(
2FD

(
p,

ξj

‖ξj‖

)
+ ε

)
‖ξj‖

‖q − q′‖
.

Replacing U by a smaller one, we may assume that the conditions in Lem-
mas 2.8 and 2.11 hold. Thus, we have

2
l∑

j=1

(
FM

(
p,

qj+1 − qj

‖q − q′‖

))
− Cε(2.32)

≤
d

(l)
M (q, q′)
‖q − q′‖

≤ 2
n∑

j=1

(
FD

(
p,

ξj

‖q − q′‖

))
+ Lε.

Because
l∑

j=1

FM

(
p,

qj+1 − qj

‖q − q′‖

)
≥

l∑
j=1

F̂M

(
p,

qj+1 − qj

‖q − q′‖

)
(2.33)

≥ F̂M

(
p,

l∑
j=1

qj+1 − qj

‖q − q′‖

)

= F̂M

(
p,

q − q

‖q − q′‖

)
and

n∑
j=1

FM

(
p,

ξj

‖ξj‖

)
= F̂M

(
p,

q′ − q

‖q′ − q‖

)
(2.34)

= F̂M

(
p,

q′ − q

‖q′ − q‖

)
,
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we obtain

2F̂M

(
p,

q − q′

‖q − q′‖

)
− Cε(2.35)

≤
d

(l)
M (q, q′)
‖q − q′‖

≤ 2F̂M

(
p,

q − q′

‖q − q′‖

)
+ Lε.

The constants C and L are independent of l. Hence the proof is finished. �

Proof of Main Theorem 1.1. We take any Hermitian metric h on M . It
follows from the preceding lemma that

lim
t→0

dM (exp tv, q)
‖ϕ(exp tv)− ϕ(q)‖

= F̂M

(
ξ

‖ϕ∗(ξ)‖

)
,(2.36)

where ξ ∈ T pM with v = ξ + ξ̄. Hence we have

DdM (v) = lim
u→v
t→0

dM (q, exp tu)
|t|

(2.37)

= lim
u→v
t→0

dM (q, exp tu)
‖ϕ(exp tu)− ϕ(q)‖

‖ϕ(exp tu)− ϕ(q)‖
|t|

= 2F̂M

( ξ

‖ϕ∗(ξ)‖

)
‖ϕ∗(ξ)‖

= 2F̂M (ξ)

= F̂M (v).

Thereby the proof is completed. �

It is easy to see Corollary 1.2 by Main Theorem 1.1 and Theorem 2.5.

References

[1] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis,
Walter de Gruyter Expositions in Mathematics, 9, Walter de Gruyter & Co., Berlin,
1993.

[2] S. Kobayashi, Intrinsic distances, measures and geometric function theory, Bull.
Amer. Math. Soc., 82(3) (1976), 357-416.

[3] , A new invariant infinitesimal metric, Internat. J. Math., 1(1) (1990), 83-90.

[4] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule,
Bull. Soc. Math. France, 109(4) (1981), 427-474.

[5] J. Noguchi and T. Ochiai, Geometric Function Theory in Several Complex Variables,
Translated from the Japanese by Noguchi; Translations of Mathematical Monographs,
80, American Mathematical Society, Providence, RI, 1990.

[6] M.Y. Pang, On infinitesimal behavior of the Kobayashi distance, Pacific J. Math.,
162(1) (1994), 121-141.



128 MASASHI KOBAYASHI

[7] H.L. Royden, Remarks on the Kobayashi metric, “Several complex variables II”,
pp. 125-137, Lecture Notes in Math., Vol. 185, Springer, Berlin, 1971.

[8] , The Extension of regular holomorphic maps, Proc. Amer. Math. Soc., 43(2)
(1974), 306-310.

Received November 20, 1997 and revised April 10, 1999.

Graduate School of Mathematical Sciences
University of Tokyo
8-1 Komaba 3-chome Meguro-ku
Tokyo
Japan
E-mail address: masashi@ms.u-tokyo.ac.jp

mailto:masashi@ms.u-tokyo.ac.jp

