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We construct complete nonorientable minimal surfaces
whose Gauss map omits two points of RP2. This result proves
that Fujimoto’s theorem is sharp in nonorientable case.

1. Introduction and Preliminaries.

The study of the Gauss map of complete orientable minimal surfaces in
R3 has achieved many important advances and also has given rise to many
problems in recent decades. The most interesting question is to determine
the size of the spherical image of such a surface under its Gauss map.

R. Osserman was the person who started the systematic development of
this theory, and so, in 1961 he proved that the set omitted by the image
of a complete non flat orientable minimal surface by the Gauss map has
logarithmic capacity zero. In 1981 F. Xavier [12] proved that this set covers
the sphere except six values at the most, and finally in 1988 H. Fujimoto
[3, 4] obtained the best possible theorem, and proved that the number of
exceptional values of the Gauss map is four at the most. An interesting
extension of Fujimoto’s theorem was proved in 1990 by X. Mo and R. Os-
serman [7]. They showed that if the Gauss map of a complete orientable
minimal surface takes on five distinct values only a finite number of times,
then the surface has finite total curvature.

There are many kinds of complete orientable minimal surfaces whose
Gauss map omits four points of the sphere. Among these examples we em-
phasize the classical Scherk’s doubly periodic surface and those described by
K. Voss in [10] (see also [8]). The first author of this paper in [5] constructs
orientable examples with non trivial topology.

Under the additional hypothesis of finite total curvature, R. Osserman [9]
proved that the number of exceptional values is three at the most.

In the nonorientable case, the Gauss map of the two sheeted orientable
covering surface induces, in a natural way, a generalized Gauss map from
the nonorientable surface on the projective plane. From Fujimoto’s theorem
applied to the two sheeted orientable covering, this generalized Gauss map
omits two points of RP2 at the most.

It left open the following questions:

129

http://pjm.math.berkeley.edu/pjm
http://dx.doi.org/10.2140/pjm.2000.194-1
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1) Are there complete nonorientable minimal surfaces in R3 whose gen-
eralized Gauss map omits two points of RP2?

2) Are there complete non flat orientable minimal surfaces in R3 with
finite total curvature whose Gauss map omits three points of S2?

3) Are there complete nonorientable minimal surfaces in R3 with finite
total curvature whose generalized Gauss map omits one point of RP2?

Concerning the second problem, A. Weitsman and F. Xavier in [11] and Y.
Fang in [1] obtained nonexistence results, provided that the absolute value
of the total curvature is less than or equal to 16π and 20π, respectively.

In this paper we give an affirmative answer to the first question, and
prove:

Theorem. There are complete nonorientable minimal surfaces in R3

whose generalized Gauss map omits two points of the projective plane.

Our method of construction is somewhat explicit and very simple, and it
is based on a more elaborate use of the Voss technique.

Finally, we briefly summarize some of the basic facts we will need in this
paper.

Let X : M −→ R3 be a minimal immersion of a surface M in three
dimensional Euclidean space. Using isothermal parameters, M has in a
natural way a conformal structure. When M is orientable, we label (g, η) as
the Weierstrass data of X. Remember that the stereographic projection g of
the Gauss map of X is a meromorphic function on M , and η is a holomorphic
1-form on M .

Moreover,

X = Real
∫

(Φ1,Φ2,Φ3),

where Φ1 = 1
2η(1 − g2),Φ2 = i

2η(1 + g2),Φ3 = ηg are holomorphic 1-forms
on M satisfying:  3∑

j=1

|Φj |2
 (P ) 6= 0, ∀P ∈ M.

In particular, Φj , j = 1, 2, 3, have no real periods on M . Furthermore, the
Riemannian metric ds2 induced by X on M is given by:

ds2 =
3∑

j=1

|Φj |2.

For more details see [8].
Consider now X ′ : M ′ −→ R3 a conformal minimal immersion of a nonori-

entable surface M ′ in R3. Let π0 : M → M ′, I : M → M denote the con-
formal oriented two sheeted covering of M ′ and the antiholomorphic order
two deck transformation for this covering, respectively.
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If (g, η) represents the Weierstrass data of X = X ′ ◦ π0, then it is not
hard to deduce that:

I∗(Φj) = Φj , j = 1, 2, 3.(1)

In particular, g ◦ I = I0 ◦ g, where I0(z) = −1/z, and so there is a unique
map

G : M ′ −→ RP2 ≡ C/〈I0〉
satisfying

G ◦ π0 = g ◦ p0,

where p0 : C → C/〈I0〉 is the natural projection. We call G the generalized
Gauss map of X ′.

Conversely, given (M, g, η) the Weierstrass representation of a minimal
immersion X of an orientable surface M in R3, and given I : M → M an
antiholomorphic involution without fixed points on M satisfying (1), then X
induces a minimal immersion X ′ of M ′ = M/〈I〉 in R3 such that X = X ′◦π0.
For more details see [6].

Finally, denote:
• D = {z ∈ C : |z| < 1},
• D∗ = D− {0},
• for each R > 1, A(R) = {z ∈ C : 1/R < |z| < R}.

Throughout the proof of Theorem 2, we will use the following result:

Theorem 1. Let M be a Riemann surface with holomorphic universal cov-
ering space D. Then M ∼= D, D∗, or A(R), provided Π1(M) is commutative.

The proof of this theorem can be found in [2, Chapter IV].

2. Main Theorem.

To obtain the result we have stated in the introduction, we need the following
two Lemmas.

Lemma 1. There exist R > 1 and holomorphic 1-forms Φj, j = 1, 2, 3, on
A(R) such that:

1) Φ2
1 + Φ2

2 + Φ2
3 ≡ 0.

2) |Φ1|2 + |Φ2|2 + |Φ3|2 6= 0.

3) The metric ds2 def= |Φ1|2 + |Φ2|2 + |Φ3|2 is complete.
4) The Gauss map

g = −Φ1 + iΦ2

Φ3

omits four points of the Riemann sphere C.
5) I∗(Φj) = Φj , j = 1, 2, 3, where I : A(R) → A(R) is given by I(z) =

−1/z.
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Proof. Let α, β ∈ C∗, α /∈ {β,−1/β}, label

M = C−
{

α, β,− 1
α

,− 1
β

}
and consider the following Weierstrass representation on M :

ĝ = z, η̂ =
idz

(z − α)(z − β)(αz + 1)(βz + 1)
.(2)

If we define Î : M → M , Î(z) = −1/z, then Î is an antiholomorphic
involution without fixed points, verifying:

ĝ ◦ Î = − 1
ĝ

, Î∗(η̂) = −η̂ ĝ2.(3)

Thus, if we define:

Φ̂1 =
1
2
(1− ĝ2)η̂,

Φ̂2 =
i

2
(1 + ĝ2)η̂,

Φ̂3 = ĝ η̂

then it is obvious, from (3), that Î∗(Φ̂j) = Φ̂j . Furthermore, these holomor-
phic 1-forms satisfy:

• Φ̂2
1 + Φ̂2

2 + Φ̂2
3 ≡ 0,

• |Φ̂1|2 + |Φ̂2|2 + |Φ̂3|2 6= 0,
• the Riemannian metric dŝ2 = |Φ̂1|2 + |Φ̂2|2 + |Φ̂3|2 is complete in M .

On the other hand, the Uniformization Theorem says us that the holomor-
phic universal covering of M is either C or the unit disc, D (see [2, §IV.4]).
However, C is the conformal covering of only two noncompact Riemann sur-
faces: C and C∗ (see [2, §IV.6]). Thus, the holomorphic universal covering
of M is D. We label π : D → M as the conformal covering map.

Let Ĩ be a lift of Î to D, and denote Φ̃j = π∗(Φ̂j), j = 1, 2, 3. It is clear

that Ĩ∗(Φ̃j) = Φ̃j , j = 1, 2, 3.
Since Î is an antiholomorphic involution in M without fixed points, then

Ĩ2k+1, k ∈ Z, is an antiholomorphic transformation in D without fixed points
too.

Let us see that Ĩ2k, k ∈ Z∗, has no fixed points in D. Indeed, note that
Ĩ2k, k ∈ Z∗, is a lift of the identity mapping in M . Thus, if Ĩ2k fixes a point
of D, we infer that Ĩ2k is the identity mapping 1D in D.

Assume that there is k > 0 such that Ĩ2k = 1D. Let

k0 = Minimum
{

k ∈ N∗ : Ĩ2k = 1D

}
,
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and observe that k0 is the finite order of Ĩ2. It is clear that k0 > 1. Oth-
erwise, k0 = 1 and so there would be antiholomorphic involutions without
fixed points in D, which is absurd. Furthermore, from the definition of k0,
it is obvious that Ĩ2k has no fixed points, 0 < k < k0.

Therefore, the quotient D/〈Ĩ2〉 is a Riemann surface with fundamental
group isomorphic to Zk0 . No such surface exists (see for instance Theorem
1).

This contradiction implies that Ĩ2k, k ∈ Z∗, has no fixed points and
〈Ĩ2〉 ∼= Z. In other words, the map

ζ : D −→ D/〈Ĩ2〉

is a cyclic conformal covering and the fundamental group of D/〈Ĩ2〉 is iso-
morphic to Z.

Using Theorem 1 we deduce that D/〈Ĩ2〉 is conformally equivalent to
either D∗ or A(R), for a suitable R > 1.

The map Ĩ induces on D/〈Ĩ2〉 an antiholomorphic involution, I. Moreover,
D/〈Ĩ2〉 is in a natural way a covering of M , and I is projected under this
covering map on the original involution Î on M . Since Î has no fixed points
in M , the same occurs for I in D/〈Ĩ2〉.

However, any antiholomorphic involution in D∗ extends to D, and is the
conjugate of a Möbius transformation leaving D invariant and fixing 0. In
particular, any such map has infinitely many fixed points in D. Hence, we
conclude that D/〈Ĩ2〉 can not be conformally equivalent to D∗, i.e., D/〈Ĩ2〉
is conformally diffeomorphic to A(R), for a suitable R > 1.

If we look at I as an antiholomorphic involution in A(R), then elementary
arguments of complex analysis give that I(z) = −1/z, ∀z ∈ A(R).

On the other hand, as (Ĩ2)∗(Φ̃j) = Φ̃j , then Φ̃j can be induced in the
quotient D/〈Ĩ2〉, j = 1, 2, 3. The corresponding holomorphic 1-forms on
D/〈Ĩ2〉 are denoted as Φ1, Φ2, and Φ3, and they obviously satisfy 1, 2, 3 and
5 in the lemma statement.

Finally, the meromorphic function

g = −Φ1 + iΦ2

Φ3
,

clearly omits the points α, β, −1/α, and −1/β, and 4 holds. This concludes
the proof. �

Lemma 2. There exists a rational function f : C → C satisfying:

1) The only poles of f are 0 and ∞.
2) f ◦ I = f.
3) f(z) 6= 0, provided that |z| = 1.
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4) Residue
(

f(z)
z

dz, 0
)

= 0.

Proof. Define
f : C −→ C,

f(z) =
(z −m1)(z −m2)(m1z + 1)(m2z + 1)

z2
,

where m1,m2 ∈ R.
We have

Residue
(

f(z)
z

dz, 0
)

= (1−m2
1)(1−m2

2)− 2m1m2.

The choice m1 = 2 and m2 = 2+
√

13
3 completes the proof. �

Now we are able to prove the main result of this paper.

Theorem 2. There exist complete nonorientable minimal surfaces in R3

whose generalized Gauss map omits two points of RP2.

Proof. Take A(R), Φ1, Φ2, and Φ3 as in Lemma 1, and f as in Lemma 2.
Put

Φj = ϕj(z)
dz

z
,

and write

ϕj(z) = aj 0 +
∑
n>0

(
aj n zn + (−1)n+1 aj n z−n

)
, aj 0 ∈ iR,

the Laurent series expansion of ϕj , j = 1, 2, 3.
Observe that

f(z) =
m∑

n=1

(
bn zn + (−1)n bn z−n

)
,

where m ∈ N∗. Let k ∈ N, k odd, k > m, and notice that:

Residue

([∑
n>0

(
aj n zkn + (−1)n+1 aj n z−kn

)]
f(z)

dz

z
, 0

)
= 0, j = 1, 2, 3.

(4)

Furthermore, it is obvious from Lemma 2

Residue
(

aj 0 f(z)
dz

z
, 0
)

= 0, j = 1, 2, 3.(5)

Consider the covering Tk : A( k
√

R) → A(R), Tk(z) = zk, and define the
holomorphic 1-forms on A( k

√
R):

Ψj = f(z) T ∗k (Φj) = k f(z) ϕj(zk)
dz

z
, j = 1, 2, 3.

Taking into account (4) and (5), we deduce that Ψj is exact, j = 1, 2, 3.
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Moreover, it is clear that:
3∑

j=1

Ψ2
j ≡ 0,

and since k is odd,

I∗(Ψ1,Ψ2,Ψ3) =
(
Ψ1,Ψ2,Ψ3

)
,(6)

where I : A( k
√

R) → A( k
√

R) is the lift of the former involution in A(R),
that keeps being the map I(z) = −1/z.

Note that limk→∞
k
√

R = 1, and remember that the zeroes of f are not in
S1. Then, taking k large enough, we can guarantee that f never vanishes in
the closure of A( k

√
R). So, as the only poles of f are 0 and ∞, there exist

c > 1 such that
1
c

< |f(z)| < c, ∀z ∈ A
(

k
√

R
)

.

Therefore,
∑3

j=1 |Ψj |2 6= 0, and if we define ds2
0 = |Ψ1|2 + |Ψ2|2 + |Ψ3|2, one

has:
1
c2

T ∗k (ds2) ≤ ds2
0 ≤ c2 T ∗k (ds2).

Since ds2 is complete, the same occurs for the metrics T ∗k (ds2) and ds2
0.

Summarizing, the minimal immersion

X : A( k
√

R) −→ R3,

X(z) = Real
(∫ z

1
(Ψ1,Ψ2,Ψ3)

)
,

is well defined, complete, and its Gauss map g ◦ Tk omits four points of C.
From (6), X induces a minimal immersion of the Möbius strip A( k

√
R)/〈I〉

in R3, and so the Theorem is proved. �
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136 F.J. LÓPEZ AND F. MARTÍN
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