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Each transversally oriented foliation has the Godbillon–
Vey characteristic class, and regular Poisson structures define
symplectic foliations. In this note, we shall give a new inter-
pretation and the explicit formula for a representative of the
Godbillon–Vey characteristic classes of symplectic foliations
in the context of Poisson geometry.

1. Introduction and statement of result.

It is known that a Poisson structure with constant rank on a manifold, called
a regular Poisson structure, defines the symplectic foliation on the manifold.
For each transversely oriented foliation, we have the famous Godbillon-Vey
characteristic class. When the symplectic foliations of regular Poisson struc-
tures are transversely oriented, they have the Godbillon-Vey characteristic
classes. In this note we shall give a formula defining their Godbillon-Vey
classes in terms of Poisson structure. The main result is:

Theorem. Let (Mn, π) be an oriented manifold with a constant rank 2m
Poisson structure π. Take a volume form volM of M . By the map φ,
we mean the isomorphism induced by volM between multi-vector fields and
forms. Then we claim that:

(1) The q(= n − 2m)-form α = φ(πm) gives a transverse orientation of
the symplectic foliation of π.

(2) Take a q-vector field F(πm) on M with the property πm ∧ F(πm) =
φ−1(1). Then the 1-form β = φ([−F(πm), πm]S) gives a representative
of the Godbillon-Vey class by β ∧ (dβ)q and

φ−1(β ∧ (dβ)q) = (dφ([−F(πm), πm]S))q [−F(πm), πm]S,

where [·, ·]S is the Schouten bracket on M and is the inner derivation.
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2. Generalized divergence of multi-vector fields.

Let volM be a volume form of an orientable manifold M . Then we get the
C∞(M)-linear isomorphism φ :

∧u(TM) −→
∧n−u(T∗M) by

φ(U) = ιUvolM = U volM , i.e., 〈φ(U), V 〉 := 〈volM , U ∧ V 〉

for all V ∈
∧n−u(TM), where 〈 , 〉 is the natural pairing. Define baseM ∈∧n(TM) by φ−1(1).

We may consider similarly the interior multiplication with respect to
forms, and we have

φ−1(α) = (−1)a(n+1)α baseM

where a is the degree of α. We recall the following elementary formula.

φ−1 (φ(T ) ∧ φ(U)) = (−1)(n+t)(u+1)φ(T ) U = (−1)(n+1)(n+u)φ(U) T

holds for each T ∈
∧

t(TM) and U ∈
∧

u(TM).
Let us consider the map ψ := φ−1 ◦ d ◦ φ. The next lemma says ψ can be

expressed by the Schouten bracket and ψ-image of lower degree multi-vector
fields.

Lemma 2.1. For all multi-vector fields T and U , we have

ψ(T ∧ U) = (−1)u[T,U ]S + (−1)uψ(T ) ∧ U + T ∧ ψ(U)

where u is the degree of U , i.e., U ∈
∧

u(TM).

Proof. From the definition of φ, 〈φ(T ), U〉 = 〈volM , T ∧U〉 = 〈T volM , U〉.
If U is a 1-vector field, then we have

ψ(T ∧ U) = φ−1 ◦ d ◦ φ(T ∧ U) = φ−1 ◦ d(T ∧ U volM )

= φ−1 ◦ d(U T volM ) = φ−1 ◦ (LU − ιU ◦ d)(T volM )

= φ−1 ◦ LU (T volM )− φ−1 ◦ ιU ◦ d(T volM )

= φ−1([U, T ]S volM + div(U)T volM )

− φ−1 ◦ ιU ◦ φ ◦ φ−1 ◦ d ◦ φ(T )

= [U, T ]S + div(U)T − ψ(T ) ∧ U
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where LU is the Lie differentiation with respect to U . We can complete the
proof by the induction on degree of U . �

Remark 2.1. For each vector field X, ψ(X) is equal to the divergence with
respect to volM . For this reason, we may call the map ψ the generalized
divergence. If we change our view point on the equation in Lemma 2.1, the
Schouten bracket is characterized by some volume form and the mapping
ψ. This idea is shown in [2]. The derivation rule of the Schouten bracket
we use in this note is the bracket operation from left (or right) is a left (or
right) derivation respectively, i.e., [T,U∧W ]S = [T,U ]S∧W+(−1)(t−1)uU∧
[T,W ]S, where T ∈

∧
t(TM) and U ∈

∧
u(TM).

Remark 2.2. Let π be a 2-vector field. A. Weinstein ([4]) defines the mod-
ular vector field of π with respect to a density. It is the same as ψ(π) if we
take our volM as density.

3. Godbillon-Vey forms of symplectic foliations.

Transversely oriented foliations have secondary characteristic classes which
are called the Godbillon-Vey class. We recall the definition of Godbillon-Vey
class in accordance with [1] and [3]. It is well known that a codimension
q foliation of Mn corresponds with an involutive rank (n − q) distribution
D. If the foliation is transversely oriented, then we have a q-form α which
is of course locally decomposable, i.e., α = ω1 ∧ · · ·ωq for some local 1-
forms ω1, . . . , ωq and satisfies dα = β ∧ α for some 1-form β. Let I :={
τ ∈

∧
1(T∗M) | τ ∧ α = 0

}
. The distribution D of F is characterized by

D =
{
X ∈ ∧1(TM) | 〈X, τ〉 = 0 for τ ∈ I

}
.

Conversely, if there is a q-form α which is locally decomposable, we have the
distribution D defined by α as

D :=
{
X ∈ ∧1(TM) | 〈X, τ〉 = 0 for τ ∈ I

}
where I :=

{
τ ∈

∧
1(T∗M) | τ ∧ α = 0

}
. If α satisfies dα = β ∧ α for

some 1-form β, then the distribution D is involutive and the foliation of D
is transversely orientable.

There is some ambiguity in choosing α and β, but it is known that the
closed (2q + 1)-form β ∧ (dβ)q is unique up to an exact (2q + 1)-form, and
the cohomology class [β ∧ (dβ)q] is uniquely determined. The cohomology
class [β∧(dβ)q] ∈ H2q+1

dr (M,R) is called the Godbillon-Vey class of the given
foliation, and β ∧ (dβ)q is often called the Godbillon-Vey form in this note.

Let us take a Poisson tensor field π on an n-dimensional manifold M with
constant rank 2m so that [π, π]S = 0, πm 6= 0, and πm+1 = 0. Then we have
a q-form α = φ(πm/m!), where φ is the isomorphism introduced in Section
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2 and q = n− 2m. Locally, we can find a frame field {X1, X2, . . . , Xn} such
that

π = X1∧X2+X3∧X4+ · · ·+X2m−1∧X2m and 〈volM , X1∧· · ·∧Xn〉 = 1

under the assumption that the codimension q ≥ 1. Let {θ1, θ2, . . . , θn} be
the corresponding dual frame field. Then we have πm = m!X1∧· · ·X2m and
α = φ(πm/m!) = θ2m+1 ∧ · · · ∧ θn.

Let [Xa, Xb] =
n∑

c=1

λc
abXc (a, b = 1, . . . , n). Then dθc = −1

2

n∑
a,b=1

λc
abθ

a∧θb

for c = 1, . . . , n. But, the Poisson condition [π, π]S = 0 is equivalent to
λK

ij = 0 for each i, j = 1, 2, . . . , 2m and K = 2m + 1, . . . , n, and yields the
following Proposition.

Proposition 3.1. The distribution D = {Hf | f ∈ C∞(M)} consisting
of the Hamiltonian vector fields of the Poisson tensor π, which defines the
symplectic foliation F, is characterized by α in the sense of Section 2 as D =
{X ∈

∧1(TM) | 〈X, τ〉 = 0 for τ ∈ I}, where I :=
{
τ ∈

∧
1(T∗M) | τ ∧ α

= 0
}

= linear span of θ2m+1, . . . , θn.

Let us denote the q-form φ(πm/m!) by α. Then α gives a transversal
orientation of the symplectic foliation π from Proposition 3.1. Let F(πm)
be a q-vector field on M with the property 〈volM , πm ∧ F(πm)〉 = 1. We
have the main theorem below.

Theorem 3.2. We can define the global 1-form β := φ ([−F(πm), πm]S). β
satisfies dα = β ∧ α and hence the Godbillon-Vey characteristic class of the
symplectic foliation of π is given by the cohomology class of β∧(dβ)q and the
tangential pullback φ−1 (β ∧ (dβ)q) of our Godbillon-Vey form is expressed
as

γ γ · · · γ︸ ︷︷ ︸
q-times

([−F(πm), πm]S)

where γ is the 2-form given by φ ◦ ψ[−F(πm), πm]S.

Proof. Set µ = volM and U = F(πm). Then

β ∧ α = (−1)n−1α ∧ ([U, πm]S µ) = −(α [U, πm]S) µ.

Here the last step uses only linear algebra. On the other hand, dα = ψ(V )
µ, where V = πm/m!, it remains to show that −α [U, πm]S = ψ(V ). By
Lemma 2.1, we have

[U, V ]S = −ψ(U) ∧ V − U ∧ ψ(V ).

Thus,
−α [U, V ]S = α (ψ(U) ∧ V ) + α (U ∧ ψ(V )).
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We now claim that

α (ψ(U) ∧ V ) = 0(1)

and

α (U ∧ ψ(V )) = 〈α,U〉ψ(V ) = ψ(V )/m!(2)

To see these, we write π = X1 ∧ X2 + · · · + X2m+1 ∧ X2m locally, where
X1, X2, . . . , Xn is a local frame for the tangent bundle of M , so that V =
X1 ∧X2 ∧ · · · ∧X2m. Then for any j = 1, . . . , 2m and any local vector field
W of degree q − 1,

〈Xj α, W 〉 = 〈α, Xj ∧W 〉 = 〈µ, V ∧Xj ∧W 〉 = 0.

It follows from this and the definition of the operator Y 7→ α Y that
α (ψ(U) ∧ V ) = 0. Let θ = ψ(π) be the modular vector field. Then it
follows from Lemma 2.1 and πm+1 = 0 that θ ∧ V = 0 which implies that
θ α = 0. Consequently we get (2) and thus also the fact that dα = β ∧ α.
We got finally a 1-form β given by

β = φ([−F(πm), πm]S).

From the definition, this β defines the Godbillon-Vey class by [β∧(dβ)n−2m].
Since our hope is to see the Godbillon-Vey class in the context of Poisson
geometry, we would like to pull back the Godbillon-Vey form above by φ to
obtain a Tangential Godbillon-Vey multi-vector field, TGV , hereafter.

TGV = φ−1 (β ∧ (dβ)q) = (−1)(n+1)(1+2q)β ∧ (dβ)q baseM

= (−1)n+1 dβ · · · dβ︸ ︷︷ ︸
q-times

(β baseM ) = dβ · · · dβ︸ ︷︷ ︸
q-times

(φ−1β)

and we have

dβ = φ ◦ φ−1 ◦ d ◦ φ ([−F(πm), πm]S) = φ (ψ([−F(πm), πm]S)) .

�

Remark 3.1. There is some ambiguity in choosing F(πm) with the prop-
erty πm ∧F(πm) = baseM . If we take an arbitrary riemannian metric 〈·, ·〉
on M , then we may choose such a multi-vector F(πm) by ∗(πm), where ∗ is
the Hodge-star operator with respect to the metric.

Remark 3.2. The final statement of our Theorem 3.2 makes sense if the
rank of our Poisson structure is equal to the dimension of the manifold,
in other words, if the Poisson structure comes from a symplectic structure,
namely, if π = −ω−1. We may consider an arbitrary volume form on M .
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Then it is of the form volM = f
ωm

m!
with f 6= 0 and 2m = dimM . Since

β = −φ([1/(m!f), πm]S) = −1/(m− 1)!φ([1/f, π]S ∧ πm−1)

= −f/(m− 1)![1/f, π]S π · · · π︸ ︷︷ ︸
(m−1)-times

ωm

m!

= −f [1/f, π]S ω = −fH1/f ω = d log |f |

we see [β] = 0 ∈ H1
DR(M,R).

3.1. Codimension 1 symplectic foliations.
Let us consider the codimension 1 symplectic foliations, namely the full

rank Poisson structures of manifolds of odd dimension n = 2m + 1 as the
restricted cases. We already know that the tangential object corresponding
to a Godbillon-Vey form is given as

TGV = (−1)n+1β dβ baseM = β
(
φ−1 ◦ d ◦ φ([−F(πm), πm]S)

)
= φ[ξ, πm]S ψ[ξ, πm]S

where ξ := −F(πm). Thus, we have the following result.

Theorem 3.3. Let π be a full rank Poisson structure on a manifold M2m+1.
Take a vector field ξ satisfying πm ∧ ξ = −baseM . Then the Godbillon-Vey
class corresponds to

TGV = φ[ξ, πm]S ψ[ξ, πm]S.

From Lemma 2.1, we have

[ξ, πm]S = ψ(πm) ∧ ξ − ψ(ξ)πm using ψ(πm ∧ ξ) = −ψ(baseM ) = 0

ψ[ξ, πm]S = [ξ, ψ(πm)]S − [ψ(ξ), πm]S
using the equation above and ψ ◦ ψ = 0

ψ(πk) = kπk−1 ∧ ψ(π) (k = 2, 3, . . . )
and the generalized divergence of each 2-vector field is obtained by
ψ(X ∧ Y ) = −ψ(X)Y + ψ(Y )X − [X,Y ].

Remark 3.3. Using the relations above, we can split TGV into parts of π
and ξ. Thus, we would say we can understand the Godbillon-Vey form or
Godbillon-Vey class in the context of Poisson geometry.

Corollary 3.1. Assume that the situation is the same as that of Theorem
3.3.

(1) If π is a unimodular, namely, if ψ(π) = 0, then TGV = 0 and the
Godbillon-Vey class is zero.

(2) If we can find ξ to be a Poisson vector field, namely, [ξ, π]S = 0, then
TGV = 0 and the Godbillon-Vey class is zero.
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(3) If we can find a divergence-free ξ, namely, ψ(ξ) = 0, then

TGV = φ(ψ(πm) ∧ ξ) [ξ, ψ(πm)]S.

Proof. (1) We use the same notation in this section. Then φ(ψ(ξ)πm) =
ψ(ξ)θ2m+1 and

[ψ(ξ), πm]S =
2m∑
j=1

[ψ(ξ), Xj ]SX1 ∧ · · · X̂j · · · ∧X2m,

thus TGV = φ(ψ(ξ)πm) [ψ(ξ), πm]S = 0. (This is already stated in [4].)
(2) and (3) are the direct corollary of Theorem 3.3. �

As an analogy of exact symplectic structures, there is a notion of exact
Poisson structures. We recall the definition.

Definition 3.1. A Poisson structure π is called exact if there is a vector
field Y satisfying [Y, π]S = π.

Remark 3.4. 1) In Definition 3.1, there is no restriction on the rank of π.
2) If π is exact in the sense of Definition 3.1, then π is exact in the sense

of Poisson cohomology theory.
3) There is some ambiguity choosing Y in Definition 3.1 up to Poisson

vector fields.

Corollary 3.2. Let (M2m+1, π) be a full-rank regular Poisson manifold.
We assume π is exact by a vector field Y . We assume furthermore πm∧Y 6=
0 everywhere. Then it turns out that the Godbillon-Vey class is zero, in fact
TGV = 0.

Proof. We can find a volume form volM so that 〈volM , πm ∧ Y 〉 = 1 and
thereby we may take −Y as ξ in Theorem 3.3. Then, using the same notation
in the proof of Theorem 3.3, we have

β = φ([−ξ, πm]S) = φ([Y, πm]S)

= φ(mπm−1 ∧ [Y, π]S) = φ(mπm) = mα,

and we see

β ∧ dβ = mα ∧mdα = m2α ∧ β ∧ α = 0.

�

3.2. 3-dimensional case.
If dim M = 3, then the situation is very simple. From Theorem 3.3, we

see that a Godbillon-Vey form corresponds to

TGV = φ−1(β ∧ dβ) = φ[ξ, π]S ψ[ξ, π]S.
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Since φ[ξ, π]S is a 1-form and ψ[ξ, π]S is a 1-vector field because of dimM =
3,

φ−1(β ∧ dβ) = ψ[ξ, π]S φ[ξ, π]S = ψ[ξ, π]S φ[ξ, π]S volM

=
[ξ, π]S ∧ ψ([ξ, π]S)

baseM
.

Since [ξ, π]S is 2-vector field and dimM = 3, we see that [ξ, π]S∧ [ξ, π]S = 0,
and applying the map ψ to this equation, we get

0 = ψ([ξ, π]S ∧ [ξ, π]S) = [[ξ, π]S, [ξ, π]S]S + 2ψ([ξ, π]S) ∧ [ξ, π]S.

We therefore have the special result for 3-dimensional manifolds.

Corollary 3.3. Consider a nowhere vanishing Poisson structure π on 3-
dimensional manifold M . Choose a vector field ξ satisfying π∧ξ = −baseM .
Then a Godbillon-Vey form is given by

−1
2

[[ξ, π]S, [ξ, π]S]S
baseM

volM .

4. Examples.

We show some concrete examples of regular Poisson structures on 3-dimen-
sional manifolds and their tangential Godbillon-Vey fields.

4.1. 3-dimensional tori.
We shall consider Poisson structures on the 3-dimensional torus T3 =

R3/Z3. Poisson structures and related objects on T3 may be lifted on the
universal covering space R3, where we may consider Z3-invariant Poisson
structures and objects. Let x = (x1, x2, x3) be the canonical coordinates of

R3 and Dj =
∂

∂xj
for j = 1, 2, 3. Each 2-vector field on T3 is of form

π = a1(x)D2 ∧D3 + a2(x)D3 ∧D1 + a3(x)D1 ∧D2

where aj(x) is Z3-invariant for j = 1, 2, 3. The Poisson condition for π is∣∣∣∣ a1 a2

[D3, a1]S [D3, a2]S

∣∣∣∣ +
∣∣∣∣ a2 a3

[D1, a2]S [D1, a3]S

∣∣∣∣
+

∣∣∣∣ a3 a1

[D2, a3]S [D2, a1]S

∣∣∣∣ = 0.

Rank 2 is equivalent to a1
2 + a2

2 + a3
2 6= 0.

We take the foliations generated by π = (D1 + b2D2) ∧ (D1 + b3D3) as
concrete examples. Then the Poisson condition is

b3
2[D3, b2]S + b3[D1, b2]S − b2

2[D2, b3]S − b2[D1, b3]S = 0.

(This is just the integrability condition for the distribution.) If b3 is a
periodic function of x3, then the Poisson condition is reduced to b3[D3, b2]S+
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[D1, b2]S = 0. Take dx1 ∧ dx2 ∧ dx3 as a volume form of T3. If we assume

that b3 is nonzero, then we may take ξ =
1
b3
D2. We have

[ξ, π]S =
[D2, b2]S

b3
D2 ∧ (D1 + b3D3)

and so
[[ξ, π]S, [[ξ, π]S]S = 0.

Thus, the Godbillon-Vey classes of those Poisson structures are all zero.

4.2. Left invariant symplectic foliations of PSL(2,R)/Γ.
Let X1, X2, X3 be the left-invariant vector fields of SL(2,R) correspond-

ing to
(

1 0
0 −1

)
,
(

0 1
0 0

)
,
(

0 0
1 0

)
respectively. Then we have the relation

[X1, X2] = 2X2, [X1, X3] = −2X3, [X2, X3] = X1.

Take a 2-vector field π = p1X2∧X3+p2X3∧X1+p3X1∧X2. The Poisson
condition for π is given by

p1(−[X2, p3]S + [X3, p2]S) + p2(−[X3, p1]S − [X1, p3]S)

+ p3(−[X1, p2]S + [X2, p1]S) +
(
p1

2 + 4p2p3

)
= 0.

Let us assume that pj are constant aj (j = 1, 2, 3), namely we assume that
π is a left-invariant 2-vector field π = a1X2 ∧X3 + a2X3 ∧X1 + a3X1 ∧X2.
Since

[π, π]S = 2(a1
2 + 4a2a3)X1 ∧X2 ∧X3

holds, π is a Poisson tensor if and only if a1
2 + 4a2a3 = 0. This condition

determines 2-dimensional subalgebras of sl(2,R). (If we consider the Lie
group SO(3) and the left-invariant vector fields {Y1, Y2, Y3} with Lie bracket
relations of [Y1, Y2] = 2Y3, [Y2, Y3] = 2Y1 and [Y3, Y1] = 2Y2, then the Poisson
condition for a 2-vector field π = p1Y2 ∧ Y3 + p2Y3 ∧ Y1 + p3Y1 ∧ Y2 is given
by

p1([Y2, p3]S − [Y3, p2]S) + p2([Y3, p1]S − [Y1, p3]S)

+ p3([Y1, p2]S − [Y2, p1]S)− 2
(
p1

2 + p2
2 + p3

2
)

= 0.

If pj (j = 1, 2, 3) are constant, then π must be zero. This corresponds to
the fact that SO(3) has no 2-dimensional Lie subgroup.) Consider a left-
invariant rank 2 Poisson tensor π = a1X2 ∧X3 + a2X3 ∧X1 + a3X1 ∧X2 on
SL(2,R), namely we put the conditions a1

2+a2
2+a3

2 6= 0 and a1
2+4a2a3 =

0. Take the left-invariant volume form dual to X1 ∧X2 ∧X3. Then we may
take −ξ = Fπ = b1X1 + b2X2 + b3X3 with the condition b3 = 1/a3 if a2 = 0
or b2 = (1− a1b1 − a3b3)/a2 if a2 6= 0.
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We have

[−ξ, π]S = (−a1b2 + 2a3b1)X1 ∧X2 + 2(a2b2 − a3b3)X2 ∧X3

+ (a1b3 − 2a2b1)X3 ∧X1

and

[[ξ, π]S, [ξ, π]S]S = 8
(
(2a3b1 − a1b2)(−2a2b1 + a1b3)

+ (a2b2 − a3b3)2
)
X1 ∧X2 ∧X3

= 8X1 ∧X2 ∧X3

under the Poisson condition a1
2 + 4a2a3 = 0 and the condition about b1, b2

and b3.
Since SL(2,R) is homeomorphic to S1 × R+ × R, H3(SL(2,R),R) =

{0} and the Godbillon-Vey classes of codimension 1 foliations of SL(2,R)
are zero. However, our discussion makes sense if we restrict ourselves to
PSL(2,R)/Γ, where Γ is some co-compact discrete subgroup of PSL(2,R).
Thus, we see that the Godbillon-Vey form of our Poisson structure is −4×
canonical volume form. Since the left-invariant volume form on SL(2,R) is
also right-invariant, we have ψ(Xi) = 0 for i = 1, 2, 3 and ψ(π) = −a1X1 −
2a3X2−2a2X3. We get the same result from direct computation of φ(ψ(π)∧
ξ) [ξ, ψ(π)]S.
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