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We prove that any two unitary operators with simple sin-
gular spectrum which contains the whole circle are unitarily
equivalent up to a rank one operator.

Introduction.

This note is devoted to the spectral analysis of rank one perturbations of
unitary and self-adjoint operators. We study the following question: given
two cyclic (i.e., having simple spectrum) operators A and B, when is A
equivalent to B up to a rank one perturbation? More precisely, when does
there exist a unitary operator U such that rank (UAU∗−B) = 1? As usual,
we are looking for an answer in terms of the spectra of A and B.

An analogous question for compact perturbations is answered by the
Weyl-von Neumann Theorem [K]. It says that A is equivalent to B+K for
some compact K iff the essential spectra σess(A) and σess(B) coincide.

A necessary and sufficient condition for A and B to be equivalent up
to a trace class operator, which was found by Carey and Pincus [CP], is
more delicate and involves additional spectral invariants. In addition to the
essential spectra, the isolated eigenvalues of A and B must now obey certain
rules.

In this paper we make the last step down the ladder and study the case
when A and B are equivalent up to a rank one perturbation. A general
necessary and sufficient condition in these settings seems out of reach: It is
impossible to formulate in any reasonable terms. However, it is still possible
to achieve a good assessment of the situation by fully describing the most
important particular case.

It is quite well understood how isolated eigenvalues of an operator be-
have under rank one perturbations. On the other hand, by the Weyl-von
Neumann Theorem, if A is equivalent to B up to a rank one perturbation,
then σess(A) = σess(B). In particular, rank one perturbations do not affect
absolutely continuous spectrum. Hence, it seems reasonable to restrict our
attention to the case when A and B have singular spectrum and

σ(A) = σess(A) = σ(B) = σess(B)

(where σ(A) and σ(B) denote the spectra of A and B respectively). Under
this restriction we are able to give a complete answer to our question.
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Denote T = {|z| = 1}. We will say that operators U and V are completely
non-equivalent if there are no non-trivial closed invariant subspaces H1 and
H2 of U and V respectively such that the restriction of U on H1 is unitarily
equivalent to the restriction of V on H2. Our main result is:

Theorem 1. Let U and V be completely non-equivalent singular unitary
cyclic operators such that σ(U) = σ(V ) = T. Then U and V are equivalent
up to a rank one perturbation. I.e., there exist a unitary operator U and a
rank one operator V such that

UUU∗ = V + V.

We will prove this result in the next section. One can easily adapt the
proof to replace unitary U and V with self-adjoint ones, and T with R.
An analogous result for the case of pure point operators follows from a
function theoretic construction suggested by Aleksandrov [A] (see also [P]).
However, the general case requires a different approach. Our main tool in the
next section is the spectral shift function, which was originally introduced
by Lifshits for finite rank perturbations and later studied by Krein in the
trace class situation (see [BY] for the history of this notion and further
references).

The following question naturally arises: Under which conditions on a
closed set K ⊂ T, can we replace T in the statement of Theorem 1 with
K? Such necessary and sufficient conditions were formulated in [P] for the
discrete self-adjoint case. They now can be proved to be valid for the general
self-adjoint (unitary) case. We discuss this matter in the remark at the end
of the next section.

Note, that if two unitary (self-adjoint) operators A and B satisfy

σ(A) = σess(A) = σ(B) = σess(B) = K

then, by the Weyl-von Neumann Theorem, they are equivalent up to a com-
pact operator. Theorems 1 and 8 (below) refine this statement showing that,
when K is sufficiently “good”, the operators are much closer related.

To conclude the introduction, we would like to point out some function
theoretical consequences of Theorem 1. Let Kµ and Pµ denote the Cauchy
and Poisson integrals of the measure µ on T in the unit disk D:

Kµ(z) =
∫

T

1 + ξ̄z

1− ξ̄z
dµ(ξ)

and

Pµ = <Kµ(z) =
∫

T

1− |z|2

|ξ − z|2
dµ(ξ).

The results of [P] imply that Theorem 1 is equivalent to the following state-
ment. For any two positive singular measures µ and ν on T such that µ ⊥ ν
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and suppµ = supp ν = T, there exist f ∈ L1(µ), ||f || = 1, f > 0 µ-a.e. and
g ∈ L1(ν), ||g|| = 1, g > 0 ν-a.e. such that

Kfµ =
1− θ

1 + θ
= (Kgν)−1

for some inner function θ. From this statement one can obtain the following
Corollary.

Corollary 2. For any two singular measures µ and ν on T such that µ ⊥
ν and suppµ = supp ν = T, there exists an inner function θ such that
θ(ξ) = 1 µ-a.e. and θ(ξ) = −1 ν-a.e. Moreover, for some positive functions
f ∈ L1(µ) and g ∈ L1(ν)

{θ = 1} = {d(fµ)/dm = ∞}

and
{θ = −1} = {d(gν)/dm = ∞},

where m is the normalized Lebesgue measure on T.

With some additional effort one can deduce from the last statement the
following:

Corollary 3. For any singular measure µ on T and any φ ∈ L∞(µ) there
exists ψ ∈ H∞ such that ψ(ξ) = φ(ξ) for µ-a.e. ξ and ||ψ||H∞ = ||φ||L∞(µ).

The Krein-Lifshits spectral shift for a unitary pair.

We first define the Krein-Lifshits spectral shift for the rank one perturbation
problem of unitary operators. This definition is very similar to the one given
in [S] or [P] for the self-adjoint case.

Let U1 be a unitary cyclic operator, v, ||v|| = 1 its cyclic vector. Then
we can consider the family of unitary rank one perturbations of U1:

(1) Uα = U1 + (α− 1)(·, U−1
1 v)v α ∈ T.

Denote by µα the spectral measure of v for Uα

µα(B) = (v,EB(Uα)v)

for any Borel B ∈ T, where EB(Uα) is the spectral projection of Uα. Note,
that since ||v|| = 1, all µα’s are probability measures.

Since
Kµα = ((Uα + z)(Uα − z)−1v, v)

for z ∈ D, after simple computations one can obtain

(2) Kµα =
(α− 1) + (α+ 1)Kµ1

(α+ 1) + (α− 1)Kµ1

(e.g., [Ar]).
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If α ∈ T then (1 + α)/(1 − α) is imaginary, i.e., is equal to ic for some
real c. Define the spectral shift function u ∈ L∞(T) for the perturbation
problem (U1 7→ Uα) as

(3) u = π/2 + arg(Kµ1 − ic)

where arg stands for the principal branch of the argument taking values in
[0; 2π). All analytic functions in this paper are naturally defined a.e. on T
by their non-tangential boundary values.

Next, we discuss some elementary properties of the spectral shift. Since
such properties are well known (see for instance [MP], [S] or [P]), we do
not supply all the proofs here.

The first important property (which follows from (2)) is that (3) can be
extended to

(4) u =
π

2
+ arg(Kµ1 − ic) =

π

2
− arg(Kµα + ic).

Formula (4) shows connections between the spectral shift u and the spectral
measures µ1 and µα. Since in this paper we will mostly operate with spectral
measures, we will often call u satisfying (4) the spectral shift of the pair of
measures (µ1;µα) and u satisfying (3) (for some real c) a spectral shift of
µ1.

For a pair of probability measures µ1 and µα there exists at most one
real c and function u satisfying (4). If a pair of measures (µ1;µα) possesses
a spectral shift, i.e., there exist u (and c) to satisfy (4), then there exist
unitary operators U1 and Uα satisfying (1) such, that µ1 and µα are their
spectral measures.

Since µ1 is a singular positive measure (U1 is a singular operator), the
function u takes only two values – 0 and π – on T. For each non-constant
non-negative L∞(T)-function u, ||u||∞ ≤ π there exist unique c ∈ R and a
pair of probability measures (ν; γ) for which u is the spectral shift. If u
takes only values 0 and π, then ν and γ are singular.

Suppose we have a sequence of functions uk ≥ 0, ||uk||∞ ≤ π which
converge in measure to the function u0 as k → ∞. For each uk, k ≥ 0
there exist pairs of measures (µk; νk) and constants ck satisfying (4). Then
µk → µ0, νk → ν0 in ∗-weak topology and ck → c0 as k →∞.

We will say that two measures µ and ν are equivalent (µ ∼ ν) if there
exists a positive µ-a.e. function f ∈ L1(µ) such that ν = fµ. We will denote
by µ|I the restriction of µ on the set I.

If E ⊂ R we will write that

p. v.

∫
E

dµ(x) <∞ (> −∞)
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if

lim inf
ε→0

∫
E\(−ε;ε)

dµ(x) <∞ (lim sup > −∞).

Let u1 and u2 be the phase shifts of the pairs of measures (µ1, ν1) and
(µ2, ν2) respectively. Then, as follows from the definition,

(5) exp
(
iK

(
u1 −

π

2

)
+ d1

)
= Kµ1 − ic1 = (Kν1 + ic1)−1

for some real c1 and d1 and

(6) exp
(
iK

(
u2 −

π

2

)
+ d2

)
= Kµ2 − ic2 = (Kν2 + ic2)−1

for some real c2 and d2.
If I is an open subset of T and u1 = u2 on I then, µ1|I ∼ µ2|I and

ν1|I ∼ ν2|I . More generally we have the following lemma.

Lemma 4 ([P]). Let spectral shift functions u1, u2 satisfy (5) and (6) for
some singular measures µ1,2, ν1,2 and real constants c1,2, d1,2. Let K ⊂ T be
a measurable set. Put c = exp(d1 − d2). Then

(i)

p. v.

∫
[−π;π]

(
u1

(
ei(t+x)

)
− u2

(
ei(t+x)

)) dt
t
<∞

for µ1-a.e. point eix ∈ K iff the restriction of µs
1 on K is absolutely

continuous with respect to µ2;

p. v.

∫
[−π;π]

(
u1

(
ei(t+x)

)
− u2

(
ei(t+x)

)) dt
t
> −∞

for ν1-a.e. point eix ∈ K iff the restriction of νs
1 on K is absolutely

continuous with respect to ν2;
(ii) if µs

2-a.e. x ∈ K is a Lebesgue point of u1 − u2 and

p. v.

∫
[−π;π]

(
u1

(
ei(t+x)

)
− u2

(
ei(t+x)

)) dt
t

= f(x) <∞

for µs
2-a.e. eix ∈ K then the restriction of µs

1 on K is equal to the
restriction of cefµs

2 on K; if νs
2-a.e. x ∈ K is a Lebesgue point of

u1 − u2 and

p. v.

∫
[−π;π]

(
u1

(
ei(t+x)

)
− u2

(
ei(t+x)

)) dt
t

= f(x) > −∞

for νs
2-a.e. eix ∈ K then the restriction of νs

1 on K is equal to the
restriction of ce−fνs

2 on K.
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When one of the measures µ1,2 is a point mass, Lemma 4 gives (see [P]):

Lemma 5 ([MP]). Let u be the spectral shift of a pair of measures (µ; ν).
The measure µ has a point mass at eix iff

(7)

x+1∫
x−1

(
πχ{eit:t∈(x;x+1)}(e

iy)− u(eiy)
) dy

y − x
<∞.

The measure ν has a point mass at x iff

(8)

x+1∫
x−1

(
πχ{eit:t∈(x−1;x)}(e

iy)− u(y)
) dy

x− y
<∞.

We will also need the following important example.

Example 6. Let E ⊂ T be a closed set, |E| = 0. Denote E = T\∪In where
In are disjoint open arcs. Suppose µ > 0 be a measure such that supp µ = E
and

dµ

dm
= ∞

at every point of E. Let u be a spectral shift of µ. Then there exist a
measure ν and real constants c and d such that:

(9) exp
(
iK

(
u− π

2

)
+ d

)
= Kµ− ic = (Kν + ic)−1.

We claim that ν is a pure point measure with at most one point mass at
each In.

Indeed, since the derivative of µ with respect to the Lebesgue measure is
infinite on E, <Kµ tends to ∞ non-tangentially at every point of E. This
together with (9) implies that Kν tends to −ic non-tangentially at every
point of E. Since ν is a singular measure, |Kν| tends to ∞ ν-a.e. Therefore
ν(E) = 0. Since, by (9), ν is concentrated at those points where Kµ − ic
tends to 0 and Kµ is analytic on T outside of E, ν is pure point. Since µ
is positive, =Kµ is monotonic on every In, and therefore ν has at most one
point mass at each of them.

Our main tool in the proof of Theorem 1 is the following lemma.

Lemma 7. Let µ, ν be singular measures on T, I ⊂ T be an open arc, E ⊂ I
be a closed set, |E| = 0. Suppose that I ⊂ supp µ and I ⊂ supp ν.

Then for any ε > 0 there exist closed subsets F and G of I, and measures
µ′ and ν ′ satisfying the following conditions:

(1) |F | = |G| = 0, µ(G) = ν(F ) = 0 and E ⊂ F ,
(2) µ′ ∼ µ|F and ν ′ ∼ ν|G,
(3) the pair (µ′, ν ′) possesses a phase shift u,
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(4) u = π on T \ I and ∫
I
(π − u(ξ))dm(ξ) < ε.

Remark. In the statement of Lemma 7, (4) can be replaced with:
(4′) u = 0 on T \ I and ∫

I
u(ξ)dm(ξ) < ε.

If x, y ∈ T, x 6= y, we will denote by (x; y) the open arc going from x to y
counterclockwise.

Proof. Denote F0 = E. WLOG

(10)
d(µ|F0)
dm

= ∞

everywhere on F0 = E (if this is not true, we can always choose an equivalent
measure with this property). Put µ0 = µ|F0 .

Step 1.
Chose c ∈ R so that

(11) {=Kµ0 > c} ⊂ I

and

(12) |{=Kµ0 > c}| < ε/2.

There exist a spectral shift function u0 and a measure ν0 satisfying

(13) exp
(
iK

(
u0 −

π

2

)
+ d0

)
= Kµ0 − ic0 = (Kν0 + ic0)−1

for some real c0 and d0. Suppose F0 = I\∪I0
n where I0

n = (x0
n; y0

n) are disjoint
open arcs. Condition (10), in the same way as in Example 6, implies that
ν0 =

∑
α0

kδz0
k

where z0
k ∈ Ink

for some sequence nk.
Now we will replace point masses z0

k with “pieces” of the measure ν.
For each k let V 0

k ⊂ I0
nk

be a neighborhood of z0
k such that

(14) | ∪ V 0
k | < ε/4

and

(15)
∫
{x:eix∈∪V 0

k }

1
|x− y|

dx < 1/2

for any y ∈ F0.
Choose a closed set H1, |H1| = 0 so that ν(H1 ∩ V 0

k ) > 0 for any k.
Consider the measure γ1 ∼ ν|H1 chosen so that dγ1/dm = ∞ at any point
of H1.



182 ALEXEI G. POLTORATSKI

Let v1 be a phase shift function of the measure γ1. In each neighborhood
V 0

k choose points a0
k and b0k so that z0

k ∈ (a0
k; b

0
k) and

(16)
∫
{arg a0

k<x<arg a0
k+1}

v1(eix)dx
x− arg a0

k

= ∞,

(17)
∫
{arg b0k−1<x<arg b0k}

(π − v1(eix))dx
arg b0k − x

= ∞

and ν has no point masses at a0
k, b

0
k. Note that it is always possible to choose

a0
k and b0k satisfying (16) and (17) because γ1 has non-zero mass on V 0

k .
Put G1 = H1 ∩ ∪(a0

k; b
0
k). Define the function u1 to be equal to −v1 on

each interval (a0
k; b

0
k) and to u0 outside of ∪(a0

k; b
0
k). Then u1 is the phase

shift of a pair of measures (µ1; ν1) such that µ1 = f1µ|F0 +
∑
α1

kδ − z1
k and

ν1 = g1ν|G1 for some positive functions f1 ∈ L1(µ|F0), g1 ∈ L1(ν|G1) and for
some sequence of points {z1

k} ⊂ ∪V 0
k \G1.

Indeed, on F0 = E we have µ0 ∼ µ1 by (15) and Lemma 4. On R \
(F0 ∪

⋃
[a0

k; b
0
k]) the measures µ1 and ν1 are not supported because u is

locally constant there. Also, µ1 and ν1 do not have point masses at points
a0

k, b
0
k because by (16) and (17) conditions (7) and (8) are not satisfied there.

Since u1 = −v1 on each (a0
k; b

0
k), ν1 ∼ ν0 on ∪(a0

k; b
0
k). Since dν0/dm = ∞

on G1, we have that µ|∪(a0
k;b0k) is a discrete measure with point masses in

∪(a0
k; b

0
k) \G1.

Step n, n is even.
After step n − 1 we obtained a shift function un−1 of a pair of mea-

sures (µn−1, νn−1) such that µn−1 = fn−1µ|Fn−2 +
∑
αn−1

k δzn−1
k

and νn−1 =

gn−1ν|Gn−1 , where |Fn−2| = 0, Fn−2 ⊃ E, |Gn−1| = 0 and {zn−1
k } ⊂

∪V n−1
k \ Gn−1. Note that the pair (µn−1, νn−1) “almost” satisfies the con-

ditions of the lemma, except for the discrete part
∑
αn−1

k δzn−1
k

of µn−1. We
must, therefore, replace those point masses with “pieces” of µ.

We will do it in the same way as in Step 1. First we choose neighborhoods
V n

k of points zn
k such that

(18) ∪V n
k ⊂ ∪V n−1

k ,

(19) | ∪ V n
k | < ε/2n+1

and

(20)
∫
{x:eix∈∪V n

k }

dx

|x− y|
< 1/2n

at each point y ∈ Fn−2 ∪ Gn−1. After that inside ∪V n
k we choose a closed

set Hn such that µ(V n
k ∩Hn) > 0 for any k. Also let Hn satisfy

(21) µ(∪kV
n
k \Hn) < 1/n.
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We choose a measure γn ∼ µ|Hn so that dγn/dm = ∞ at each point of Hn.
Denote by vn a shift function of γn. Inside each neighborhood V n

k choose
points an

k and bnk so that z0
k ∈ (a0

k; b
0
k) and

(22)
∫
{arg an

k<x<argan
k+1}

vndx

x− arg an
k

= ∞,

(23)
∫
{arg bn

k−1<x<argbn
k}

(π − vn)dx
arg bnk − x

= ∞

and µ has no point masses at an
k , b

n
k .

Put Fn = Fn−2 ∪ [∪(an
k ; bnk) ∩ Hn]. Define the spectral shift function

un to be equal to vn on ∪(an
k ; bnk) and to un−1 elsewhere. Then in the

same way as in Step 1 we can show that un is the shift function of the
pair (µn, νn), where µn = fnµ|Fn for some positive function fn ∈ L1(µ|Fn),
and νn = gnν|Gn−1 +

∑
αn

kδzn
k

for some positive function gn ∈ L1(ν|Gn−1),
positive constants αn

k and points zn
k from ∪V n

k \Fn. The closed sets Fn and
Gn satisfy |Gn| = |Fn| = 0, Fn ⊃ E.

Step n, n is odd.
Our construction is similar to the one we used for the even n. Essentially,

we only have to replace µ with ν and ν with µ.
I.e., after step n − 1 we obtained a shift function un−1 of a pair of mea-

sures (µn−1, νn−1) such that µn−1 = fn−1µ|Fn−1 and νn−1 = gn−1ν|Gn−2 +∑
αn−1

k δzn−1
k

, where |Fn−1| = 0, Fn−1 ⊃ E, |Gn−2| = 0, and {zn−1
k } ⊂

∪V n−1
k \ Fn−1. First we choose neighborhoods V n

k of points zn−1
k satisfying

(17), (18) and (19) for each y ∈ Fn−1 ∪ Gn−2. After that inside ∪V n
k we

choose a closed set Hn satisfying (21) and such that ν(V n
k ∩H) > 0 for any

k. We choose a measure γn ∼ ν|Hn so that dγn/dm = ∞ at each point
of Hn. Denote by vn a shift function of γn. Inside each neighborhood V n

k
choose points an

k < zn
k and bnk > zn

k so that

(24)
∫
{arg an

k<x<arg an
k+1}

π − vndx

x− arg an
k

= ∞,

(25)
∫
{arg bn

k−1<x<arg bn
k}

vndx

arg bnk − x
= ∞

and ν has no point masses at an
k , b

n
k . Put Gn = Gn−2 ∪ ∪(an

k ; bnk). Define
the spectral shift function un to be equal to vn on ∪(an

k ; bnk) and to un−1

elsewhere. Then in the same way as before we can show that un is the
shift function of the pair (µn, νn), where νn = gnν|Gn for some closed set
Gn, |Gn| = 0 and positive gn ∈ L1(ν|Gn), and µn = fnµ|Fn−1 +

∑
αn

kδzn
k

for
some set Fn−1, |Fn−1| = 0, , Fn−1 ⊃ E, positive function fn ∈ L1(µ|Fn−1),
positive constants αn

k and points zn
k from ∪V n

k \Gn.
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Conclusion of proof.
After step n of our construction we obtain the spectral shift function un

of a pair of measures (µn, νn). Let un and (µn; νn) satisfy

exp
(
iK

(
un −

π

2

)
+ dn

)
= Kµn − icn = (Kνn + icn)−1

for some real cn, dn. Note that {un 6= un−1} ⊂ ∪V n
k and therefore by (19)

the sequence un converges in measure to a function u. Let u be the spectral
shift of a pair of measures (µ′, ν ′), i.e.,

exp
(
iK

(
u− π

2

)
+ d′

)
= Kµ′ − ic′ = (Kν ′ + ic′)−1

for some real c′, d′. We claim that (µ′, ν ′) satisfies the conditions of the
lemma with F = Clos ∪ F2n and G = Clos ∪G2n+1.

Indeed, |F | = 0 because

F = Clos [∪F2n] = ∪F2n ∪ F ′

where

(26) F ′ ⊂ [∩n ∪k V
n
k ] \ ∪nHn ⊂ ∩n ∪k V

n
k .

Since | ∪k V
n
k | tends to 0 as n→∞ by (19), |F | = 0.

Also, (26) and (21) imply that µ(F ′) = 0. Therefore

(27) µ|F = µ|∪F2n

and µ(G) = 0. Hence we have to show that µ′ ∼ µ|∪F2n .
Since un → u in measure, µn → µ′ in ∗-weak topology, cn → c′ and

dn → d′. Consider the sequence {µ2n}. Each measure µ2n is equivalent to
µ|F2n where F2n ⊂ F2n+2. Inequality (20) and Lemma 4 imply that

(28) 1− 1
2n−1

<
dµ2n+2

dµ2n
(y) < 1 +

1
2n−1

at any point y of F2n for sufficiently big n (note that exp(dn−1 − dn) → 1).
Since

||µ2n+2|| = ||µ2n|| = ||µ|F2n || = 1,

(28) implies that for large n

||µ2n+2 − µ2n|| <
1

2n−2
.

Therefore µ2n → µ′ in norm. Since µ2n ∼ µ|F2n , µ′ ∼ µ|∪F2n = µ|F .
Similarly, |G| = 0, ν(F ) = 0 and ν ′ ∼ ν|G. �

Proof of Theorem 1. Since U and V are completely non-equivalent, the spec-
tral measures of U and V are mutually singular. Thus, for any pair of sin-
gular probability measures (µ; ν) on T such that µ ⊥ ν we have to show that
there exists an equivalent pair (µ0; ν0) possessing a phase shift u0. We will
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do it by constructing u0. The main part of our construction will consist of
recursive applications of Lemma 7.

Let M and N be disjoint subsets of T such that |M | = |N | = 0, µ(M) =
1, µ(T \M) = 0 and ν(N) = 1, ν(T \N) = 0.

Step 1.
Let E1 be a closed subset of M such that

(29) µ(M \ E) < 1.

By Lemma 7 there exist closed sets F1 and G1 such that |F1| = |G1| =
0 , µ(G1) = ν(F1) = 0, E1 ⊂ F1 and (f1µ|F1 ; g1ν|G1) possesses a phase shift,
for some positive summable f1 and g1.

Step n, n is even.
After step n− 1 we obtained closed sets Fn−1 and Gn−1 of zero measure

such that µ(Gn−1) = ν(Fn−1) = 0 and (fn−1µ|Fn−1 ; gn−1ν|Gn−1) possesses a
phase shift un−1, for some positive summable functions fn and gn. Denote
T \ (Fn−1 ∪Gn−1) = ∪kI

n
k where In

k are disjoint open arks.
Choose a closed subset En of N so that En ⊂ ∪kI

n
k and

(30) ν(N \ (Gn−1 ∪ En)) < 1/n.

Note that such a choice of En is possible because ν(Fn−1) = 0. Since En

is closed, there exist open arcs Jn
k such that Clos Jn

k ⊂ In
k (k = 1, 2, . . . ),

En ⊂ ∪Jn
k ⊂ ∪In

k and

(31) dist(∪kJ
n
k , Fn−1 ∪Gn−1) = δn > 0.

By Lemma 7, for each k there exist closed sets Fn
k , G

n
k ⊂ Jn

k such that
Gn

k ⊃ En∩Jn
k and (fn

k µ|F n
k
; gn

k ν|Gn
k
) possesses a spectral shift un

k . We choose
un

k to satisfy condition 4) from the statement of Lemma 7 for I = Jn
k and

(32) ε = εnk = δn/2n+k

if un−1 = π on In
k and choose un

k to satisfy condition 4′) if un−1 = 0 on In
k

(note that un−1 is constant on each In
k ).

Define un to be equal to un
k on each In

k . We claim that then un is a phase
shift of a pair of measures (fnµ|Fn ; gnν|Gn) where fn and gn are positive
summable functions, Fn = Fn−1∪Clos ∪k F

n
k and Gn = Gn−1∪Clos ∪kG

n
k .

Indeed, let un be the phase shift of a pair (µn; νn). Recall that on each
Jn

k , where un−1 was equal to π, the functions un
k satisfy condition 4) from

Lemma 7, and on those Jn
k , where un−1 was equal to 0, the functions un

k
satisfy condition 4′), with ε satisfying (32). Therefore

(33) |{un 6= un−1}| < δn/2n < 1/2n−1.
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Also by (32) and (33)

(34)
∫

[−π;π]

|un(ei(t+x))− un−1(ei(t+x))|dt
|t|

<
∑

k

εkn/δn < 1/2n

for any point eix ∈ Fn−1∪Gn−1. Hence, by Lemma 4, µn|Fn−1 ∼ µ|Fn−1 and
νn|Fn−1 ∼ ν|Fn−1 . Also, on each Jn

k , since un is equal to un
k , we have that

µn|In
k
∼ µ|F n

k
and νn|In

k
∼ ν|Gn

k
. Therefore µn = fnµ|Fn and νn = gnν|Gn for

some positive summable fn and gn. By construction Gn ⊃ En. Also, since
µ(Gn−1) = ν(Fn−1) = 0, µ(Gn

k) = ν(Fn
k ) = 0 (by condition (1) of Lemma

7), Clos∪Fn
k \ ∪Fn

k ⊂ (Fn−1 ∪Gn−1) and Clos∪Gn
k \ ∪Gn

k ⊂ (Fn−1 ∪Gn−1),
we have µ(Gn) = ν(Fn) = 0.

Step n, n is odd.
The construction here is essentially the same as in the previous case.
After step n− 1 we obtained closed sets Fn−1 and Gn−1 of zero measure

such that µ(Gn−1) = ν(Fn−1) = 0 and (fn−1µ|Fn−1 ; gn−1ν|Gn−1) possesses a
phase shift un−1, for some positive summable functions fn and gn. Let us
again denote T \ (Fn−1 ∪Gn−1) = ∪kI

n
k .

Choose a closed subset En of M so that En ⊂ ∪kI
n
k and

(35) µ(M \ (Fn−1 ∪ En)) < 1/n.

After that in the same way as above we construct the phase shift function
un of a pair (µn; νn) = (fnµ|Fn ; gnν|Gn). The function un satisfies (33) and
(34). The sets Fn and Gn are zero-measure closed sets such that Fn ⊃ En

and µ(Gn) = ν(Fn) = 0.

Conclusion of proof.
This part is similar to the corresponding part in the proof of Lemma 7.
By (33) un tend in measure to a function u0. Let u0 be the shift function

of a pair (µ0; ν0). Then µn and νn weakly converge to µ0 and ν0 respectively.
Since un → u0, condition (34) and Lemma 4 imply that

(36) 1− 1/2n+1 < cn
fn

fn+1
< 1 + 1/2n+1

µn-a.e. for some cn → 1. Since all our measures have norm 1, (36) implies
that µn → µ0 in norm. Since µn ∼ µ|Fn , µ0 � µ. Since (by (36)) µ(Fn) >
1− 1/2n−1 and

(37) µn =
fn

fn+1
µn+1|Fn ,

where functions fn and fn+1 satisfy (36), µ� µ0. Hence µ ∼ µ0. Similarly
ν ∼ ν0. �
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Remark. A closed set K can replace T in the statement of Theorem 1
iff it is not very “porous”. More precisely, the following generalization of
Theorem 1 can be proved. We will state it in self-adjoint settings.

Definition. We will say that two disjoint sets of real numbers A and B
are well-mixed if they satisfy the following conditions:

(1) For any two points x, y ∈ A each of the sets (x; y) and R\[x; y] contains
at least one point from B.

(2) For any two points x, y ∈ B each of the sets (x; y) and R\[x; y] contains
at least one point from A.

We will denote by σp.p.(A) the set of eigenvalues of the operator A.

Theorem 8. Let K ⊂ R be a closed set with no isolated points. Denote by
I1, I2, . . . the disjoint open intervals Ik = (xk; yk) such that K = R \

⋃
In.

Denote ∂I = {x1, y1, x2, y2, . . . }.
Then the following two conditions are equivalent:
(i) Any two completely non-equivalent cyclic self-adjoint operators A and

B such that the sets

(σp.p.(A) \ σp.p.(B)) ∩ ∂I

and
(σp.p.(B) \ σp.p.(A)) ∩ ∂I

are well-mixed and σ(A) = σ(B) = K are unitarily equivalent up to a
rank one perturbation.

(ii) If y ∈ K \ {x1, y1, x2, y2, . . . } then∫
(y−1;y+1)\K

dx

|y − x|
<∞;

if y = xk or y = yk for some k ∈ N then∫
(y−1;y+1)\(K∪Ik)

dx

|y − x|
<∞.

In particular if the spectrum of A and B is an interval [a; b] such that

{a, b} 6⊂ (σp.p.(A) \ σp.p.(B)) and {a, b} 6⊂ (σp.p.(B) \ σp.p.(A)) ,

then A is equivalent to B up to a rank one perturbation.
Theorem 8 was proved in [P] for pure point operators. One can easily

combine the proof with the methods of the present paper to prove the general
case. Here is another (simpler) way to generalize Theorem 1. We prohibit
our operators to have eigenvalues at the endpoints of the complementary
intervals.
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Theorem 9. Let K ⊂ R be a closed set. Denote by I1 = (x1; y1), I2 =
(x2; y2), . . . disjoint open intervals such that K = R \

⋃
In. Let A and

B be two completely non-equivalent self-adjoint cyclic operators. Suppose
that σ(A) = σ(B) = K and σp.p.(A) ∩ {x1, y1, x2, y2, . . . } = σp.p.(B) ∩
{x1, y1, x2, y2, . . . } = ∅. Then A and B are equivalent up to a rank one
perturbation.

This theorem was also proved in [P] in the pure point case.

References

[A] A.B. Aleksandrov, Private communications.

[Ar] N. Aronszajn, On a problem of Weyl in the theory of singular Sturm-Liouville equa-
tions, Amer. J. Math., 79 (1957), 597-610.

[BY] M.Sh. Birman and D.R. Yafaev, The spectral shift function. The work of M. G.
Krein and its further development, St. Petersburg Math. J., 4 (1993), 833-870.

[CP] R.W. Carey and J.D. Pincus, Unitary equivalence modulo the trace class for self-
adjoint operators, Amer J. Math., 98 (1976), 481-514.

[K] T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York, 1966.

[MP] M. Martin and M. Putinar, Lectures on Hyponormal operators, Operator Theory:
Advances and Applications, 39 (1989).

[P] A. Poltoratski, The Krein spectral shift and rank one perturbations of spectra, Al-
gebra i Analiz, 10(5) (1998), 143-183, Russian; English translation to appear in St.
Petersburg Math. J.

[S] B. Simon, Spectral analysis of rank one perturbations and applications, Proc. 1993
Vancouver Summer School in Mathematical Physics.

Received November 24, 1997

Department of Mathematics
Texas A&M University
College Station, TX 77843
E-mail address: Alexei.Poltoratski@math.tamu.edu

mailto:Alexei.Poltoratski@math.tamu.edu

