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Some years ago, in D’Hoker and Phong (1989) studied the
functional determinants of Laplacian on Mandelstam diag-
rams. They considered some renormalizations of the func-
tional determinants of Laplacian on Mandelstam diagrams
and explored their applications in String Theory. Recently, on
quite a different subject, in Qing (1997) studied the renormal-
ized energy for Ginzburg-Landau vortices on closed surfaces.
In this paper we shall demonstrate how those two different
renormalized functionals are related to each other.

1. Introduction.

Ginzburg and Landau in [GL] introduced the following variational problem
in the study of super-conductivity

Eε[u] =
∫ {

|∇u|2 +
1

4ε2
(1− |u|2)2

}
dx

where u is a complex-valued function called a condensate wave function. In
the seminal work [BBH] Bethuel, Brezis and Helein studied the asymptotic
behavior of minimizers of Eε and proved that the limit configuration of vor-
tices of minimizers of Eε minimizes the renormalized energy function, which
was derived through renormalization of Eε. After their works, many math-
ematicians have been attracted to the study of Ginzburg-Landau problems.
In [BBH] it assumes that the domain is bounded and star-shaped. Later
Struwe in [Str1], [Str2] extended to any smooth bounded domain. Soon
after, first in Bethuel and Riviere [BR] studied the problem with magnetic
fields on a bounded domain in R2. Then in Qing [Q] studied the problem
on a closed surface. From geometric point of view it is simply the varia-
tional problem of Yang-Mills-Higgs functional with U(1) gauge group. The
functional is defined for a unitary connection A on a hermitian line bundle
L over a closed surface M with metric g and a smooth section s of L as

(1.1) Eε[A, s] =
∫

M

{
|dAs|2 +

1
4ε2

(1− |s|2)2 + |FA|2
}

dx,

where FA is the curvature 2-form of A and dAs is the covariant derivative
of s. It was proved that:
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Theorem A (Qing). For any sequence of minimizers (Aεk
, sεk

) for Eεk
as

εk → 0, there exists a subsequence (Aεj , sεj ) whose “vortices” (not precisely
defined)

p
εj

i → p∗i for i = 1, 2, . . . , d

and {p∗i }d
i=1 minimizes the renormalized energy

(1.2) D[{pi}] = 2π
d∑

i6=k

G(pk, pi) + 2π
d∑

k=1

G(pk, pk) + 2π
d∑

k=1

R(pk)

where G(·, p) is the Green function with its pole at p, G(p, p) is the regular
part of Green function (please see [Q]) and R is the solution of

(1.3) ∆R + R =
d∑

k=1

G(·, pk)−
2πd

vol(M)
on M.

An important and interesting question is how the renormalized energy
depends on the Riemannian metrics g. It turned out that the renormalized
energy D[{pi}] can be better understood if we use Arakelov Green functions.

Mandelstam diagrams are surfaces whose curvature are all concentrated
at isolated points. On regular compact surface Polyakov-Ray-Singer [Po],
[RS], [OPS], [Ch] formula for log determinant of Laplacian is

log
det ∆1

det ∆0
= − 1

12π

∫
{|∇u|2 + 2K0u}dv0

where g1 = e2ug0 and K is the Gaussian curvature of g0. In D’Hoker and
Phong [DP] studied the log determinants of Laplacian on Mandelstam di-
agrams and adopted a renormalization to define an unambiguous notion of
log determinant for Mandelstam diagrams. In particular, their renormalized
log determinant still enjoys the additive law as expected.

In this note, we first review some facts about the Arakelov Green func-
tions. Then we will carry out the computation of D[{pi}] via the Arakelov
Green functions and show the following main result:

Theorem B. Suppose that (M, g) is a closed surface with genus larger
than one. Let g0 be the metric of constant curvature and volume one, and
g = e2φg0. And suppose that L is a Hermitian line bundle over M with
degree d = −χ(M). Then

D[{pk}] = −12π log
det∆gM

det∆g0

+ 4π2 χ2(M)
vol(M)

+
2πχ(M)
vol(M)

∫
M

Hg0dv

+
2πχ(M)
vol(M)

∫
M

φdv + 2π
∑

k

φ(pk) + 2π
∑

k

µ(pk).
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where gM is the so-called Mandelstam metric whose curvature are all concen-
trated at {p1, p2, . . . , pd}, Hg0 solves (2.3) and µ solves (3.3) in this note.

2. Arakelov Green Functions.

In this section we will introduce Mandelstam metrics, which are metrics
whose curvature are all concentrated at isolated points, and Arakelov Green
functions. We will also introduce the Liouville action which is the so-called
log determinant of Laplacian on M due to Polyakov [Po], Ray and Singer
[RS] (see also [OPS], [Ch]). It is interesting that the transform formula
for Arakelov Green functions under conformal change of metrics naturally
brings out the Liouville action.

Suppose M is a closed surface of genus larger than 1, and g0 is the constant
curvature metric with volume 1 on M . And suppose {p1, p2, . . . , pl} be l
distinct points on M , where l = −χ(M). The Green function with respect
to g0 is defined as

(2.1)


∆G(·, p) = 2πδ(·, p)− 2π∫

M
G(x, p)dv0 = 0.

Then let

(2.2) Hg0(x) =
l∑

k=1

G(x, pk).

Thus

(2.3)


∆Hg0(x) = 2π

l∑
k=1

δ(·, p) + 2πχ(M)∫
M

Hg0(x)dv0 = 0.

A Mandelstam metric is

(2.4) gM = e−2Hg0g0.

It is readily seen from (2.3) that the Mandelstam metric has its curvature
all concentrated at {p1, p2, . . . , pl}.

Next, we introduce Arakelov Green functions for any given metric g. First,
we recall the definition of the usual Green function with respect to g. It is
defined as

(2.5)


∆gG(·, p) = 2πδ(·, p)− 2π

vol(M, g)∫
M

G(x, p)dv = 0,
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where dv is the volume element of g. The Arakelov Green function with
respect to g is defined as

(2.6)


∆gG

A(·, p) = 2πδ(·, p)− K

χ(M)∫
M

GA(x, p)K(x)dv = 0,

where K is the Gaussian curvature of the metric g. It is easily seen that the
Arakelov Green function is the same as the usual Green function when the
metric is of constant curvature. Solving for GA(x, p) in terms of the usual
Green function gives

GA(s, t) =G(s, t)− 1
2πχ(M)

∫
M

G(s, x)K(x)dv(2.7)

− 1
2πχ(M)

∫
M

G(x, t)K(x)dv

+
1

4π2χ2(M)

∫
M

∫
M

G(x, y)K(x)K(y)dvxdvy.

Before we give the transform formula for the Arakelov Green functions
under conformal change of metrics, let us introduce the Liouville action

(2.8) S(g, u) =
1

12π

∫
M
{|∇u|2dv + 2K0u}dv,

which is related to the functional determinant by Polyakov-Ray-Singer for-
mula [Po], [RS], [OPS], [Ch]. Because Gaussian curvature transforms as

(2.9) ∆φ + K = Kφe2φ,

where Kφ is the Gaussian curvature of the metric g = e2φg0, we have the
additive rule for Liouville action

(2.10) S(g, u) = S(g, u− φ) + S(g0, φ).

Then from (2.6), (2.7) and (2.9), one obtains

(2.11) GA
φ (x, p) = GA(x, p)− 1

χ(M)
(φ(x) + φ(p)) +

6
χ2(M)

S(g0, φ).

Thus, if we denote
∑l

k=1 GA
φ (x, pk) by Hg(x) for the metric g,

Hg(x) = Hg0(x) + φ(x)− 1
χ(M)

l∑
k=1

φ(pk)−
6

χ(M)
S(g0, φ),

that is

(2.12) Hg0(x) + φ(x) = Hg(x) +
1

χ(M)

l∑
k=1

φ(pk) +
6

χ(M)
S(g0, φ).
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Therefore, the Mandelstam metric can be rewritten in term of the metric g
as follows:

(2.13) gM = e
−2(Hg+ 1

χ(M)

Pl
k=1 φ(pk)+ 6

χ(M)
S(g0,φ))

g.

3. Renormalizations.

Suppose that L is a Hermitian line bundle of degree l over the closed sur-
face (M, g) still having g = e2φg0. To compute renormalized energy for the
Ginzburg-Landau vortices is to compute the renormalized energy for canon-
ical solutions of Yang-Mills with prescribed isolated singularity (please see
[Q]). What one does is to renormalize the energy

(3.1) Y (s,A) = Y (g, h) =
∫

M
|∇h|2dv +

∫
M

h2dv,

where g stands for the metric and h stands for the solution of

(3.2)


∆gh + h = 2π

l∑
k=1

δ(·, pk)∫
M

hdv = −2πχ(M).

In the following, we shall solve h in terms of Arakelov Green functions. First,
let us denote the Gaussian curvature of g by K, and solve

(3.3)


∆gµ + K = −h∫

M
µdv = 0.

Let ω = φ + µ. By (3.3) we know that the Gaussian curvature of the metric
gω = e2ωg0 is −he−2µ. Hence, its Arakelov Green function GA

ω (x, p) satisfies
∆gωGA

ω (x, p) = 2πδ(x, p) +
he−2µ

χ(M)∫
M

GA
ω (x, p)he−2µdvgω = 0,

which implies

(3.4)


∆gwHgω = 2π

l∑
k=1

δ(·, pk)− he−2µ

∫
M

Hgωhdvg = 0.
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Notice that ∆gω = e−2µ∆g and δgω(·, p)e−2µ = δ(·, p). Thus, we arrive at

(3.5) ∆gHgω + h = 2π
l∑

k=1

δ(·, pk)

from (3.4). Comparing this to (3.2), we conclude that

(3.6) h = Hgω + C

for some constant C. Multiplying h to (3.6) and integrating both sides over
M gives

(3.7)
∫

M
h2dv = −2πχ(M)C.

On the other hand, simply integrating both sides of (3.6) gives

(3.8) vol(M)C = −2πχ(M)−
∫

M
Hgωdv.

Now we are going to do the renormalization for both Yang-Mills action
Y (g, h) and Liouville action S. One of the key points is that the following
metric-depending renormalization will produce an anomaly for both actions.
In other words, the renormalizations performed on different metrics yield
different normalized functionals. Therefore, one needs to keep track of the
possible anomaly. Set gM = e2σgw for simplicity, i.e.,

(3.9) σ = −Hgω −
1

χ(M)

l∑
k=1

ω(pk)−
6

χ(M)
S(g0, ω)

in the light of (2.12). By (3.6), one has

(3.10) σ = −h + C − 1
χ(M)

l∑
k=1

ω(pk)−
6

χ(M)
S(g0, ω).

Then, let Mε be the surface M with the disks {dgω(x, pk) < ε} removed,
where dgω is the distance function of metric gω. Therefore, the renormalized
Liouville action is

Sr(gω, σ)(3.11)

= lim
ε→0

{
1

12π

{∫
Mε

|∇σ|2dvw − 2
∫

Mε

he−2µσdvgω

}
+

χ(M)
6

log
1
ε

}
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where ∫
M

he−2µσdvgω(3.12)

=
∫

M
h

(
−h + C − 1

χ(M)

l∑
k=1

ω(pk)−
6

χ(M)
S(g0, ω)

)
dv

= −
∫

M
h2dv − 2πχ(M)

(
C − 1

χ(M)

l∑
k=1

ω(pk)−
6

χ(M)
S(g0, ω)

)
.

Hence,

(3.13)

Sr(gω, σ) = lim
ε→0

{
1

12π

∫
Mε

{|∇h|2 + h2}dv +
χ(M)

6
log

1
ε

}
+

1
6
χ(M)C − 1

3

l∑
k=1

ω(pk)− 2S(g0, ω).

Let us denote this by

(3.14) Yr(g, h) = lim
ε→0

{
1

12π

∫
Mε

{|∇h|2dv + h2}+
χ(M)

6
log

1
ε

}
.

Then, in the light of (3.1) and (3.7), we have

Sr(gω, σ)

=
1

12π
Yr(g, h) +

χ(M)
6

C − 1
3

∑
k

ω(pk)− 2S(g0, ω)

=
1

12π
Yr(g, h)− πχ2(M)

3 vol(M)
− χ(M)

6 vol(M)

∫
M

Hgωdv

− 1
3

∑
k

ω(pk)− 2S(g0, ω),

=
1

12π
Yr(g, h)− πχ2(M)

3 vol(M)
− 1

3

∑
k

ω(pk)− 2S(g0, ω)

− χ(M)
6 vol(M)

(∫
M

Hg0dv+
∫

M
φdv− vol(M)

χ(M)

∑
k

ω(pk)−
6 vol(M)
χ(M)

S(g0, ω)

)

=
1

12π
Yr(g, h)− πχ2(M)

3 vol(M)
− χ(M)

6 vol(M)

(∫
M

Hg0dv +
∫

M
φdv

)
− 1

6

∑
k

ω(pk)− S(g0, ω).

To have an unambiguous notion of determinants for a Mandelstam diagram,
one needs to take off the conformal anomaly. In D’Hoker and Phong [DP]
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proved that

(3.15) S(g0,−Hg0) = S(g0, ω) + Sr(gω, σ)− 1
6

l∑
k=1

ω(pk).

In the same spirit, one can carefully check the difference between Yr(g, h)
and the renormalized energy D[{pk}] obtained in [Q], and conclude

(3.16) D[{pk}] = Yr(g, h)− 2π
l∑

k=1

µ(pk).

Because the disks removed on M are measured in the metric gω not g and
the scale at any point p differs by the conformal factor eµ(p) for the two
metrics. Thus

D[{pk}] = 12πS(g0,−Hg0) + 4π2 χ2(M)
vol(M)

+
2πχ(M)
vol(M)

∫
M

Hg0dv(3.17)

+
2πχ(M)
vol(M)

∫
M

φdv + 2π
∑

k

φ(pk) + 2π
∑

k

µ(pk).
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