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In this paper we prove a Schläfli differential formula for
the volume of simplices in central unit hyperquadrics of semi-
Euclidean space Rn+1

q . Then we apply this result to obtain
Gauss-Bonnet formulas for simplices with riemannian faces in
the de Sitter sphere, and to generalize a formula of L. Santaló
relating the volume of a hyperbolic simplex with the measure
of the set of hyperbolic hyperplanes intersecting it.

Introduction.

Schläfli’s differential formula plays a central role in the computation of the
volume of hyperbolic and spherical polyhedra of any dimension. Given a
family of n-simplices ∆ which vary in a differentiable manner in a non-
Euclidean space of dimension n and constant curvature κ = 1 or κ = −1,
the Schläfli formula expresses the differential of the volume of ∆ in terms of
the volumes of its faces of codimension 2 and the dihedral angles at these
faces. Namely,

dVn(∆) =
κ

n− 1

∑
F

Vn−2(F ) dαF

where the sum is taken over all faces F of codimension 2 of ∆, Vn−2(F )
denotes the ((n − 2)-dimensional) volume of face F and αF denotes the
dihedral angle at face F .

Around 1852, L. Schläfli proved this formula for spherical simplices of
any dimension ([Schlä]). In 1936 H. Kneser gave a different proof, which he
could easily generalize to the hyperbolic case ([Kne]). A more recent, very
recommended reference is J. Milnor’s paper ([Mil]), where some remarks
on the history of the Schläfli differential formula can be found, as well as a
new proof which is particularly transparent. In the last years great use has
been made of this formula to compute the volume of hyperbolic 3-manifolds,
possibly with cone-type singularities (cf. [HLM1], [HLM2], [HLM3]), fol-
lowing an idea of C. Hodgson ([Ho]). It has also been used to study the

229

http://pjm.math.berkeley.edu/pjm
http://dx.doi.org/10.2140/pjm.2000.194-1


230 EVA SUÁREZ-PEIRÓ

volume of hyperbolic spaceforms in general (cf. [Kel]). Recently F. Bona-
hon has found a Schläfli type formula for the volume of the convex core of
hyperbolic 3-manifolds (cf. [Bo]).

On the other hand, it is also interesting to compute the volume of sim-
plices contained in complete semi-riemannian manifolds of constant curva-
ture; some work has been done in this direction by J.-M. Schlenker ([Schle1],
[Schle2]). An important example is the n-dimensional de Sitter sphere Sn

1 ,
which is a complete Lorentz manifold of constant curvature 1. There is
a duality relationship between Sn

1 and n-dimensional hyperbolic space Hn

(when both are considered as submanifolds of Minkowski space Rn+1
1 ), asso-

ciating to each point v in Sn
1 the hyperplane in Hn with unit normal v (cf.

[HR]). Therefore, a Schläfli formula for the volume of simplices in Sn
1 can

be used to relate the volume of a hyperbolic simplex with the measure of
the set of hyperplanes intersecting it. (We will call the measure of this set
of hyperplanes, the dual volume of the given hyperbolic simplex.) For n = 3
such a relationship was found by L. Santaló ([Sa2]), using methods of inte-
gral geometry. (An analogous equation, relating the volume of a spherical
tetrahedron with the measure of the set of planes intersecting it, was proved
by Milnor using the spherical Schläfli formula, cf. [Mil].) My PhD advisor,
José Maŕıa Montesinos ([Mo]), obtained a Schläfli differential equality for
tetrahedra in S3

1 by differentiating the above mentioned formula of Santaló
and then applying Schläfli’s equation for hyperbolic tetrahedra. He sug-
gested to me the possibility of obtaining a Schläfli formula for simplices in
Sn

1 following Kneser’s proof, and of generalizing with it Santaló’s equality
to higher dimensions. This is, in a somewhat wider context, the aim of this
paper, which is a part of my PhD thesis ([Su]).

In Section 1 we adapt and generalize Kneser’s proof to obtain a Schläfli
differential formula for a large class of simplices in any central unit hy-
perquadric of semi-Euclidean space Rn+1

q (cf. [O’N]). For this, a suitable
definition of dihedral angle in a semi-riemannian geometry is necessary. This
is a point that requires some care and it is tackled in subsection 1.4, where
the (partial) standard definition is generalized (cf. [O’N]). (A different def-
inition of dihedral angle (with complex values) in the semi-riemannian case,
giving rise to a different version of the Schläfli formula, has been used by
J.-M. Schlenker, cf. [Schle1], [Schle2].)

Then we give three applications of the Schläfli differential formula for
simplices in the de Sitter sphere. In Section 2 we give a new proof of Santaló’s
formula in dimension 3 (relating the volume of a hyperbolic tetrahedron
with the measure of the set of hyperplanes intersecting it), using the Schläfli
formulas in H3 y S3

1. In this section we also introduce the notions of polar
dual and complementary dual of a hyperbolic simplex of arbitrary dimension,
which will be necessary to generalize Santaló’s formula to higher dimensions.
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(The polar dual of a convex hyperbolic polyhedron has been extensively
studied in [Ri] and [HR].)

In Section 3 we obtain Gauss-Bonnet formulas for simplices in the n-
dimensional de Sitter sphere Sn

1 with riemannian faces. These formulas
are analogous to the generalized Gauss-Bonnet formulas for spherical and
hyperbolic simplices, which relate the volumes of all even- dimensional faces
of the simplex and the dihedral angles at those faces (cf. [Sa1], [AVS]).

Finally Section 4 is a consequence of the previous two, and provides a gen-
eralization to higher dimensions of Santaló’s formula relating the volume of
a hyperbolic simplex with the measure of the set of hyperplanes intersecting
it.

I thank José Maŕıa Montesinos for suggesting the idea of this paper and
for all his helpful advice and encouragement. I also thank Francis Bonahon
for giving me the opportunity to talk about this result in a students’ seminar
at the I.H.P. in Paris, and I. Rivin and J.-M. Schlenker for their suggestions
and for drawing my attention to their results.

Added in the revised version. After submission of this paper, I. Rivin
and J.-M. Schlenker have obtained a smooth analogue of the Schläfli formula
for the volume bounded by a hypersurface in a general Einstein manifold,
using methods of differential geometry (cf. [RS]). The Schläfli formula for
polyhedra in the de Sitter sphere proved in this paper follows as a corollary
from their result. J-M. Schlenker and R. Souam have also obtained higher
dimensional analogues of the Schläfli formula ([S-S]), which generalize the
formulas given in Proposition 3.1. of this paper.

1. A Schläfli differential formula for simplices in
semi-riemannian hyperquadrics.

1.1. Background and definitions.
To fix notations we recall now some standard definitions in semi-riemann-

ian geometry (see [O’N]).
Semi-Euclidean space Rn+1

q is Rn+1 with the semi-riemannian metric de-
fined by the bilinear form of index q

〈x,y〉 = −
q−1∑
i=0

xiyi +
n∑

j=q

xjyj

where x = (x0, . . . , xn) and y = (y0, . . . , yn). The norm of a vector x ∈
Rn+1

q is |x| = |〈x,x〉|1/2. A vector x is timelike if 〈x,x〉 < 0, spacelike if
〈x,x〉 > 0 and null if 〈x,x〉 = 0.

Given ε ∈ {±1}, the central unit hyperquadric of Rn+1
q with sign ε is the

submanifold
Qn

q (ε) = {x ∈ Rn+1
q | 〈x,x〉 = ε}.
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It is a complete semi-riemannian n-dimensional manifold (not necessarily
connected) with constant curvature ε. The totally geodesic submanifolds
of Qn

q (ε) are the connected components of the intersection of Qn
q (ε) with

linear subspaces of Rn+1. The isometries of Qn
q (ε) are the restriction to

Qn
q (ε) of the linear automorphisms of Rn+1

q leaving Qn
q (ε) invariant. Impor-

tant examples are the n-dimensional sphere Sn = Qn
0 (1), the n-dimensional

hyperbolic space Hn, which is one of the two components of Qn
1 (−1), the

n-dimensional de Sitter sphere Sn
1 = Qn

1 (1), and the 3-dimensional hyper-
quadric Q3

2(1), which can be identified with SL(2, R) with the metric given
by its canonical Killing form. From now on we will write Sn

q (ε) to denote any
connected component of Qn

q (ε), and we will also call Sn
q (ε) an n-dimensional

hyperquadric.
Let us now define an n-simplex in the hyperquadric Sn

q (ε). We define a
linear halfspace in Rn+1

q as a closed halfspace whose boundary is a linear
hyperplane of Rn+1

q . A simplicial cone in Rn+1
q is the intersection of (n + 1)

linear halfspaces in general position (i.e., such that the (n + 1) boundary
hyperplanes intersect only at the origin). A face of codimension k of a
simplicial cone C (k = 0, . . . , n) is the intersection of C with k of the hyper-
planes forming its boundary. Observe that the intersection of an arbitrary
simplicial cone C with the hyperquadric Sn

q (ε) can be empty, and it can also
be non-compact.

Definition 1.1. An n-simplex in the n-dimensional hyperquadric Sn
q (ε) is

the intersection of a simplicial cone with Sn
q (ε), when this intersection is non-

empty and compact. A face of codimension k of an n-simplex ∆ ⊂ Sn
q (ε)

(k = 0, . . . , n) is the intersection with Sn
q (ε) of a face of codimension k of

the corresponding simplicial cone.

Remark 1.1. Every simplicial cone C in Rn+1
q can be written as

C = {x0v0 + · · ·+ xnvn | x0 ≥ 0, . . . , xn ≥ 0}
for some basis {v0, . . . ,vn} of Rn+1

q . We will use the following notation for
the faces of codimension k of a simplicial cone:

Ci1 . . . ik = {x0v0 + · · ·+ xnvn | x0 ≥ 0, . . . , xn ≥ 0; xi1 = · · · = xik = 0}.

A subset ∆ ⊂ Sn
q (ε) is an n-simplex if and only if it can be written as

∆ = {x0v0 + · · ·+ xnvn | x0 ≥ 0, . . . , xn ≥ 0 } ∩ Sn
q (ε)

for some basis {v0, . . . ,vn} of Rn+1
q such that ε · 〈x0v0 + · · ·+ xnvn, x0v0 +

· · · + xnvn〉 > 0 if x0 ≥ 0, . . . , xn ≥ 0 and they are not all zero. We will
denote the codimension k faces of an n-simplex ∆ as follows:

Fi1 . . . ik = {x0v0 + · · ·+ xnvn | x0 ≥ 0, . . . , xn ≥ 0;

xi1 = · · · = xik = 0} ∩ Sn
q (ε).
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Remark 1.2. Let C be a simplicial cone in Rn+1
q such that ∆ = C ∩ Sn

q (ε)
is an n-simplex. Each codimension k face Ci1 . . . ik of C spans an (n+1−k)-
dimensional linear subspace 〈Ci1 . . . ik〉 of Rn+1

q . If the induced metric in this
subspace is non-degenerate of a certain index ν, then 〈Ci1 . . . ik〉∩Sn

q (ε) is an
(n − k)-dimensional hyperquadric of type Sn−k

ν (ε), and the corresponding
face of ∆, Fi1 . . . ik = Ci1 . . . ik ∩ Sn

q (ε), is an (n − k)-simplex inside this
hyperquadric. If the induced metric in 〈Ci1 . . . ik〉 is degenerate, then the
face Fi1 . . . ik of ∆ also has a degenerate metric as a submanifold of Sn

q (ε).

In what follows we will restrict our attention to the class of n-simplices ∆
in Sn

q (ε) satisfying the following additional condition (∗), in order to avoid
dividing by zero in the coming calculations:
(∗) All faces of codimension 1 and 2 of ∆ have a non-degenerate metric.

1.2. The volume function.
Let ∆ be an n-simplex in Sn

q (ε), and let C be the simplicial cone of
Rn+1

q such that ∆ = C ∩ Sn
q (ε). To compute the volume of ∆, it is very

useful to consider the following idea of Kneser ([Kne]). Define the function
r(x) =

√
|〈x,x〉|, for x ∈ Rn+1

q . Then the following relation holds inside the
simplicial cone C:

dRn+1
q = rn dr ∧ dSn

q (ε)

where dRn+1
q denotes the volume form of Rn+1

q (with the standard orienta-

tion) and dSn
q (ε) denotes the volume form of Sn

q (ε)
(
oriented in such a way

that the normal vector
∂

∂r
followed by a positive basis of tangent vectors to

Sn
q (ε), form a positive basis of Rn+1

q

)
.

Hence the volume Vn(∆) of ∆ can be obtained from the following equality:∫
C

e−
r2

2 dRn+1
q =

∫
C

rn e−
r2

2 dr ∧ dSn
q (ε)(1)

=
∫

∆
dSn

q (ε) ·
∫ +∞

0
rn e−

r2

2 dr

= 2
n−1

2 Γ
(

n + 1
2

)
Vn(∆).

Let {v0, . . . ,vn} be a positive basis of Rn+1
q such that C = {x0 v0 + · · ·+

xn vn | x0 ≥ 0, . . . , xn ≥ 0}. Denote by (x0, . . . , xn) the coordinates in this
basis and let Φ(x0, . . . , xn) = 〈x0 v0 + · · ·+ xn vn, x0 v0 + · · ·+ xn vn〉 be
the quadratic form of Rn+1

q . Then inside the simplicial cone C we have
Φ = ε · r2. On the other hand, consider the parallelepiped determined in
Rn+1

q by the vectors v0, . . . ,vn, and denote by V(v0, . . . ,vn) its volume in
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Rn+1
q (which coincides with its euclidean volume). Then the volume form of

Rn+1
q is

dRn+1
q = V(v0, . . . ,vn) dx0 ∧ . . . ∧ dxn.

Therefore, Equation (1) can be written in the coordinates (x0, . . . , xn) as

2
n−1

2 Γ
(

n + 1
2

)
Vn(∆) = V(v0, . . . ,vn) ·

∫
C

e−ε Φ/2 dx0 . . . dxn.(2)

1.3. The volume differential.
The space S of all n-simplices in Sn

q (ε) has a natural structure of n(n+1)-
dimensional manifold, with charts consisting, for instance, of products of
sufficiently small neighborhoods of the n + 1 vertices inside Sn

q (ε). The
volume function Vn : S → R, associating to each simplex ∆ its volume
Vn(∆), is a differentiable map, and we are interested in finding a formula
for its differential.

To do this, we will look at an arbitrary point ∆ ∈ S and consider a special
basis formed by n(n+1) linearly independent tangent vectors of S at ∆, and
we will compute the value of the form dVn applied to each of these tangent
vectors. This special basis is defined as follows: for each of the n+1 vertices
of ∆, we take n linearly independent tangent vectors of S at ∆ that represent
n ways of moving the chosen vertex in different directions, keeping all the
other vertices fixed. More explicitly, the chosen vertex will move along the
line joining it to each of the n remaining vertices, as described below.

Let C = {x0 v0 + · · ·+xn vn | x0 ≥ 0, . . . , xn ≥ 0} be the simplicial cone
such that ∆ = C ∩Sn

q (ε). Since the ordering of the vertices is arbitrary, it is
enough to study the case where the vertex v1 moves towards the vertex v0

and all other vertices remain fixed. For every t ∈ R consider the basis formed

by the vectors

 v0(t) = v0

v1(t) = v1 − t v0

vi(t) = vi if 2 ≤ i ≤ n
. When t is sufficiently close to

0, the simplicial cone Ct = {λ0 v0(t) + · · ·+ λn vn(t) | λ0 ≥ 0, . . . , λn ≥ 0}
is such that ∆t = Ct ∩ Sn

q (ε) is an n-simplex. Then we will take as one of
the tangent vectors of S at ∆, the tangent vector to the path ∆t at time
t = 0.

The value of the form dVn applied to this tangent vector is
dVn(∆t)

dt

∣∣∣∣
t = 0

.

Using formula (2),

2
n−1

2 Γ
(

n + 1
2

)
Vn(∆t) = V(v0, . . . ,vn) ·

∫
Ct

e−ε Φ/2 dx0 . . . dxn.

Since

Ct = {λ0 v0(t) + · · ·+ λn vn(t) | λ0 ≥ 0, . . . , λn ≥ 0}
= {x0 v0 + · · ·+ xn vn | x0 + x1 t ≥ 0, x1 ≥ 0, . . . , xn ≥ 0}
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we have

2
n−1

2 Γ
(

n + 1
2

)
Vn(∆t) = V(v0, . . . ,vn)

·
∫ +∞

x1 = 0

∫ +∞

x0 = −x1 t

∫ +∞

x2 = 0
· · ·
∫ +∞

xn = 0
e−ε Φ/2 dx0 . . . dxn

and differentiating we obtain

(3) 2
n−1

2 Γ
(

n + 1
2

)
dVn(∆t)

dt

∣∣∣∣
t = 0

= V(v0, . . . ,vn)

·
∫ +∞

x1 = 0

∫ +∞

x2 = 0
· · ·
∫ +∞

xn = 0
x1 e−ε Φ/2 dx1 . . . dxn

∣∣∣∣x0 = 0
.

Let us now consider the dual basis {w0, . . . ,wn} of {v0, . . . ,vn}, which
satisfies the relation 〈vi,wj〉 = δij . Taking multiples of the vectors vi if
necessary, we can always assume that |wj | = 1 for j = 0, . . . , n. Denote by
(x0, . . . , xn) the coordinates in the basis {v0, . . . ,vn}, and by (y0, . . . , yn)
the coordinates in the dual basis {w0, . . . ,wn}. Then the following relation
holds:

xi =
n∑

j=0

〈wi,wj〉 yj yi =
n∑

j=0

〈vi,vj〉 xj .(4)

Now the quadratic form of Rn+1
q is Φ =

n∑
i,j=0

〈vi,vj〉 xi xj . Therefore,

∂Φ
∂xi

= 2
n∑

j=0

〈vi,vj〉 xj = 2 yi.

From (4) we deduce that, inside the hyperplane x0 = 0,
x1 =

n∑
j=0

〈w1,wj〉 yj

x0 = 〈w0,w0〉 y0 +
n∑

i=1
〈w0,wi〉 yi = 0.

Hence

x1 =
n∑

i=1

(
〈w1,wi〉 −

〈w0,w1〉 〈w0,wi〉
〈w0,w0〉

)
yi

=
n∑

i=1

(
〈w1,wi〉 −

〈w0,w1〉 〈w0,wi〉
〈w0,w0〉

)
∂(Φ/2)

∂xi
.
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For every t ∈ R let {w0(t), . . . ,wn(t)} be the dual basis of {v0(t), . . . ,

vn(t)}. It is easy to check that
{

w0(t) = w0 + t w1

wi(t) = wi for 1 ≤ i ≤ n
. Now define

for every i ∈ {1, . . . , n} the function

f0i(t) =
〈w0(t),wi(t)〉
|w0(t)| · |wi(t)|

.

Considering that |wj | = 1 for all j, we obtain on differentiating that

df0i(t)
dt

∣∣∣∣
t = 0

= 〈w1,wi〉 −
〈w0,w1〉 〈w0,wi〉

〈w0,w0〉
.

Therefore,

x1 =
n∑

i=1

df0i(t)
dt

∣∣∣∣
t = 0

· ∂(Φ/2)
∂xi

and plugging this into (3) it follows that

2
n−1

2 Γ
(

n + 1
2

)
dVn(∆t)

dt

∣∣∣∣
t = 0

(5)

= V(v0, . . . ,vn) ·
∫ +∞

0
· · ·
∫ +∞

0

n∑
i=1

df0i(t)
dt

∣∣∣∣
t = 0

· ∂(Φ/2)
∂xi

e−ε Φ/2 dx1 . . . dxn

∣∣∣∣x0 = 0

= −ε ·V(v0, . . . ,vn) ·
n∑

i=1

df0i(t)
dt

∣∣∣∣
t = 0

·
∫ +∞

0
· · ·
∫ +∞

0

∂
(
e−ε Φ/2

)
∂xi

dx1 . . . dxn

∣∣∣∣x0 = 0

= ε ·V(v0, . . . ,vn) ·
n∑

i=1

df0i(t)
dt

∣∣∣∣
t = 0

·
∫ +∞

0
· · ·
∫ +∞

0
e−ε Φ/2 dx1 . . . dxn

∣∣∣∣x0 = xi = 0
.

Now let us observe that the volume of the codimension 2 face of ∆, F0i =
{x1 v1 + · · · + xn vn |x1 ≥ 0, . . . , xn ≥ 0 ; xi = 0} ∩ Sn

q (ε), can also be
computed using the relation (2) in the (n−1)-dimensional subspace of Rn+1

q
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spanned by v1, . . . , v̂i, . . . ,vn. In other words,

2
n−3

2 Γ
(

n− 1
2

)
Vn−2(F0i)= V(v1, . . . , v̂i, . . . ,vn)

·
∫ +∞

0
· · ·
∫ +∞

0
e−ε Φ/2 dx1 . . . dx̂i . . . dxn

∣∣∣∣x0 = xi = 0
.

Substituting this last expression in (5), we get

2
n−1

2 Γ
(

n + 1
2

)
dVn(∆t)

dt

∣∣∣∣
t = 0

= ε
n∑

i=1

V(v0, . . . ,vn)
V(v1, . . . , v̂i, . . . ,vn)

· df0i(t)
dt

∣∣∣∣
t = 0

2
n−3

2 · Γ
(

n− 1
2

)
Vn−2(F0i)

and since the gamma function has the property that Γ
(

n + 1
2

)
=

n− 1
2

Γ
(

n− 1
2

)
, it follows that

dVn(∆t)
dt

∣∣∣∣
t = 0

(6)

=
ε

n− 1

n∑
i=1

V(v0, . . . ,vn)
V(v1, . . . , v̂i, . . . ,vn)

· df0i(t)
dt

∣∣∣∣
t = 0

·Vn−2(F0i).

Let us now make some elementary observations about the volume of a par-
allelepiped in Rn+1

q , which will allow us to simplify the factor
V(v0, . . . ,vn)

V(v1, . . . , v̂i, . . . ,vn)
in the last expression.

(i) The volume V(v0, . . . ,vn) is the same as the euclidean volume of the
parallelepiped determined in Rn+1 by the vectors v0, . . . ,vn (because
the matrix Jq of the quadratic form of Rn+1

q has determinant ±1).
Hence V(v0, . . . ,vn) is the absolute value of the determinant of the
matrix having as columns the coordinates of the vectors v0, . . . ,vn in

the standard basis of Rn+1
q . It also equals

√
|det(〈vi,vj〉)i,j |.

(ii) Let {w0, . . . ,wn} be the dual basis of {v0, . . . ,vn}, and let M (resp.
N) be the matrix having as columns the coordinates of v0, . . . ,vn

(resp. w0, . . . ,wn). Then M t · Jq · N is the identity matrix, so
|det(N)| = |det(M)|−1 and

V(w0, . . . ,wn) =
1

V(v0, . . . ,vn)

(iii) For any given k between 0 and n − 1, let v′0, . . . ,v′k be the orthog-
onal projections of the vectors v0, . . . ,vk onto the subspace spanned



238 EVA SUÁREZ-PEIRÓ

by w0, . . . ,wk (which is itself orthogonal to the remaining vectors
vk+1, . . . ,vn). Then for every i ∈ {0, . . . , k}, v′i − vi is a linear com-
bination of the vectors vk+1, . . . ,vn, and therefore

V(v0, . . . ,vn) = V(v′0, . . . ,v′k,vk+1, . . . ,vn)

= V(v′0, . . . ,v′k) ·V(vk+1, . . . ,vn)

(the last equality being a consequence of the orthogonality). On the
other hand, it is inmediately checked that {w0, . . . ,wk} is the dual ba-
sis of {v′0, . . . ,v′k} inside the subspace spanned by w0, . . . ,wk. Hence
from (ii) follows that

V(v0, . . . ,vn) =
V(vk+1, . . . ,vn)
V(w0, . . . ,wk)

.

Using this last property in the particular case of expression (6) we get

dVn(∆t)
dt

∣∣∣∣
t = 0

(7)

=
ε

n− 1

n∑
i=1

1
V(w0,wi)

· df0i(t)
dt

∣∣∣∣
t = 0

·Vn−2(F0i)

=
ε

n− 1

n∑
i=1

1√
|〈w0,w0〉 · 〈wi,wi〉 − 〈w0,wi〉2|

· df0i(t)
dt

∣∣∣∣
t = 0

·Vn−2(F0i).

Before we can proceed further to arrive at a Schläfli formula, we need a
definition of dihedral angle in semi-riemannian geometry. A natural defini-
tion has been given by J-M. Schlenker (cf. [Schle1], [Schle2]), in which the
dihedral angle can take complex values. This definition, together with a suit-
able definition of semi-riemannian volume (also complex-valued), provides
a Schläfli formula and Gauss-Bonnet formulas in the semi-riemannian case
which are identical to the corresponding spherical formulas (cf. [Schle1]).

However, here we are interested in defining the dihedral angle α0i(t) at
the face F0i(t) of ∆t as a real number, in such a way that

dα0i(t)
dt

∣∣∣∣
t = 0

=
1√

|〈w0,w0〉 · 〈wi,wi〉 − 〈w0,wi〉2|
· df0i(t)

dt

∣∣∣∣
t = 0

where f0i(t) =
〈w0(t),wi(t)〉
|w0(t)| · |wi(t)|

.

1.4. A definition of dihedral angle in semi-riemannian geometry.
Consider the 2-dimensional vector subspace of Rn+1

q spanned by the vectors
w0 and wi, which is orthogonal to the codimension 2 subspace 〈C0i〉 spanned
by v1, . . . , v̂i, . . . ,vn. The restriction of the quadratic form of Rn+1

q to
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this plane is non-degenerate, because of the condition (∗) imposed upon
the simplex ∆ (cf. Remark 1.2). If it is a (positive or negative) definite
quadratic form, then the dihedral angle at the face F0i can be defined in the
usual manner, as

α0i = π − arccos
(
〈w0,wi〉
|w0| · |wi|

)
= π − arccos(f0i).

However, this orthogonal plane can also have a Lorentz metric, so we need
to define the angle between two non-null vectors in the Lorentz-Minkowski
plane R2

1. The difficulty lies in the fact that the set of unit vectors in R2
1

is not bounded. In the Euclidean plane R2, the angle between two unit
vectors w1, w2 can be defined as the length of the arc they subtend on the
unit sphere S1. If we try to define the angle between two unit vectors in R2

1

in an analogous manner, it can happen that the arc they subtend on the set
of all unit vectors has infinite branches.

A natural way to solve the problem is the following. Since the hyperbola
H− corresponding to timelike unit vectors in R2

1 has a positive definite met-
ric, while the hyperbola H+ corresponding to spacelike unit vectors has a
negative definite metric, we will assign positive length to all arcs contained
in H− and negative length to all arcs contained in H+. Given two non-null
unit vectors w1,w2 in R2

1, consider the arc (possibly with infinite branches)
subtended by them in H− ∪H+, and let lr be the sum of the lengths (with
the above sign convention) of the portions of this arc contained inside the
Euclidean ball of radius r in R2. Then define the angle between w1 and
w2 as the limit of lr as r tends to infinity. It is easy to check that this is
equivalent to the following definition.

Definition 1.2. Given two non-null vectors w1, w2 in R2
1, the angle be-

tween w1 and w2 is defined by

ang(w1,w2) = arccosh
(
−〈w1,w2〉
|w1| · |w2|

)
if 〈w1,w1〉 · 〈w2,w2〉 > 0

and 〈w1,w2〉 < 0;

ang(w1,w2) = −arccosh
(
〈w1,w2〉
|w1| · |w2|

)
if 〈w1,w1〉 · 〈w2,w2〉 > 0

and 〈w1,w2〉 > 0;

ang(w1,w2) = −arcsinh
(
〈w1,w2〉
|w1| · |w2|

)
if 〈w1,w1〉 · 〈w2,w2〉 < 0.

This definition is consistent with the standard one for the hyperbolic angle
between two timelike vectors lying in the same timecone of a Lorentz vector
space (cf. [O’N]), and it is also the adequate one for our purpose.
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Since with our sign convention we have assigned zero length to the set
of all unit vectors in R2

1, the following definition of dihedral angle is also
natural.

Definition 1.3. Given two non-null vectors w1,w2 in Rn+1
q which span a

Lorentz plane, the dihedral angle α at the edge of the dihedron {v ∈ Rn+1
q :

〈v,w1〉 ≥ 0, 〈v,w2〉 ≥ 0 } is defined as α = −ang(w1,w2).

1.5. A Schläfli differential formula.

Theorem 1.1. Let Sn
q (ε) be a connected component of the central unit hy-

perquadric of sign ε of Rn+1
q , and let ∆ be a family of n-simplices in Sn

q (ε)
varying differentiably with respect to one or more parameters, and such that
all their faces of codimension 1 and 2 have a non-degenerate induced metric.
Then the differential of their volume Vn(∆) satisfies the following equality:

dVn(∆) =
ε

n− 1

∑
F

Vn−2(F ) dαF

where the sum is taken over all codimension 2 faces F of ∆, Vn−2(F ) is the
((n− 2)-dimensional) volume of the face F and αF is the dihedral angle at
the face F . (When n− 2 = 0, we set V0(F ) = 1.)

Proof. Let us continue the proof at the point where we had arrived in sub-
section 1.3. Our starting point was an n-simplex

∆ = {x0 v0 + · · ·+ xn vn | x0 ≥ 0, . . . , xn ≥ 0 } ∩ Sn
q (ε)

(where the basis {v0, . . . ,vn} is chosen so that its dual basis is formed by
unit vectors wi), and we deformed it by moving one of its vertices, v1,
towards another one, v0, keeping all the others fixed. More precisely, for
every t sufficiently close to 0 we defined the n-simplex

∆t = {λ0 v0+λ1 (v1−tv0)+λ2 v2+· · ·+λn vn |λ0 ≥ 0, . . . , λn ≥ 0}∩Sn
q (ε).

The only dihedral angles that change are the angles at the edges of the
face opposite to the vertex v0, that is, the dihedral angles α0i(t) at the
codimension 2 faces of ∆t of the form F0i(t) (i = 1, . . . , n). Therefore, what
we want to prove is that

dVn(∆t)
dt

∣∣∣∣
t = 0

=
ε

n− 1

n∑
i=1

Vn−2(F0i) ·
dα0i(t)

dt

∣∣∣∣
t = 0

.

In subsection 1.3 we showed that
dVn(∆t)

dt

∣∣∣∣
t = 0

=
ε

n− 1

n∑
i=1

Vn−2(F0i) ·
1√

|〈w0,w0〉 · 〈wi,wi〉 − 〈w0,wi〉2|
· df0i(t)

dt

∣∣∣∣
t = 0
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where f0i(t) =
〈w0(t),wi(t)〉
|w0(t)| · |wi(t)|

. Hence it only remains to prove that

dα0i(t)
dt

∣∣∣∣
t = 0

=
1√

|〈w0,w0〉 · 〈wi,wi〉 − 〈w0,wi〉2|
· df0i(t)

dt

∣∣∣∣
t = 0

.

We need to distinguish several cases:
• Case 1. If 〈w0,w0〉 · 〈wi,wi〉 − 〈w0,wi〉2 > 0, then for t close to 0,

the plane spanned by w0(t) and wi(t) has a definite metric, and the
dihedral angle at the face F0i(t) is α0i(t) = π − arccos(f0i(t)). Hence
dα0i(t)

dt

∣∣∣∣
t = 0

=
1√

1− f2
0i(0)

· df0i(t)
dt

∣∣∣∣
t = 0

• Case 2. If 〈w0,w0〉 · 〈wi,wi〉 − 〈w0,wi〉2 < 0, then for t close to 0,
the plane spanned by w0(t) and wi(t) has a Lorentz metric. There are
three possibilities:
(i) 〈w0,w0〉 · 〈wi,wi〉 > 0 and 〈w0,wi〉 < 0.

Then α0i(t) = −arccosh(−f0i(t)) and

dα0i(t)
dt

∣∣∣∣
t = 0

=
1√

f2
0i(0)− 1

· df0i(t)
dt

∣∣∣∣
t = 0

.

(ii) 〈w0,w0〉 · 〈wi,wi〉 > 0 and 〈w0,wi〉 > 0.
Now α0i(t) = arccosh(f0i(t)) and

dα0i(t)
dt

∣∣∣∣
t = 0

=
1√

f2
0i(0)− 1

· df0i(t)
dt

∣∣∣∣
t = 0

.

(iii) 〈w0,w0〉 · 〈wi,wi〉 < 0.
Now α0i(t) = arcsinh(f0i(t)) and

dα0i(t)
dt

∣∣∣∣
t = 0

=
1√

1 + f2
0i(0)

· df0i(t)
dt

∣∣∣∣
t = 0

.

Taking into account the fact that all the vectors wi have norm 1, we see
that in all these cases

dα0i(t)
dt

∣∣∣∣
t = 0

=
1√

|〈w0,w0〉 · 〈wi,wi〉 − 〈w0,wi〉2|
· df0i(t)

dt

∣∣∣∣
t = 0

.

Therefore,

dVn(∆t)
dt

∣∣∣∣
t = 0

=
ε

n− 1

n∑
i=1

Vn−2(F0i) ·
dα0i(t)

dt

∣∣∣∣
t = 0

.

�
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2. Dual volume of a tetrahedron in 3-dimensional hyperbolic
space. (A formula of Santaló, revisited.)

We define the dual volume of a hyperbolic n-simplex ∆ in Hn as the “mea-
sure” of the set of hyperplanes of Hn intersecting it. There are two natural
ways to define a measure on the set Pn of hyperplanes of Hn. On the one
hand, Pn can be identified with the Lie group O(1, n)/J , where J is the
subgroup of O(1, n) formed by all transformations leaving a given hyper-
plane of Hn invariant. This Lie group has a left-invariant volume form,
which defines a measure on Pn (cf. [Sa2]). On the other hand, the de Sitter
sphere Sn

1 (1) (which we will simply denote by Sn
1 from now on) is a double

cover of Pn, via the map associating to each point v ∈ Sn
1 the hyperplane

of Hn orthogonal to v. Since the volume form of Sn
1 is invariant under the

antipodal map, it also induces a measure on Pn. It can be checked that
both definitions coincide. Hence the dual volume of a hyperbolic n-simplex
can be computed as the volume of a certain subset of the de Sitter sphere.

2.1. Polar dual and complementary dual of a hyperbolic simplex.
Let ∆ be an n-simplex in hyperbolic space Hn. Let {v0, . . . ,vn} be a basis

of Rn+1
1 such that ∆ = {x0 v0+ · · ·+xn vn | x0 ≥ 0, . . . , xn ≥ 0 } ∩Hn, and

let {w0, . . . ,wn} be the dual basis, which is formed by spacelike vectors.
We will associate to ∆ the following two subsets of the de Sitter sphere Sn

1 :
(i) the polar dual

∆∗ = {x0 w0 + · · ·+ xn wn | x0 ≥ 0, . . . , xn ≥ 0} ∩ Sn
1

which is the intersection of Sn
1 with a simplicial cone of Rn+1

1 but is
not bounded; and

(ii) the complementary dual

∆P = {x0 w0 + · · ·+xn wn |x0 ≥ 0 and xi ≤ 0 for some i ∈ {1, . . . , n}}∩Sn
1

which is a compact subset of Sn
1 but is not a simplex.

Remark 2.1. The following properties are easily checked. The comple-
mentary dual ∆P is a compact polyhedron in Sn

1 , whose faces of codimen-
sion ≥ 1 are riemannian (i.e., they are spherical simplices). The polar
dual ∆∗ is not bounded, but all its faces of codimension ≥ 1 are also
spherical simplices. Moreover, every face of ∆∗ of codimension ≥ 2 is
also a face of ∆P . The dihedral angle of ∆∗ at a codimension 2 face is
the opposite of the dihedral angle of ∆P at the same face. In fact, if
F ∗

ij = {x0 w0 + · · · + xn wn | x0 ≥ 0, . . . , xn ≥ 0 ; xi = xj = 0} ∩ Sn
1 is

a codimension 2 face of ∆∗, then the dihedral angle of ∆∗ at the face F ∗
ij

is −ang(vi,vj) = −arccosh
(
−〈vi,vj〉
|vi| · |vj |

)
, while the dihedral angle of ∆P at

the same face is ang(vi,vj).
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In the following figure we show an example of ∆∗ and ∆P in dimension
2, seen in the projective Klein model.
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What makes the complementary dual ∆P interesting is its geometric in-
terpretation. Consider the map associating to each point w of ∆P the
hyperplane of Hn orthogonal to w. This is a surjective map from ∆P onto
the set of all hyperbolic hyperplanes intersecting ∆. It is not one-to-one,
because there are pairs of antipodal points inside ∆P . However, these pairs
of points are contained in the boundary of ∆P and they form a subset of
measure zero. Hence there is a bijection between ∆P minus a subset of mea-
sure zero, and the set of all hyperbolic hyperplanes intersecting ∆. Therefore
the dual volume of a hyperbolic n-simplex is equal to the volume of its com-
plementary dual ∆P . To compute this volume we use the Schläfli differential
formula in the de Sitter sphere, obtained in the previous section. (Although
∆P is not a simplex, we can just apply the Schläfli formula to a triangulation
of ∆P .)

Lemma 2.1. Let ∆ be a family of hyperbolic n-simplices varying differen-
tiably with respect to one or more parameters. Then their complementary
duals also vary in a differentiable manner, and the differential of their vol-
ume Vn(∆P ) satisfies the following equality:

dVn(∆P ) =
1

n− 1

∑
F ∗

Vn−2(F ∗) dαF ∗

where the sum is taken over all codimension 2 faces F ∗ of the polar dual
∆∗ (which are also codimension 2 faces of ∆P ), Vn−2(F ∗) is the ((n − 2)-
dimensional) volume of the face F ∗ and αF ∗ is the dihedral angle of ∆P at
the face F ∗. (When n− 2 = 0, we set V0(F ∗) = 1.)

2.2. Dual volume of a hyperbolic tetrahedron in dimension 3. The
following proposition can be found in [Sa2, §IV.17.5, Note 1]. Here we prove
it using the Schläfli formula (compare with [Mil]).
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Proposition 2.1 (Santaló). Let ∆ be a hyperbolic tetrahedron in H3, and
let ∆P be its complementary dual. Then the volume of ∆ and its dual volume
are related as follows:

V3(∆) + V3(∆P ) =
1
2

∑
F

(π − αF ) V1(F )

where the sum runs over all edges F of the tetrahedron ∆, V1(F ) is the
length of the edge F and αF is the dihedral angle at the edge F .

Proof. Let ∆ = {x0 v0 + · · · + x3 v3 | x0 ≥ 0, . . . , x3 ≥ 0 } ∩ H3, and
let {w0, . . . ,w3} be the dual basis of {v0, . . . ,v3}. The hyperbolic Schäfli
formula says that

dV3(∆) = −1
2

∑
0≤i<j≤3

V1(Fij) dαij

where Fij = {x0 v0 + · · · + x3 v3 | x0 ≥ 0, . . . , x3 ≥ 0 ; xi = xj = 0} ∩ H3

and αij is the dihedral angle of ∆ at the edge Fij .
On the other hand, we know from Lemma 2.1 above that

dV3(∆P ) =
1
2

∑
0≤k<l≤3

V1(F ∗
kl) dα∗kl

where F ∗
kl = {x0 w0 + · · · + x3 w3 | x0 ≥ 0, . . . , x3 ≥ 0 ; xk = xl = 0} ∩ S3

1

and α∗kl is the dihedral angle of ∆P at the edge F ∗
kl. By Remark 2.1, α∗kl =

ang(vk,vl).
Then the following relations hold. Given 0 ≤ i < j ≤ 3, denote by

0 ≤ k < l ≤ 3 the other two elements of {0, 1, 2, 3} different from i, j. Then:

V1(F ∗
kl) = ang(wk,wl) = π − αij and α∗kl = ang(vk,vl) = V1(Fij).

Hence

dV3(∆P ) =
1
2

∑
0≤i<j≤3

(π − αij) dV1(Fij)

=
1
2

∑
0≤i<j≤3

(π − αij) dV1(Fij)−
1
2

∑
0≤i<j≤3

V1(Fij) dαij

+
1
2

∑
0≤i<j≤3

V1(Fij) dαij

=
1
2

d

 ∑
0≤i<j≤3

(π − αij) ·V1(Fij)

− dV3(∆)

and therefore

d
(
V3(∆) + V3(∆P )

)
= d

(
1
2

∑
F

(π − αF ) ·V1(F )

)
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where the sum extends over all edges F of the tetrahedron ∆. We obtain
on integrating that

V3(∆) + V3(∆P ) =
1
2

∑
F

(π − αF ) ·V1(F ) + constant.

To determine the constant, consider the limiting case when ∆ degenerates

to a point, so that the expression
1
2

∑
F

(π − αF ) V1(F ) tends to zero. In

this case, the complementary dual ∆P degenerates to a plane and V3(∆) +
V3(∆P ) also tends to zero. Hence the constant is zero and the formula is
proved. �

In higher dimensions the relation between the volume and the dual volume
of a hyperbolic n-simplex ∆ is not so straightforward. The reason is that
for n > 3, the volume of a codimension 2 face of ∆ is equal to the dihedral
angle of ∆P at a face of codimension n − 1 6= 2, which does not appear in
the Schläfli formula for the volume of ∆P . To generalize Santaló’s formula
to higher dimensions, we will need some equalities that will be proved in the
next section (see Proposition 3.1 below). We will also benefit from them to
obtain Gauss-Bonnet formulas for n-simplices with riemannian faces in the
de Sitter sphere Sn

1 .

3. Gauss-Bonnet formulas in the de Sitter sphere, for simplices
with riemannian faces.

Let ∆ be an n-simplex in the de Sitter sphere Sn
1 , such that all its faces have

a riemannian induced metric. Let {v0, . . . ,vn} be a basis of Rn+1
1 such that

∆ = {x0 v0 + · · ·+xn vn |x0 ≥ 0, . . . , xn ≥ 0 } ∩Sn
1 , and let {w0, . . . ,wn}

be the dual basis, which is formed by timelike vectors. Then we can find
signs ε0, . . . , εn ∈ {±1} such that ε0w0, . . . , εnwn are contained in the upper
timecone. We will define the polar hyperbolic simplex of ∆ as

∆∗ = {x0 · ε0w0 + · · ·+ xn · εnwn | x0 ≥ 0, . . . , xn ≥ 0} ∩Hn.

Definition 3.1. Given 0 ≤ r ≤ n− 1 and a codimension r + 1 face of the
simplex ∆,

Fi0 . . . ir = {x0 v0 + · · ·+ xn vn |x0 ≥ 0, . . . , xn ≥ 0;

xi0 = · · · = xir = 0} ∩ Sn
1

we define the polar angle of ∆ at the face Fi0 . . . ir , as the r-dimensional
hyperbolic simplex

Θi0 . . . ir = {xi0 · εi0wi0 + · · ·+ xir · εirwir | xi0 ≥ 0, . . . , xir ≥ 0 } ∩Hn
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(which is a face of the polar hyperbolic simplex ∆∗). We define the algebraic
measure of the polar angle Θi0 . . . ir as:

θi0 . . . ir = εi0 · · · εir ·Vr(Θi0 . . . ir)

where Vr(Θi0 . . . ir) is the (r-dimensional) volume of the hyperbolic simplex
Θi0 . . . ir . When r = 0, we set θi = εi = ±1 for i = 0, . . . , n.

Proposition 3.1. Let ∆ be a family of n-simplices in Sn
1 such that all their

faces are riemannian, and such that they vary differentiably with respect to
one or more parameters. For every 1 ≤ r ≤ n− 2 the following equality
holds:

Γ
(

r + 2
2

)
· Γ
(

n− r − 1
2

)
·

∑
dim(F )=r+1

θF · dVr+1(F )(8)

= Γ
(r

2

)
· Γ
(

n− r + 1
2

)
·

∑
dim(F )=r−1

Vr−1(F ) · dθF

where the sum runs over all faces F of the simplex ∆ of the given dimension,
θF is the algebraic measure of the polar angle at the face F and Vk(F ) is
the (k-dimensional) volume of a face F of dimension k of ∆.

Proof. Let F be a codimension n − r − 1 face of ∆. Then F is an (r + 1)-
dimensional spherical simplex, and the differential of its volume is given by
the spherical Schläfli formula

dVr+1(F ) =
1
r

∑
L⊂F

dim(L)=r−1

Vr−1(L) · dα(L,F )(9)

where the sum runs over all faces L of dimension r − 1 of F and α(L,F ) is
the dihedral angle of the spherical simplex F at the face L.

On the other hand, let L be a codimension n − r + 1 face of ∆, and
let ΘL be the polar angle of ∆ at the face L. Then ΘL is an (n − r)-
dimensional hyperbolic simplex, and the differential of its volume is given
by the hyperbolic Schläfli formula. Since the faces of ΘL coincide with the
polar angles of ∆ at the faces that contain L, we can write

dVr(ΘL) =
−1

n− r − 1

∑
L⊂F

dim(F )=r+1

Vn−r−2(ΘF ) · dβ(ΘF ,ΘL)

where the sum runs over all (r + 1)-dimensional faces F of ∆ containing L,
and β(ΘF ,ΘL) is the dihedral angle of the hyperbolic simplex ΘL at the
face ΘF .
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Now the algebraic measures of ΘF and ΘL are in fact θF = ±Vn−r−2(ΘF )
and θL = ±Vn−r(ΘL), so we can write the last expression as follows:

dθL =
−1

n− r − 1

∑
L⊂F

dim(F )=r+1

θF · τ(L,F ) dβ(ΘF ,ΘL)(10)

where τ(L,F ) =
θL ·Vn−r−2(ΘF )
Vn−r(ΘL) · θF

∈ {±1} is a sign depending on the faces

L and F .
For the sake of clarity in the notation, let us assume that F = {x0 v0 +

· · · + xr+1 vr+1 |x0 ≥ 0, . . . , xr+1 ≥ 0 } ∩ Sn
1 , and L = {x0 v0 + · · · +

xr+1 vr+1 | x0 ≥ 0, . . . , xr+1 ≥ 0 ; x0 = x1 = 0 } ∩ Sn
1 . The angle of F at

its (r − 1)-dimensional face L is

α(L,F ) = π − ang(w′
0,w

′
1)

where w′
0, w′

1 are two vectors belonging to the subspace of Rn+1
1 spanned

by {v0, . . . ,vr+1}, such that 〈w′
i ,vj〉 = δij for i = 0, 1 and j = 0, . . . , r+1.

Now the subspace spanned by {v0, . . . ,vr+1} is orthogonal to the subspace
spanned by {wr+2, . . . ,wn}. Hence the vectors w′

0, w′
1 are uniquely deter-

mined by the following conditions:{
〈w′

i,vj〉 = δij

〈w′
i,wk〉 = 0 for i = 0, 1; j = 0, . . . , r + 1; k = r + 2, . . . , n.(11)

On the other hand, the polar angles of ∆ at the faces F and L are ΘF =
{xr+2 · εr+2wr+2 + · · · + xn · εnwn | xr+2 ≥ 0, . . . , xn ≥ 0} ∩ Hn, and
ΘL = {x0 ·ε0w0 +x1 ·ε1w1 +(xr+2 ·εr+2wr+2 + · · ·+xn ·εnwn) | x0 ≥ 0, x1 ≥
0, xr+2 ≥ 0, . . . , xn ≥ 0} ∩ Hn, respectively. Their algebraic measures are
θF = εr+2 · . . . ·εn ·Vn−r−2(ΘF ) and θL = ε0 ·ε1 ·εr+2 · · · εn ·Vn−r(ΘL). Hence
the sign τ(L,F ) appearing in the Schläfli formula (10) is τ(L,F ) = ε0 · ε1.

The dihedral angle of the hyperbolic simplex ΘL at the face ΘF is

β(ΘF ,ΘL) = π − ang(v′0,v
′
1)

where v′0, v′1 are two vectors belonging to the subspace of Rn+1
1 spanned

by {ε0w0, ε1w1, εr+2wr+2, . . . , εnwn}, such that 〈v′i, εjwj〉 = δij for i = 0, 1
and j = 0, 1, r + 2, . . . , n. Again the subspace spanned by {ε0w0, ε1w1,
εr+2wr+2, . . . , εnwn} is orthogonal to the subspace spanned by {v2, . . . ,
vr+1}. Hence the vectors v′0, v′1 are uniquely determined by the following
conditions:{

〈εiv′i,wj〉 = δij

〈εiv′i,vk〉 = 0 for i = 0, 1; j = 0, 1, r + 2, . . . , n;
k = 2, . . . , r + 1 .

(12)

Consider the subspace Π of Rn+1
1 spanned by the vectors {v2, . . . ,vr+1,

wr+2, . . . ,wn}. It has codimension 2 in Rn+1
1 , because it is the direct sum

of the two mutually orthogonal subspaces spanned by {v2, . . . ,vr+1} and
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{wr+2, . . . ,wn}, respectively. From conditions (11) and (12) we deduce that
{w′

0, w′
1} and {ε0v′0, ε1v′1} are in fact dual basis of the plane Π⊥, orthogonal

to Π in Rn+1
1 . Hence

ang(w′
0 ,w′

1) = π − ang(ε0v′0 , ε1v′1)

and therefore

dα(L,F ) = −d
(
ang(w′

0,w
′
1)
)

= d
(
ang(ε0v′0, ε1v

′
1)
)

= ε0 ε1 · d
(
ang(v′0,v

′
1)
)

= −τ(L,F ) · dβ(ΘF ,ΘL).

Applying now the Schläfli formulas (9) and (10), we get∑
dim(F )=r+1

θF · dVr+1(F )

=
1
r

∑
dim(F )=r+1

∑
L⊂F

dim(L)=r−1

θF ·Vr−1(L) · dα(L,F )

=
−1
r

∑
dim(L)=r−1

∑
L⊂F

dim(F )=r+1

Vr−1(L) · θF · τ(L,F ) · dβ(ΘF ,ΘL)

=
n− r − 1

r

∑
dim(L)=r−1

Vr−1(L)

·

 −1
n− r − 1

∑
L⊂F

dim(F )=r+1

θF · τ(L,F ) dβ(ΘF ,ΘL)


=

n− r − 1
r

∑
dim(L)=r−1

Vr−1(L) · dθL.

Using the properties of the gamma function we finally arrive at the desired
formula. �

Let us define the following constants (cf. [Sa1]) for 0 ≤ i ≤ n− 1:

ci =
Γ( i+1

2 ) · Γ(n−i
2 )

2 Γ(n+1
2 )

=
Vol(Sn)

Vol(Si) ·Vol(Sn−1−i)
.

Then for 1 ≤ r ≤ n− 2, the equality (8) can also be written as follows:

cr+1 ·
∑

dim(F )=r+1

θF · dVr+1(F )− cr−1 ·
∑

dim(F )=r−1

Vr−1(F ) · dθF = 0(13)
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Remark 3.1. In the proof of Proposition 3.1 we have never used the fact
that the simplex ∆ is compact. Therefore, formula (13) holds for any non-
empty subset of the de Sitter sphere Sn

1 which is the intersection of Sn
1 with

a simplicial cone of Rn+1
1 , and such that all its faces of codimension ≥ 1 are

riemannian. (For example, the polar dual ∆∗ of a hyperbolic n-simplex ∆,
cf. §2.1.)

A Gauss-Bonnet formula.

Proposition 3.2. Let ∆ be an n-simplex in the de Sitter sphere Sn
1 such

that all its faces are riemannian. Then[
n
2

]∑
k=0

(−1)k · c2k ·
∑

dim(F )=2k

V2k(F ) · θF = 0(14)

where the sum runs over all faces F of ∆ of even dimension, V2k(F ) is the
volume of a face F of dimension 2k, θF is the algebraic measure of the polar
angle of ∆ at the face F , and ci is the constant defined by

ci =
Vol(Sn)

Vol(Si) ·Vol(Sn−1−i)
=

Γ( i+1
2 ) · Γ(n−i

2 )
2 Γ(n+1

2 )
if 0 ≤ i ≤ n− 1 and cn = 1.(

We are using here the following conventions: if k =
n

2
, then the polar angle

θ∆ at the whole simplex is taken to be equal to −1; if k =
n− 1

2
, then the

polar angles at the codimension 1 faces are ±1 (see Definition 3.1), and if
k = 0, then the volume of a vertex is always 1.

)
Remark 3.2. For even dimension n, the Gauss-Bonnet formula (14) gives
an expression of the volume of the simplex ∆ in terms of the volumes of
simplices of lesser dimension:

(−1)
n
2 ·Vn(∆) =

n
2−1∑
k=0

(−1)k · c2k ·
∑

dim(F )=2k

V2k(F ) · θF if n is even.

When n is odd, the Gauss-Bonnet formula does not involve the volume of
the simplex itself. Therefore, it cannot be used to reduce Vn(∆) to volumes
in smaller dimensions:

n−1
2∑

k=0

(−1)k · c2k ·
∑

dim(F )=2k

V2k(F ) · θF = 0 if n is odd.
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Proof. We will only give the proof in the case when n is even. The other
case is analogous.

Let ∆ be an n-simplex in Sn
1 such that all its faces are riemannian, where

n is even. The Schläfli formula in the de Sitter sphere (Theorem 1.1) says
that

dVn(∆) =
1

n− 1

∑
F

Vn−2(F ) dαF

where the sum is taken over all codimension 2 faces F of ∆ and αF is the
dihedral angle of ∆ at the face F . Now from the definitions of dihedral angle
and polar angle it follows easily that the polar angle of ∆ at the face F is

θF = −αF . Considering also that cn−2 =
Γ(n−1

2 )
2 Γ(n+1

2 )
=

1
n− 1

, we can write

(−1)
n
2 · dVn(∆) = (−1)

(n−2)
2 · cn−2 ·

∑
dim(F )=n−2

Vn−2(F ) dθF .

On the other hand, from formula (13) we get

(−1)
(n−2)

2 · cn−2 ·
∑

dim(F )=n−2

Vn−2(F ) dθF = (−1)
n
2 · dVn(∆)

(−1)
(n−2)

2 · cn−2 ·
∑

dim(F )=n−2

θF dVn−2(F ) + (−1)
(n−4)

2 · cn−4

·
∑

dim(F )=n−4

Vn−4(F ) dθF = 0

...
c4 ·

∑
dim(F )=4

θF dV4(F )− c2 ·
∑

dim(F )=2

V2(F ) dθF = 0

−c2 ·
∑

dim(F )=2

θF dV2(F ) + c0 ·
∑

dim(F )=0

dθF = 0.

Adding up all these equalities and integrating, we obtain

(−1)
n
2 ·Vn(∆) =

n
2−1∑
k=0

(−1)k · c2k ·
∑

dim(F )=2k

V2k(F ) · θF + constant.

The constant can be found to be zero by considering the limiting case as the
polar hyperbolic simplex ∆∗ degenerates to a point. Then all polar angles
θF → 0, and the simplex ∆ degenerates into a subset of a hyperplane, so
Vn(∆) → 0. �

Remark 3.3. I have called formula (14) a Gauss-Bonnet formula because
of its analogy to the generalized Gauss-Bonnet formulas for convex polyhe-
dra in non-Euclidean space of constant curvature κ = ±1 (cf. [Sa1], [AVS]).
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There is, however, an essential difference in that the right-hand side of Equa-
tion (14) is zero. Therefore, if we tried to extend the formula (14) to poly-
hedra in Sn

1 which admit a triangulation by simplices with riemannian faces,
the Euler characteristic of the polyhedron would never appear.

Remark 3.4. The same procedure used in the proofs of Propositions 3.1
and 3.2 can also be applied in the spherical and hyperbolic case to prove
the above mentioned Gauss-Bonnet formulas for spherical and hyperbolic
simplices.

4. Dual volume of a hyperbolic n-simplex. (A generalization of
Santaló’s formula.)

Let ∆ = {x0 v0 + · · ·+ xn vn | x0 ≥ 0, . . . , xn ≥ 0 } ∩Hn be a hyperbolic
n-simplex, and let {w0, . . . ,wn} be the dual basis {v0, . . . ,vn}. Consider
the polar dual of ∆, ∆∗ = {x0 w0 + · · ·+ xn wn | x0 ≥ 0, . . . , xn ≥ 0} ∩ Sn

1 ,
and the complementary dual, ∆P = {x0 w0 + · · ·+xn wn | x0 ≥ 0 and xi ≤
0 for some i ∈ {1, . . . , n}}∩Sn

1 . We saw in Section 2.1 that the dual volume
of ∆ (i.e., the measure of the set of hyperbolic hyperplanes intersecting it)
is equal to the volume of its complementary dual ∆P . Now we are going
to find a relation between this dual volume Vn(∆P ) and the volumes of all
odd-dimensional faces of the hyperbolic simplex ∆ and the polar angles at
those faces.

Definition 4.1. For 0 ≤ k ≤ n− 1, we will associate to each face of codi-
mension k + 1 of the simplex ∆,

F = {x0 v0 + · · ·+ xn vn |x0 ≥ 0, . . . , xn ≥ 0; xi1 = · · · = xik = 0} ∩Hn

the following k-dimensional face of the polar dual ∆∗:

F ∗ = {xi1 vi1 + · · ·+ xik vik |xi1 ≥ 0, . . . , xik ≥ 0} ∩ Sn
1 .

We will call F and F ∗ polar faces. We define the polar angle θF of the
hyperbolic simplex ∆ at the face F as the volume of its polar face F ∗ (which
is a k-dimensional spherical simplex).

Remark 4.1. If F is a codimension 2 face of ∆ and αF is the dihedral angle
of ∆ at F , then the polar angle at F is θF = π − αF .

Proposition 4.1. Let ∆ be a hyperbolic n-simplex. Then its dual volume
is

Vn(∆P ) =

[
n−1

2

]∑
k=0

(−1)k · c2k+1 ·
∑

dim(F )=2k+1

V2k+1(F ) · θF(15)

where the sum extends over all odd-dimensional faces F of ∆, V2k+1(F ) is
the volume of a face F of dimension 2k + 1, θF is the polar angle of ∆ at
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the face F , and ci is the constant defined by

ci =
Vol(Sn)

Vol(Si) ·Vol(Sn−1−i)

=
Γ( i+1

2 ) · Γ(n−i
2 )

2 Γ(n+1
2 )

if 0 ≤ i ≤ n− 1 and cn = 1.

(
We are using here the following conventions: if k =

n− 1
2

, then the polar

angle θ∆ at the whole simplex is taken to be equal to 1 ; if k =
n− 2

2
, then

the polar angles at the codimension 1 faces are 1, and if k = 0, then the
volume of a vertex is always 1.

)
Remark 4.2. For odd dimension n, formula (15) relates the volume of the
n- simplex ∆ with its dual volume:

Vn(∆P ) + (−1)
n+1

2 ·Vn(∆)

=

n−3
2∑

k=0

(−1)k · c2k+1 ·
∑

dim(F )=2k+1

V2k+1(F ) · θF if n is odd.

In particular, in dimension 3 we obtain again Santaló’s formula for hyper-
bolic tetrahedra.

When n is even, formula (15) relates the dual volume of the n-simplex ∆
with its “surface area” Sn−1(∆), i.e., with the sum of the volumes of all its
faces of codimension 1:

Vn(∆P ) + (−1)
n
2 · cn−1 · Sn−1(∆)

=

n−4
2∑

k=0

(−1)k · c2k+1 ·
∑

dim(F )=2k+1

V2k+1(F ) · θF if n is even.

In particular, in dimension 2 this says that the measure of the set of all lines
intersecting a planar hyperbolic triangle, is equal to the perimeter of the
triangle. In dimension 4, the expression is a little more complicated:

3 V4(∆P ) + 2 S3(∆) =
∑

dim(F )=1

V1(F ) · θF

Proof. We will do it only when n is odd, since the other case is analogous.
Let us apply the formulas (13) of Section 3 to the polar dual ∆∗ of ∆

(cf. Remark 3.1). Since the constants ci satisfy the relation ci = cn−i−1, we
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have that for 2 ≤ r ≤ n− 1,

cr−2 ·
∑

dim(F ∗)=n−r+1

θF ∗ · dVn−r+1(F ∗)(16)

− cr ·
∑

dim(F ∗)=n−r−1

Vn−r−1(F ∗) · dθF ∗ = 0

where the sums extend to all faces F ∗ of the polar dual ∆∗ of the given
dimension, θF ∗ is the algebraic measure of the polar angle of ∆∗ at the face
F ∗, and Vk(F ∗) is the (k-dimensional) volume of a k-dimensional face F ∗

of ∆∗.
Now the dual basis {v0, . . . ,vn} of {w0, . . . ,wn} is formed by timelike

vectors contained in the upper timecone. Therefore, the algebraic measure
of the polar angle of ∆∗ at the face F ∗ coincides with the volume of the
polar face F of ∆ (cf. Definition 3.1). Hence if F ⊂ ∆ and F ∗ ⊂ ∆∗ are
polar faces of dimensions r and n− r − 1, respectively, then

Vr(F ) = θF ∗ and Vn−r−1(F ∗) = θF .

Therefore, for 1 ≤ r ≤ n− 2 the equality (16) can be written in terms of
quantities associated only to the hyperbolic simplex ∆ itself, as follows:

cr−2 ·
∑

dim(F )=r−2

Vr−2(F ) · dθF − cr ·
∑

dim(F )=r

θF · dVr(F ) = 0(17)

where the sums run over all faces F of ∆ of the given dimension, θF is the
polar angle of ∆ at the face F , and Vk(F ) is the (k- dimensional) volume
of a face F of dimension k of ∆.

On the other hand, considering the Remark 4.1 and the fact that c1 =

cn−2 =
1

n− 1
, we know from the hyperbolic Schläfli formula that

dVn(∆) = cn−2 ·
∑

dim(F )=n−2

Vn−2(F ) dθF(18)

and from the Schläfli formula in the de Sitter sphere, that

dVn(∆P ) = c1 ·
∑

dim(F ∗)=n−2

Vn−2(F ∗) dαF ∗

where we sum over all codimension 2 faces F ∗ of ∆∗, and αF ∗ is the dihedral
angle of ∆P at the face F ∗. But αF ∗ = V1(F ) and Vn−2(F ∗) = θF , where
F is the polar face of F ∗. Hence

dVn(∆P ) = c1 ·
∑

dim(F )=1

θF dV1(F ).(19)
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Let us combine formulas (17), (18) and (19):

c1 ·
∑

dim(F )=1

θF dV1(F ) = dVn(∆P )

c1 ·
∑

dim(F )=1

V1(F ) dθF − c3 ·
∑

dim(F )=3

θF dV3(F ) = 0

...

(−1)
(n−5)

2 · cn−4 ·
∑

dim(F )=n−4

Vn−4(F ) dθF + (−1)
(n−3)

2 · cn−2

·
∑

dim(F )=n−2

θF dVn−2(F ) = 0

(−1)
(n−3)

2 · cn−2 ·
∑

dim(F )=n−2

Vn−2(F ) dθF = (−1)
(n−3)

2 · dVn(∆).

Adding up all these equalities and integrating we obtain

Vn(∆P ) + (−1)
(n−3)

2 ·Vn(∆)

=

n−3
2∑

k=0

(−1)k · c2k+1 ·
∑

dim(F )=2k+1

V2k+1(F ) · θF + constant.

Again we see that the constant is zero by considering the limiting case as ∆
degenerates to a point (and ∆P degenerates to a hyperplane in Sn

1 ). �
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[Schlä] L. Schläfli, On the multiple integral
R n

dx dy . . . dz, whose limits are p1 = a1x +

b1y + · · · + h1z > 0 , p2 > 0, · · · , pn > 0, and x2 + y2 + · · · + z2 < 1, Quart. J.
Pure Appl. Math., 2 (1858), 69-301.
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