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In this paper we find the formula for the pluricomplex
Green function of the unit ball of Cn with two poles of equal
weights. The strategy will be to show the existence of a folia-
tion of the ball (singular at the poles) by proper smooth ana-
lytic discs passing through one or through both of the poles,
such that the restriction of the pluricomplex Green function
to these discs is harmonic away from the poles. This folia-
tion is obtained by solving a suitable extremal problem, in
analogy to the results of Lempert in the case of one pole for
convex domains. Using the expression of the Green function
along each leaf of the foliation, we construct its formula on
the whole ball. We then show that this function is of class
C1,1 but not C2.

1. Introduction and statement of results.

Let us recall the definition of the pluricomplex Green function and its con-
nection to the complex Monge-Ampère operator. Let Ω be a bounded
open set in Cn and let p be a point in Ω. A plurisubharmonic func-
tion v on Ω is said to have a logarithmic pole at p with weight ν > 0
if v(z) ≤ ν log ‖z − p‖ + c, for some constant c and for z in a neighbor-
hood of p. The pluricomplex Green function gΩ(z, p) of Ω with pole at p
is defined by gΩ(z, p) = sup v(z), where the supremum is taken over the
set of negative plurisubharmonic functions v on Ω which have a logarith-
mic pole at p with weight ν = 1. This definition, given by Klimek [K1], is
in analogy to the one dimensional case, where one obtains in this way the
(negative) Green function for the Laplace operator. The function gΩ(·, p)
is negative and plurisubharmonic in Ω, maximal in Ω \ {p}, and it has a
logarithmic pole at p. It is also decreasing with respect to holomorphic
mappings, i.e., g

Ω′ (f(z), f(p)) ≤ gΩ(z, p), where Ω′ is a bounded open set
in Cm and f : Ω → Ω′ is a holomorphic mapping. It follows that gΩ is
biholomorphically invariant. In the case of the unit ball B of Cn we have
gB (z, 0) = log ‖z‖. Since the automorphism group of B is transitive we see
that gB (z, p) = gB (Tz, 0), where T ∈ Aut(B) satisfies T (p) = 0.
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If Ω is a hyperconvex domain (i.e., it has a negative plurisubharmonic
exhaustion function) and if for z ∈ ∂Ω and p ∈ Ω we define gΩ(z, p) = 0, then
gΩ : Ω × Ω → [−∞, 0] is continuous. This result was obtained by Demailly
[D1]. He also showed that when Ω is hyperconvex gΩ(·, p) is the unique
solution of the following Dirichlet problem for the complex Monge-Ampère
operator: u ∈ PSH(Ω)

⋂
C(Ω \ {p}), u(z) − log ‖z − p‖ = O(1) as z → p,

(ddcu)n = δp in Ω, u = 0 on ∂Ω. Here d = ∂ + ∂, dc = 1
2πi(∂ − ∂), and δp is

the Dirac mass at p. The Monge-Ampère operator (ddcu)n acting on locally
bounded plurisubharmonic functions was defined by Bedford and Taylor
[BT] (we also refer to [D2] and [K2] for a detailed presentation). We recall
that the definition of the Monge-Ampère operator can be extended so that it
applies to plurisubharmonic functions with finitely many singularities. We
refer to [D2] and [FS] for extensions of the complex Monge-Ampère operator
to suitable classes of unbounded plurisubharmonic functions.

The pluricomplex Green function with finitely many poles was introduced
and studied by Lelong [L]. If Ω is a bounded open set in Cn and A =
{(pj , νj) ∈ Ω × (0,∞) : j = 1, . . . , k} the pluricomplex Green function
gΩ(·, A) of Ω with poles in A is defined by gΩ(z,A) = sup v(z), where the
supremum is taken over the set of negative plurisubharmonic functions v on
Ω which have a logarithmic pole at pj with weight νj , j = 1, . . . , k. It is
easy to see that gΩ(·, A) is negative and plurisubharmonic on Ω, maximal
on Ω \ {p1, . . . , pk}, and it has a logarithmic pole at each pj with weight
νj . If Ω is hyperconvex and we define gΩ(z,A) = 0 for z ∈ ∂Ω, then
gΩ(·, A) : Ω → [−∞, 0] is continuous and (ddcgΩ(·, A))n =

∑k
j=1 ν

n
j δpj ,

as measures on Ω.
We note that in general we have

k∑
j=1

νj gΩ(z, pj) ≤ gΩ(z,A) ≤ min{νj gΩ(z, pj) : j = 1, . . . , k}.

In dimension one the complex Monge-Ampère operator is the same as the
Laplace operator, hence it is linear; so equality holds in the first inequality of
the above relation. This is however far from being the case in dimensions n ≥
2 (see [L]), when the complex Monge-Ampère operator is highly nonlinear.

We denote by ∆ the unit disc in C and we consider the function δΩ(z, p) =
inf{log s}, where the infimum is taken over all s ∈ (0, 1) for which there is
an analytic disc f : ∆ → Ω such that f(0) = z and f(s) = p. In the case of
one pole it is well known that gΩ(z, p) ≤ δΩ(z, p), for all z ∈ Ω (see [K2]).
It was proved by Lempert that if Ω is a bounded convex domain in Cn then
gΩ(z, p) = δΩ(z, p), for all z ∈ Ω ([Lm1], [Lm2]). Let now Ω be a bounded
strongly convex domain in Cn with real analytic (or C∞) boundary (by
strongly convex we mean that Ω has a defining function whose real Hessian
is positive definite on all real tangent spaces Tp(∂D), p ∈ ∂D). Lempert
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showed in this case that the function gΩ(·, p) is real analytic (respectively
C∞) on Ω \ {p} and that for each z ∈ Ω \ {p} there is a unique properly
embedded analytic disc fz : ∆ → Ω such that fz(0) = z, fz(t) = p for a
unique t > 0, and the function ζ ∈ ∆ → gΩ(fz(ζ), p) is harmonic in ∆ \ {t}.
We have in fact gΩ(fz(ζ), p) = log

∣∣∣ ζ−t1−tζ

∣∣∣, ζ ∈ ∆. Moreover, the curves
fz(∆) foliate Ω \ {p}. We recall that in the case of the ball B the foliation
corresponding to gB (·, p) consists of the complex lines through p.

So far very little is known about the “structure” of the pluricomplex Green
function with several poles. A natural question to ask is what are in this
case the analogues of Lempert’s results mentioned above. In particular, if Ω
is a smoothly bounded strongly convex domain does there exist a foliation of
Ω \ {p, q} by analytic discs on which the pluricomplex Green function with
poles at p and q is harmonic? Moreover, what regularity does this function
have?

In the present paper we compute the pluricomplex Green function of the
unit ball of Cn with two poles, and we provide answers to the above questions
in this case. We now state our results.

Let Ω be a bounded domain in Cn and let A = {(p1, ν1), . . . , (pk, νk)} ⊂
Ω × (0,+∞). In analogy to the results mentioned above it is natural to
consider the function

δΩ(z,A) = inf{ν1 log |s1|+ · · ·+ νk log |sk|} ,

where the infimum is taken over all s1, . . . , sk ∈ ∆ for which there exists an
analytic disc f : ∆ → Ω such that f(0) = z and f(sj) = pj , j = 1, . . . , k.
Using this we define for z ∈ Ω

δA
Ω
(z) = min{δΩ(z, S) : S ⊆ A, S 6= ∅}.

We have the following proposition, whose proof will be postponed until the
end of the paper.

Proposition 1. The function z → δA
Ω
(z) is negative, it has a logarithmic

pole with weight νj at each point pj, j = 1, . . . , k, and it satisfies gΩ(z,A) ≤
δA
Ω
(z) on Ω. Moreover, if Ω is taut then the function δA

Ω
: Ω → [−∞, 0) is

continuous.

Let us now specialize to our situation. We denote by Bn the unit ball
of Cn and by gn(·, p, q) the pluricomplex Green function of Bn with poles
at p 6= q ∈ Bn and with weight one at each pole. By using a suitable
automorphism of Bn we may assume without loss of generality that p =
−q = (β, 0, . . . , 0), for some β ∈ (0, 1) (we indicate how this can be done
at the beginning of Section 2). We also denote by gn(·, p) and gn(·, q) the
pluricomplex Green functions of Bn with poles at p and q respectively. The
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functions δΩ introduced above take the following form:

δn(z, p) = inf{log s : s ∈ (0, 1), ∃f ∈ O(∆, Bn), f(0) = z, f(s) = p},
(1.1)

δn(z, p, q) = inf{log s+ log |t|},(1.2)

where the infimum is taken over the set of (s, t) ∈ (0, 1)×∆ for which there
exists f ∈ O(∆, Bn) satisfying f(0) = z, f(s) = p, f(t) = q, and

δp,qn (z) = min{δn(z, p), δn(z, q), δn(z, p, q)}.(1.3)

Note that in the definition of δn(z, p, q) we used the normalization s > 0
(compare with the definition of δΩ(z,A)); this can always be achieved by
using a rotation of ∆.

We remark that by Lemma 8 of [AT1] we have in fact δn(z, p, q) ≤
δn(z, p), so δp,qn (z) = δn(z, p, q) on Bn.

We now discuss the two dimensional case n = 2. The general case n ≥ 2
will follow easily from this one. So we assume n = 2 and p = −q = (β, 0),
where β ∈ (0, 1). We divide B2 into three regions: Γp and Γq, which are
intersections of B2 with two closed complex cones with vertex at p and q
respectively, and the complement of their union, D. They are defined as
follows:

Γp = {z = (z1, z2) ∈ B2 : |β − z1| ≤ β|z2|},(1.4)

Γq = {z ∈ B2 : |β + z1| ≤ β|z2|} ,(1.5)

D = B2 \ (Γp ∪ Γq)(1.6)

= {z ∈ B2 : β|z2| < min{|β − z1|, |β + z1|}}.
The main result of this paper is the following:

Theorem 2. The pluricomplex Green function of the unit ball of C2 with
poles at p = −q = (β, 0) is given by

g2(z, p, q) = δ2(z, p, q)

=


g2(z, p) = log

√
|β−z1|2+(1−β2)|z2|2

|1−βz1| , z ∈ Γp,
1
2 log |β2−z21 |2+β4|z2|4+2(1−β4)|z2|2+

√
M(z)

2|1−β2z21 |2
, z ∈ D,

g2(z, q) = log
√
|β+z1|2+(1−β2)|z2|2

|1+βz1| , z ∈ Γq,

where M(z) = (β4|z2|4 − |β2 − z2
1 |2)2 + 4(1− β4)|z2|2 |β2|z2|2 − (β2 − z2

1)|2.
The function g2(·, p, q) is real analytic in int Γp∪D∪int Γq, it is of class C1,1

on B2 \ {p, q}, and its first order partial derivatives extend continuously to
∂B2. The domain D is foliated by a one parameter family of complex curves
Lγ, γ ∈ ∆, which are given by the formula

Lγ = {z ∈ B2 : γz2
1 = β2(γ − z2)(1− γz2)}.
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The leaves Lγ are properly embedded submanifolds of B2 and the restriction
of g2(·, p, q) to each Lγ is harmonic away from p and q.

In order to describe the Green function gn(·, p, q), p = −q = (β, 0, . . . , 0),
for arbitrary n, we write z = (z1, z′) ∈ C×Cn−1 and we consider the regions

Γp = {z ∈ Bn : |β − z1| ≤ β‖z′‖} ,
Γq = {z ∈ Bn : |β + z1| ≤ β‖z′‖} ,
D = Bn \ (Γp ∪ Γq) = {z ∈ Bn : β‖z′‖ < min{|β − z1|, |β + z1|}} .

For u = (0, u′) ∈ ∂Bn we let Vu = C e1 + Cu be the subspace generated by
e1 = (1, 0, . . . , 0) and u.

Corollary 3. We have gn(z, p, q) = g2((z1, ‖z′‖), p?, q?), where p? = −q? =
(β, 0), and gn(·, p, q) ∈ C1,1(Bn \ {p, q}). Moreover, the function gn(·, p, q)
is real analytic in int Γp ∪D ∪ int Γq, and its first order partial derivatives
extend continuously to ∂Bn. The leaves of the corresponding foliation are
the following: The z1-axis, complex lines through p contained in Γp, complex
lines through q contained in Γq, and leaves Lu,γ ⊂ Vu ∩Bn of the form

Lu,γ : z = λ1e1 + λ2u, γλ
2
1 = β2(γ − λ2)(1− γλ2),

where γ ∈ ∆ \ {0}, u = (0, u′) ∈ ∂Bn, which foliate D \ z1-axis.

The proofs of Theorem 2 and Corollary 3 are given in Section 2 of the
paper. We have seen above that gn(z, p, q) = gn(z, p) for z ∈ Γp and
gn(z, p, q) = gn(z, q) for z ∈ Γq. Similar results actually hold in the general
case when the weights of the poles are arbitrary. We let A = {(p, µ), (q, ν)} ⊂
Bn× (0,+∞) and we denote by gn(·, A) the pluricomplex Green function of
Bn with poles in A. Without loss of generality we can assume that µ ≥ ν
and that p = 0 and q = (α, 0, . . . , 0), α > 0, by using a suitable automor-
phism of Bn. For u = (u1, . . . , un) ∈ ∂Bn we let Lu = {ζu : ζ ∈ ∆}
and Γ0 =

⋃
{Lu : |u1| ≤ α/2}. Moreover, we let Γq = T (Γ0), where

T ∈ Aut(Bn) is an involution (T ◦ T = Id) satisfying T (q) = 0 (see [R]).

Proposition 4. In the above setting the following hold:

gn(z,A) = µgn(z, 0) for z ∈ Γ0,(1.7)
µgn(z, q) ≤ gn(z,A) ≤ νgn(z, q) for z ∈ Γq.(1.8)

In particular, the function z → gn(z,A) is not real analytic on Bn \ {0, q}
and hence is not of the form gn(z,A) = log ‖H(z)‖, for any holomorphic
map H : Bn → Bn. Moreover, if µ > ν then in general there is no complex
line L containing q and such that gn(z,A) = νgn(z, q) for all z ∈ L ∩Bn.

It was pointed out to us by L. Lempert that the existence of similar
regions Γ0, Γq was noticed independently by F. Wikström. As we shall see,
the existence of Γ0 follows from the following fact: If Lu ⊂ Γ0 then there
is a holomorphic map F : Bn → ∆ such that F (q) = 0 and F (ζu) = ζ
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for all ζ ∈ ∆. Our next result can be viewed as a “partial converse” of
this fact. Before we state it, we remark that such a map F gives rise to
a holomorphic retraction r : Bn → Bn onto Lu, r(z) = F (z)u, such that
r(p) = r(q). It is known that the holomorphic retracts of Bn are precisely
its affine subsets [S]. However, there are examples in [R] showing that for a
given holomorphic retract X ⊂ Bn there are many retractions r such that
r(Bn) = X.

Theorem 5. Let A = {(0, µ), (q, ν)} ⊂ Bn× (0,+∞), where µ ≥ ν, and let
z0 = ζu, for some ζ ∈ ∆\{0} and u ∈ ∂Bn. We have gn(z0, A) = µgn(z0, 0)
if and only if there exists a sequence of holomorphic functions Fj : Bn → C,
j = 1, 2, . . . , such that Fj(q) = 0 for all j ≥ 1 and the following hold:

(i) Fj(tu) = tj, for all t ∈ ∆ and for all j ≥ 1.
(ii) lim supj→∞

1
j log |Fj(z)| ≤ gn(z,A)/µ, for all z ∈ Bn.

The proofs of Proposition 4 and Theorem 5 are given in Section 3. We
also make a remark there on what the analogue of Theorem 5 is in the case
when Bn is replaced by a smoothly bounded strongly convex domain (the
proof remains the same as in the case of Bn).

Motivated by the above results we make the following:

Conjecture. If Ω is a bounded convex domain in Cn and A is a finite subset
of Ω× (0,+∞) then gΩ(z,A) = δA

Ω
(z) for all z ∈ Ω.

Acknowledgement. The results of this paper constitute a part of my
doctoral thesis. I am grateful to Professor John Erik Fornaess for all that
he taught me in the field of several complex variables, and in particular for
the stimulating discussions we had regarding this paper. I would also like
to thank the referee for valuable suggestions and comments.

2. Proof of Theorem 2.

We begin by discussing the simplifications we use by arranging the poles p,
q in special positions. For a ∈ Bn let us denote by Ta the automorphism of
Bn defined as follows:

Ta(z) =
a− Pa(z)− (1− ‖a‖2)1/2Qa(z)

1− 〈z, a〉
,(2.1)

where Pa(z) = 〈z,a〉
〈a,a〉 a is the projection onto C a and Qa = Id−Pa is the pro-

jection onto the orthogonal complement of C a (see [R]). Since gn is biholo-
morphically invariant, by applying Tp followed by a unitary transformation
we can assume p = 0 and q = (α, 0, . . . , 0), for some α ∈ (0, 1). If we set
a = (α/(1 +

√
1− α2), 0, . . . , 0) then Ta(p) = −Ta(q) = (β, 0, . . . , 0), where

β = α/(1+
√

1− α2) ∈ (0, 1). So we may assume that p = −q = (β, 0, . . . , 0)
for some β ∈ (0, 1).
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Let us now fix n = 2 and assume that p = −q = (β, 0). The proof of
Theorem 2 goes as follows. We first compute δ2(z0, p, q) for all the points
z0 = (0, γ), γ ∈ ∆. We also show that for such points z0 the extremal discs
fγ : ∆ → B2 for which the infimum in the definition (1.2) of δ2(z0, p, q) is
attained are unique, properly embedded in B2, and passing through both
points p, q; moreover, we compute the discs fγ explicitly. Eliminating ζ
from the equations fγ(ζ) = z we obtain that

fγ(∆) = {z ∈ B2 : γz2
1 = β2(γ − z2)(1− γz2)}.

We use this to show that the discs fγ foliate the domain D defined by (1.6).
Let us write sγ = f−1

γ (p) > 0 and tγ = f−1
γ (q); we will see that tγ = −sγ . If

z = fγ(ζ?) then using the map ζ → fγ((ζ? − ζ)/(1 − ζ?ζ)) it easily follows
from the definition of δ2(z, p, q) that

δ2(z, p, q) ≤ log

∣∣∣∣∣ s2γ − ζ2
?

1− s2γ ζ
2
?

∣∣∣∣∣ = g?(z).

As the curves Lγ = fγ(∆), γ ∈ ∆, foliate D, the function g? introduced
above is well defined on D. We extend g? to B2 by setting g?(z) = g2(z, p)
for z ∈ Γp and g?(z) = g2(z, q) for z ∈ Γq, where Γp and Γq are defined by
(1.4) and (1.5). The function g? is precisely the one given in the statement
of Theorem 2. By the construction of g? we clearly have

g2(z, p, q) ≤ δ2(z, p, q) = δp,q2 (z) ≤ g?(z)

for z ∈ B2. Finally we show that g? is a negative plurisubharmonic function
on B2 of class C1,1, with logarithmic poles at p and q of weight one, hence
g? ≤ g2(·, p, q). We also prove that the first order partial derivatives of
g2(·, p, q) are continuous up to the boundary of B2.

We now proceed with the proof of Theorem 2. For γ ∈ ∆ let us define
sγ ∈ (0, 1) by

s2γ =
β2(1− |γ|2) +

√
β4(1− |γ|2)2 + 4|γ|2
2

.(2.2)

We also introduce the maps fγ : ∆ → B2 given by

fγ(ζ) =

(
sγβ(1− |γ|2)ζ
s2γ − |γ|2ζ2

,
γ(s2γ − ζ2)
s2γ − |γ|2ζ2

)
.(2.3)

Proposition 2.1. For z0 = (0, γ) ∈ B2 we have δ2(z0, p, q) = log s2γ. More-
over, the functions fγ are the unique extremal discs realizing the infimum in
the definition (1.2) of δ2(z0, p, q). The map fγ : ∆ → B2 is proper, injective,
non-singular in ∆, and fγ(0) = z0, fγ(sγ) = p, fγ(−sγ) = q.

Proof. We deal first with the case γ = 0. By considering the maps ζ → (ζ, 0)
and z = (z1, z2) → z1 we get g2(0, p, q) = δ2(0, p, q) = log β2. If f = (f1, f2) :
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∆ → B2 satisfies f(0) = 0, f(s) = p, f(t) = q and s|t| = β2, then f1(ζ) = ζ
by the Schwarz lemma, so f2 = 0.

For the remainder of the proof we assume γ 6= 0. Motivated by the
definition of δ2(z0, p, q) we define S to be the set of all pairs (s, t) ∈ (0, 1)×∆
for which there exists a holomorphic map f : ∆ → B2 satisfying f(0) = z0,
f(s) = p, f(t) = q. We divide the proof in two steps. In the first one we
show that the function (s, t) ∈ S → s|t| has a unique minimum point at
(sγ ,−sγ) ∈ S, where sγ is defined by (2.2), and that s2γ = inf{s|t| : (s, t) ∈
S}; so δ2(z0, p, q) = log s2γ . In the second step we prove that there exists
a unique disc fγ : ∆ → B2 corresponding to the point (sγ ,−sγ), that fγ
is proper and it is given by (2.3). The facts that fγ is injective and that
f ′γ(ζ) 6= 0 on ∆ now follow by inspection.

Step 1. Let us introduce the following notations:

c = (1− |γ|2)β2 + |γ|2, d = (1− |γ|2)β2 − |γ|2.

We also define for s ∈ (0, 1) and t ∈ ∆

E(s, t) =
(s2 − c)(|t|2 − c)

|st+ d|2
− (1− s2)(1− |t|2)

|1− st|2
.

We first prove that

S = {(s, t) ∈ (0, 1)×∆ : s 6= t, s2 > c, |t|2 > c, E(s, t) ≥ 0}.(2.4)

Let (s, t) ∈ S and let f : ∆ → B2 be such that f(0) = z0, f(s) = p, f(t) = q.
Clearly s 6= t. Let T be given by (2.1) such that T (z0) = 0:

T (z1, z2) =
(

(1− |γ|2)1/2 −z1
1− γ z2

,
γ − z2

1− γ z2

)
.(2.5)

Then the analytic disc Tf : ∆ → B2 satisfies Tf(0) = 0 and

Tf(s) = p̃ = (−(1− |γ|2)1/2β, γ), T f(t) = q̃ = ((1− |γ|2)1/2β, γ).

Hence Tf(ζ) = ζf̃(ζ), where f̃ : ∆ → B2. We have f̃(s) = p̃/s, f̃(t) = q̃/t,
so c = ‖p̃‖2 ≤ s2 and c = ‖q̃‖2 ≤ |t|2. If s =

√
c = ‖p̃‖ it follows by Lemma

2.2 that Tf(ζ) = ζp̃/‖p̃‖ for all ζ ∈ ∆. As γ 6= 0 this implies q̃ 6∈ Tf(∆), a
contradiction. Hence we have s2 > c and similarly |t|2 > c, so f̃(∆) ⊂ B2.
Let Φ be the automorphism of B2 of form (2.1) determined by Φ(p̃/s) = 0.
By the Schwarz lemma applied to Φ ◦ f̃ we get∥∥∥∥Φ( q̃t

)∥∥∥∥ ≤ ∣∣∣∣ t− s

1− st

∣∣∣∣ ,(2.6)

which is equivalent to E(s, t) ≥ 0.
Thus we have shown that (s, t) ∈ S implies s 6= t, s2 > c, |t|2 > c, and

E(s, t) ≥ 0. Conversely, we assume that s, t, with s 6= t, satisfy these three
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inequalities and we let p̃, q̃, T and Φ be as defined above. Then the analytic
disc f : ∆ → B2,

f(ζ) = T

(
ζΦ
(

1− st

t− s

ζ − s

1− s ζ
Φ
(
q̃

t

)))
,

is well defined and satisfies f(0) = T (0) = z0, f(s) = T (sΦ(0)) = T (p̃) = p,
and f(t) = T (q̃) = q. So relation (2.4) is completely proved.

Let S ⊂ (0, 1] × ∆ denote the closure of S. Since S is compact we
can find a point (s0, t0) ∈ S such that s0|t0| = min{s|t| : (s, t) ∈ S}.
We show that there is a unique point (s0, t0) with this property and that
(s0, t0) = (sγ ,−sγ) ∈ S. If s20 = c then E(s0, t0) ≥ 0 implies |t0| = 1,
so s0|t0| =

√
c; a similar conclusion holds if |t0|2 = c. We also note that

s0 6= t0; indeed, we have E(s, s) < 0 for all s > 0 with s2 ∈ [c, 1]. From this
discussion it follows that

s0|t0| =
√
c if (s0, t0) ∈ S \ S.(2.7)

We assume now that (s0, t0) ∈ S. Then (s0, t0) is a solution of the prob-
lem: {

s|t| → min ,
(s, t) ∈ (0, 1)×∆, s 6= t, s2 > c, |t|2 > c, E(s, t) ≥ 0.(2.8)

Clearly we must have E(s0, t0) = 0. Moreover, if t lies on the circle
|t| = |t0| we must have E(s0, t) ≤ 0 (otherwise one could find t′ 6= s0
such that |t′|2 > c, |t′| < |t0| and E(s0, t′) > 0, hence s0|t′| < s0|t0|, a
contradiction). By the definition of E(s, t) we have that E(s0, t) ≤ 0 is
equivalent to ∣∣∣∣s0t+ d

1− s0t

∣∣∣∣2 ≥ (s20 − c)(|t0|2 − c)
(1− s20)(1− |t0|2)

,

and equality holds for t = t0. The image of the circle |t| = |t0| under the
map

t→ s0t+ d

1− s0t

is a circle C orthogonal to the real axis and centered at

XC =
s20|t0|2 + d

1− s20|t0|2
.

We have two cases:

Case 1. XC 6= 0. We have by the formula above that (s0t0 + d)/(1− s0t0)
is the point on the circle C of smallest magnitude. It follows that (s0t0 +
d)/(1 − s0t0), and hence t0, are real. For t real we note that E(s, t) = 0 is
equivalent to F (s, t) = 0, where

F (s, t) = (s2 − c)(t2 − c)(1− st)2 − (1− s2)(1− t2)(st+ d)2.
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By (2.8) we see that (s0, t0) is a solution of the problem{
s2t2 → min,
(s, t) ∈ (0, 1)× (−1, 1), s 6= t, s2 > c, t2 > c, F (s, t) = 0.

We make the change of coordinates x = s + t, y = st. This is a local
diffeomorphism away from the diagonal s = t. In the new coordinates the
image of the curve F (s, t) = 0 is the curve F̃ (x, y) = 0, where

F̃ (x, y) = (y + c)2(1− y)2 − (y + 1)2(y + d)2 + [(y + d)2 − c(1− y)2]x2.

We let x0 = s0 + t0, y0 = s0t0. Then (x0, y0) is a local solution of the
problem {

y2 → min,
F̃ (x, y) = 0.

Hence we must have
∂F̃

∂x
(x0, y0) = 0 ⇒ (y0 + d)2 = c(1− y0)2 or x0 = 0.

If (y0 + d)2 = c(1 − y0)2 then using F̃ (x0, y0) = 0 we get (y0 + c)2 =
c(y0 +1)2, hence y2

0 = c. But the system of equations (y0 +d)2 = c(1− y0)2,
y2
0 = c has no solution.
If x0 = 0 then s0 = −t0 and hence s20 = −y0. The equation F̃ (x0, y0) = 0

implies that (y0 + c)(1 − y0) = −(y0 + 1)(y0 + d) or (y0 + c)(1 − y0) =
(y0 + 1)(y0 + d). If the former equality holds we get y0 = −β2, which is in
contradiction to s20 = −y0 > c. If the latter equality holds we solve for y0

and obtain y0 = −s2γ , where sγ is defined by (2.2). As s20 = s2γ > c we see
that (sγ ,−sγ) ∈ S is the only possible solution of problem (2.8) in Case 1.

Case 2. XC = 0. Then s20|t0|2 = −d > 0 and the equation E(s0, t0) = 0
becomes ∣∣∣∣s0t0 + d

1− s0t0

∣∣∣∣2 =
−d− c(s20 + |t0|2) + c2

−d− (s20 + |t0|2) + 1
.

Writing s0t0 =
√
−d eiθ we get that the left hand side of the above equality

is equal to −d. Using this and substituting x0 = s20 + |t0|2 in the equation
E(s0, t0) = 0 we get x0 = c − d. Since s20 > c and |t0|2 > c we have
c− d = x0 > 2c, a contradiction.

We conclude by above that the problem (2.8) has at most one solution;
hence if (s0, t0) ∈ S we have shown that (s0, t0) = (sγ ,−sγ). One can easily
check that s2γ <

√
c, so in view of (2.7) the function (s, t) ∈ S → s|t| has a

unique minimum at (sγ ,−sγ) ∈ S and s2γ = inf{s|t| : (s, t) ∈ S}.

Step 2. Let f : ∆ → B2 be a holomorphic map verifying f(0) = z0,
f(sγ) = p, f(−sγ) = q. By Theorem 4 and Lemma 7 of [AT1] f is unique
with these properties and proper: Indeed, with notations from [AT1] f is
extremal for ρ1(s), s = {z0, p, q}, hence norm minimal among holomorphic
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maps ∆ → Cn with {0, sγ ,−sγ} → {z0, p, q}. We call this map fγ and find
it explicitly as follows. Let for ζ ∈ ∆

f̃γ(ζ) =

(
−β (1− |γ|2)1/2

sγ
,
γ

s2γ
ζ

)
.

Then f̃γ(sγ) = p̃/sγ , f̃γ(−sγ) = −q̃/sγ . By the definition (2.2) of s2γ we see
that

s4γ − β2(1− |γ|2)s2γ − |γ|2 = 0,(2.9)

which shows f̃γ(∆) ⊂ B2. Next we let fγ(ζ) = T (ζf̃γ(ζ)), with T given by
(2.5). A simple computation shows that the map fγ has the form (2.3) and
it satisfies fγ(0) = z0, fγ(sγ) = p, fγ(−sγ) = q. This concludes the proof of
Proposition 2.1. �

We have used the following well known variant of the Schwarz lemma:

Lemma 2.2. Assume that the holomorphic map f : ∆ → B2 satisfies
f(0) = 0 and f(‖z‖) = z for some z ∈ B2 \ {0}. Then f(ζ) = ζz/‖z‖,
for all ζ ∈ ∆.

For z ∈ D we define

x(z) =
z2

|z2|4 − |1− z2
1/β

2|2

(
|z2|2 − 1 +

z2
1

β2

)
,(2.10)

γ(z) =
1−

√
1− 4|x(z)|2

2|x(z)|2
x(z).(2.11)

Proposition 2.3. The complex curves Lγ = fγ(∆), where fγ is defined by
(2.3) and γ ∈ ∆, are given by

Lγ = {z ∈ B2 : γz2
1 = β2(γ − z2)(1− γz2)}.(2.12)

We have Lγ ⊂ D ∪ {p, q} for all γ ∈ ∆. Moreover, for z ∈ D the number
γ(z) defined by (2.11) is the unique solution in ∆ of the equation in (2.12),
hence the curves Lγ, γ ∈ ∆, foliate D.

Proof. Using the expression of the second coordinate of fγ(ζ) = (z1, z2) we
write ζ2 in terms of z2 and obtain

ζ2 =
s2γ
γ

γ − z2
1− γz2

.(2.13)

Formula (2.12) now follows by squaring the formula of z1 from fγ(ζ) =
(z1, z2) and by using the above formula for ζ2.

For the rest of the proof it is convenient to introduce

x =
γ

1 + |γ|2
.(2.14)
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Using this substitution, the equation in (2.12) can be written in the form

x

(
1− z2

1

β2

)
+ x z2

2 = z2.(2.15)

Let us assume that for some γ ∈ ∆ we have Lγ \D 6= {p, q}, or, without
loss of generality, that Lγ ∩ Γp 6= {p}. Then there is z ∈ Lγ \ {p} such that
βz2 = eiθ(β−z1); in particular, this implies that < z1 > 0. Writing µ = z1/β,
z2 = eiθ(1−µ), and c = xe−iθ, Equation (2.15) becomes c(1+µ)+c(1−µ) =
1. As <µ > 0 it follows that = c = 0, hence c = 1/2; this is in contradiction
with |c| = |x| < 1/2, which holds since γ ∈ ∆ (see (2.14)). We conclude
that Lγ ⊂ D ∪ {p, q} for all γ ∈ ∆.

For a fixed z ∈ D we now consider the Equation (2.15). The determinant
of the corresponding system of two real equations is |1− z2

1/β
2|2−|z2|4 > 0,

since z ∈ D; hence Equation (2.15) has a unique solution x = x(z) for
z ∈ D, where x(z) is given by (2.10). Let us write again µ = z1/β ∈ C,
r = |z2| ∈ [0, 1). Since z ∈ D we have r < min{|1 − µ|, |1 + µ|}. We claim
that this implies

|x(z)| = r|r2 − 1 + µ2|
|1− µ2|2 − r4

<
1
2
.

The proof of this claim is given in Lemma 2.4. For x = x(z) with |x| < 1/2
we notice that Equation (2.14) has a unique solution γ = γ(z) ∈ ∆: Indeed,
arg γ = arg x, and |γ| is the unique solution of |x| |γ|2 − |γ| + |x| = 0
contained in [0, 1). We conclude that for z ∈ D the equation in (2.12) has a
unique solution γ(z) ∈ ∆, given by (2.11). �

Lemma 2.4. Let r ∈ [0, 1) and µ ∈ C be such that r < min{|1−µ|, |1+µ|}.
Then

r|r2 − 1 + µ2|
|1− µ2|2 − r4

<
1
2
.

Proof. An elementary proof of this inequality is given in [C]. We are grateful
to the referee, who suggested the following argument. Consider the follow-
ing:

F1 = {(γ, sγ) : γ ∈ ∆}, F2 = {(γ,−sγ) : γ ∈ ∆},
G = {(γ, ζ) ∈ ∆2 : ζ 6= ±sγ} = ∆2 \ (F1 ∪ F2),
Φ : G→ D, Φ(γ, ζ) = fγ(ζ).

Then G is open, and, by arguments in the proof of Proposition 2.3, the map
Φ is well-defined, continuous and one-to-one. Hence Φ is a homeomorphism
onto Φ(G). We will check that Φ is proper, which implies Φ(G) = D. This
is equivalent to the inequality we seek, |x(z)| < 1/2 for z ∈ D, as (2.14) has
solutions if and only if |x| < 1/2. To show Φ is proper we assume that

(γ, ζ) ∈ G→ (γ0, ζ0) ∈ ∂G = F1 ∪ F2 ∪ (∂∆×∆) ∪ (∆× ∂∆) ∪ (∂∆× ∂∆).
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If (γ0, ζ0) ∈ F1 ∪ F2 then Φ(γ, ζ) → (β, 0) ∈ ∂D, or Φ(γ, ζ) → (−β, 0) ∈
∂D.

If (γ0, ζ0) = (eiθ, ζ0) ∈ ∂∆×∆ then Φ(γ, ζ) → ∂D by (2.3).
If (γ0, ζ0) = (γ0, e

iφ) ∈ ∆× ∂∆ then Φ(γ, ζ) → ∂D, as fγ0 is proper.
If (γ0, ζ0) = (eiθ, eiφ) and φ 6= 0, π, then s2γ − |γ|2ζ2 → 1 − e2iφ 6= 0,

so Φ(γ, ζ) → (0, eiθ) ∈ ∂D. If φ = 0 then let (z1, z2) = fγ(ζ). A simple
computation yields

β − z1
βz2

=
sγ + ζ − ζ(1− |γ|2)

γ(sγ + ζ)
→ e−iθ, as (γ, ζ) → (eiθ, 1).

Hence Φ(γ, ζ) → ∂D. A similar argument works in the case φ = π. �

Since the maps fγ defined by (2.3) are injective and their images fγ(∆),
γ ∈ ∆, foliate D, we can define a function g? on D as follows: For each
z ∈ D there is a unique γ = γ(z) ∈ ∆ (given by (2.11)) such that z ∈ fγ(∆),
and hence a unique ζ = ζ(z) ∈ ∆ (given by (2.13)) such that z = fγ(ζ). So
we can define

g?(z) = log

∣∣∣∣∣ s2γ − ζ2

1− s2γ ζ
2

∣∣∣∣∣ .
The function ζ → g?(fγ(ζ)) is clearly harmonic in ∆ \ {−sγ , sγ}, for all γ ∈
∆. As we noticed at the beginning of this section, we have δ2(z, p, q) ≤ g?(z)
for z ∈ D. Using (2.13) and the above formula of g? we obtain

g?(z) = log
|z2|

|γ/s2γ − β2γ + β2z2|
,(2.16)

where z ∈ D, γ = γ(z) is given by (2.11), and s2γ is given by (2.2) (we point
out that in the above computation we use relation (2.9) to replace s4γ in
terms of s2γ , which allows us to simplify with a factor of (1− |γ|2)).

Lemma 2.5. For z ∈ D we have

g?(z) =
1
2

log
|β2 − z2

1 |2 + β4|z2|4 + 2(1− β4)|z2|2 +
√
M(z)

2|1− β2z2
1 |2

,

where M(z) = (β4|z2|4− |β2− z2
1 |2)2 + 4(1− β4)|z2|2

∣∣β2|z2|2 − (β2 − z2
1)
∣∣2.

Proof. We first use relation (2.11) to replace γ = γ(x) in (2.16), and then
we write down a formula of g? in terms of z alone by using (2.10). We now
present the main steps of the computation. Using (2.11) and (2.14) we have

γ

1− |γ|2
=

1 + |γ|2

1− |γ|2
x =

x√
1− 4|x|2

.



270 DAN COMAN

To compute γ/s2γ we write it in terms of γ/(1−|γ|2); using the above relation
and (2.11) again we get

γ

s2γ
− β2γ =

√
β4 + 4(1− β4)|x|2 − β2

2x
.

Replacing this in the formula (2.16) of g? we see that

g?(z) = log
2|z2||x|∣∣∣√β4 + 4(1− β4)|x|2 − β2 + 2β2z2x

∣∣∣ .
Using formula (2.10) we get

β4 + 4(1− β4)|x|2 =
β4

(|β2 − z2
1 |2 − β4|z2|4)2

M(z),

and hence

g?(z) = log
2|z2|2 |β2|z2|2 − (β2 − z2

1)|∣∣∣√M(z)− [β4|z2|4 − 2β2|z2|2(β2 − z2
1) + |β2 − z2

1 |2]
∣∣∣ .

A simple computation now yields

M(z)−
[
β4|z2|4 − 2β2|z2|2(β2 − z2

1) + |β2 − z2
1 |2
]2

= 4β2|z2|2
(
|β2 − z2

1 |2 − β2|z2|2(β2 − z2
1)
) (
β2 − z2

1 − β2|z2|2
)

+4(1− β4)|z2|2
∣∣β2 − z2

1 − β2|z2|2
∣∣2

= 4|z2|2(1− β2z2
1)
∣∣β2 − z2

1 − β2|z2|2
∣∣2 .

Using this and the last formula of g? we get

g?(z) = log

∣∣∣√M(z) + β4|z2|4 − 2β2|z2|2(β2 − z2
1) + |β2 − z2

1 |2
∣∣∣

2|1− β2z2
1 |
∣∣β2 − z2

1 − β2|z2|2
∣∣ = log

N1

N2
.

The final step is to compute N2
1 :

N2
1 =

∣∣∣√M(z) + |β2|z2|2 − (β2 − z2
1)|2 − 2β2|z2|2 i =(β2 − z2

1)
∣∣∣2

= M(z) + |β2|z2|2 − (β2 − z2
1)|4 + 4β4|z2|4

[
=(β2 − z2

1)
]2

+2|β2|z2|2 − (β2 − z2
1)|2

√
M(z).

Using (
β4|z2|4 − |β2 − z2

1 |2
)2 + 4β4|z2|4

[
=(β2 − z2

1)
]2

=
(
β4|z2|4 + |β2 − z2

1 |2
)2 − 4β4|z2|4

[
<(β2 − z2

1)
]2

=
∣∣β2|z2|2 − (β2 − z2

1)
∣∣2 ∣∣β2|z2|2 + (β2 − z2

1)
∣∣2
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we get

N2
1 = 2

∣∣β2|z2|2 − (β2 − z2
1)
∣∣2

·
[
β4|z2|4 + |β2 − z2

1 |2 + 2(1− β4)|z2|2 +
√
M(z)

]
.

We conclude that g?(z) = 1
2 log N2

1

N2
2

has the desired form. �

We now extend the function g? to B2 by defining

g?(z) = g2(z, p) = log

√
|β − z1|2 + (1− β2)|z2|2

|1− βz1|
, for z ∈ Γp,

g?(z) = g2(z, q) = log

√
|β + z1|2 + (1− β2)|z2|2

|1 + βz1|
, for z ∈ Γq,

where Γp, Γq are defined by (1.4) and (1.5) respectively (the formula of
g2(z, p) is well known, and it can be easily obtained from the results we
recalled in the Introduction and from formula (2.1)). The final part in the
proof of Theorem 2 is to show that the function g? is plurisubharmonic in B2

and of class C1,1 on B2 \ {p, q}. The function g? is clearly plurisubharmonic
in int Γp ∪ int Γq. We next prove that g? is plurisubharmonic in D. To this
end we consider the holomorphic mapping F : D → C ×∆, F (z) = (u,w),
where

u =
√

2(1− β4)
z2

β2 − z2
1

, w =
β2z2

2

β2 − z2
1

.(2.17)

We also define a function V on C×∆ by

V (u,w)

(2.18)

= log
(√

1 + |u|2 + |w|2 + |u2 + 2w|+
√

1 + |u|2 + |w|2 − |u2 + 2w|
)
.

Lemma 2.6. For z ∈ D we have

g?(z) = log
∣∣∣∣ β2 − z2

1

1− β2z2
1

∣∣∣∣+ V (F (z))− log 2.

Proof. Let M(z) be as in Lemma 2.5. Then

M(z) = |β2 − z2
1 |4
[
(|w|2 − 1)2 + 2|u|2

∣∣∣∣|w| − β2 − z2
1

|β2 − z2
1 |

∣∣∣∣2
]

= |β2 − z2
1 |4
[
(|w|2 − 1)2 + 2|u|2

(
|w|2 + 1− 2|u|2< w

u2

)]
= |β2 − z2

1 |4
[
(|w|2 − 1)2 + 2(|u|2|w|2 + |u|2 − 2< (wu2))

]
.



272 DAN COMAN

If we denote by

J(u,w) = 1 + |u|2 + |w|2,
H(u,w) = (|w|2 − 1)2 + 2(|u|2|w|2 + |u|2 − 2< (wu2)),

we see using Lemma 2.5 and the above formula for M(z) that

g?(z) = log
∣∣∣∣ β2 − z2

1

1− β2z2
1

∣∣∣∣+ log

(J +
√
H

2

)1/2

(F (z))

 .
We finally note that J2 −H = |u2 + 2w|2, so(

J +
√
H

2

)1/2

=
1
2

(√
J + |u2 + 2w|+

√
J − |u2 + 2w|

)
,

and the proof of the lemma is finished. �

Lemma 2.7. The function V defined by (2.18) is real analytic, plurisubhar-
monic and maximal in C×∆.

Proof. The fact that V is real analytic follows if we write

V (u,w) =
1
2

log
[
2(1 + |u|2 + |w|2) + 2

√
(1 + |u|2 + |w|2)2 − |u2 + 2w|2

]
and notice that 1 + |u|2 + |w|2 − |u2 + 2w| ≥ (1− |w|)2 > 0 on C×∆. We
compute the Levi form of V . Setting

G1 = G1(u,w) = 1 + |u|2 + |w|2 + |u2 + 2w|,
G2 = G2(u,w) = 1 + |u|2 + |w|2 − |u2 + 2w|,
G = G(u,w) =

√
G1 +

√
G2,

we have V = logG. We obtain (see [C] for the details of the computations):

〈(LV )t, t〉 =
1

2(G1G2)3/2
∣∣(1− |w|2)t1 + (uw − u)t2

∣∣2 ,
at any point (u,w) ∈ C ×∆, where t = (t1, t2) ∈ C2. So V is plurisubhar-
monic in C×∆. Moreover, since

∂2V

∂u∂u

∂2V

∂w∂w
− ∂2V

∂u∂w

∂2V

∂w∂u
≡ 0

we see that V is maximal. �

As an immediate consequence of Lemma 2.6 and Lemma 2.7 we have the
following:

Corollary 2.8. The function g? is real analytic, plurisubharmonic and max-
imal in D.

Lemma 2.9. g? ∈ C1,1(B2 \ {p, q}).



THE PLURICOMPLEX GREEN FUNCTION WITH TWO POLES 273

Proof. Let v be the function defined on D by v(z) = g?(z), z ∈ D (i.e., v
is given by the formula in the statement of Lemma 2.5). We first notice
that there exists a domain D′ ⊂ B2 \ {p, q} such that (D∩B2) \ {p, q} ⊂ D′

and the function v is well defined, real analytic and plurisubharmonic on D′.
Indeed, by Lemma 2.6 and Lemma 2.7 v has the above mentioned properties
near all points z ∈ B2 \ {p, q} for which |w(z)| < 1, where w(z) is given by
(2.17). So it is enough to check that |w(z)| < 1 for z ∈ ∂D ∩ (B2 \ {p, q}).
Without loss of generality we assume that βz2 = η(β − z1), where |η| = 1.
Then z1 = β − βz2/η satisfies < z1 > 0, hence

|w(z)| =
∣∣∣∣ β2z2

2

β2 − z2
1

∣∣∣∣ = ∣∣∣∣β − z1
β + z1

∣∣∣∣ < 1.

We recall that the function g2(·, p) is real analytic on B2 \ {p, q}. So
in order to prove that g? ∈ C1,1(B2 \ {p, q}) it is enough, by symmetry
reasons, to show that the function v − g2(·, p) vanishes to first order at
points z0 = (z0

1 , z
0
2) ∈ B2 \ {p} of the form β − z0

1 = η0βz
0
2 with |η0| = 1.

Near such a point z0 we make the change of variables

(z1, z2) → (η, z2), η =
β − z1
βz2

.

Using these coordinates we obtain after a straightforward computation:

g2(z, p) =
1
2

log
|z2|2

|1− β2z2
1 |2

+
1
2

log h1(η, z2),

where
h1(η, z2) = (1− β2 + β2|η|2)

∣∣1 + β2(1− ηz2)
∣∣2 ,

and

v(z) =
1
2

log
|z2|2

|1− β2z2
1 |2

+
1
2

log h2(η, z2),

where

h2(η, z2) =
β4|η|2|ηz2 − 2|2 + β4|z2|2 + 2(1− β4) + β2

√
M̃

2
M̃ = β4

(
|z2|2 − |η|2|ηz2 − 2|2

)2 + 4(1− β4)|z2 + η2z2 − 2η|2.

Hence it is enough to check that at the point (η0, z
0
2) we have h1 = h2,

∂h1/∂z2 = ∂h2/∂z2, and ∂h1/∂η = ∂h2/∂η, where |η0| = 1 and |z0
2 | < 1. A

simple computation shows

M̃(η0, z2) = 16 [1−<(η0z2)]2,

hence
h1(η0, z2) = h2(η0, z2) =

∣∣1 + β2 − β2η0z2
∣∣2 ,
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for all |z2| < 1. This proves the first two of the above relations. For the
third one we obtain after a computation that

∂M̃

∂η
(η0, z2) = 16 [<(η0z2)− 1](z2 − η0)

[
1− β4 − β4(η0z2 − 2)

]
,

∂h1

∂η
(η0, z2) =

∂h2

∂η
(η0, z2) = β2(1 + β2)(z2 − η0)(β

2η0z2 − 1− β2),

and the proof is finished. �

Remark. The function g? is not of class C2. Indeed, with the nota-
tions introduced in the preceding proof one can check that ∂2h1

∂η∂η (η0, z2) 6=
∂2h2
∂η∂η (η0, z2).

Proposition 2.10. The function g? is negative and plurisubharmonic on
B2, and it has logarithmic poles with weight one at p and q.

Proof. By the construction of g? we clearly have g? < 0 on B2. It follows by
inspection that g? has logarithmic poles with weight one at p and q. We have
shown (Corollary 2.8) that g? is plurisubharmonic on int Γp∪D∪ int Γq. Let
v and D′ be as defined in the proof of Lemma 2.9. We recall that (D∩B2)\
{p, q} ⊂ D′ and that the function v is real analytic and plurisubharmonic on
D′. In order to show that g? is plurisubharmonic on B2 we consider a point
z0 ∈ B2 ∩ ∂D and a complex line L through z0. Without loss of generality
we assume z0 ∈ ∂Γp. If L ∩ B2 ⊂ ∂Γp then g? |L is subharmonic, since
g? = g2(·, p) on Γp. Otherwise we apply Lemma 2.11 to conclude that g? |L
is subharmonic near z0. �

Lemma 2.11. Let Γ be an embedded smooth curve in C which divides C
into two domains Γ+ and Γ−. Let Ω be a disc, Ω+ = Ω∩Γ+, Ω− = Ω∩Γ−.
Assume v+ and v− are subharmonic functions of class C2, defined in a
neighborhood of Ω+, respectively Ω−, such that v+ − v− vanishes to first
order along Γ. Then the function v defined by v = v+ on Ω+, v = v− on
Ω−, is subharmonic in Ω.

Proof. It suffices to show that ∆v ≥ 0 in the sense of distributions. Let n+

(respectively n−) denote the unit outward normal vector of Γ with respect
to Ω+ (respectively Ω−). We let φ ∈ C∞

0 (Ω), φ ≥ 0, and apply Green’s
formula on Ω+ and Ω− using the fact that v+ = v− to first order on Γ. We
get∫

Ω+

v+ ∆φ− φ∆v+ =
∫

Γ
v+

∂φ

∂n+
− φ

∂v+
∂n+

= −
∫

Γ
v−

∂φ

∂n−
− φ

∂v−
∂n−

= −
∫

Ω−

v− ∆φ− φ∆v−,
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hence ∫
Ω
v∆φ =

∫
Ω+

φ∆v+ +
∫

Ω−

φ∆v− ≥ 0.

�

The proof of Theorem 2 is complete as soon as we show the following:

Proposition 2.12. The partial derivatives ∂
∂z1

g2(·, p, q) and ∂
∂z2

g2(·, p, q)
extend continuously to ∂B2.

Proof. If z0 ∈ ∂B2 \D then the function g2(·, p, q) is clearly defined and real
analytic in a neighborhood of z0. By Lemmas 2.6, 2.7 and 2.9 the function
g2(·, p, q) is well defined and of class C1 in a neighborhood of any point
z0 ∈ ∂B2 ∩D such that |w(z0)| < 1, where |w(z)| < 1 is defined by (2.17).
So we only have to consider the points z0 ∈ ∂B2 ∩D where |w(z0)| = 1. At
such points z0 = (z0

1 , z
0
2) we have β|z0

2 | = |β − z0
1 | = |β + z0

1 |, so z0
1 = 0 and

|z0
2 | = 1. Let us fix z0 = (0, γ) ∈ ∂B2. Let v be the function defined as in

the proof of Lemma 2.9 by v(z) = g2(z, p, q), for z ∈ D. Since[
∂

∂z1
g2(·, p)

]
(z0) =

[
∂

∂z1
g2(·, q)

]
(z0) = 0,[

∂

∂z2
g2(·, p)

]
(z0) =

[
∂

∂z2
g2(·, q)

]
(z0) =

1
2
(1− β2)γ,

it suffices to show that

lim
z→z0

∂v

∂z1
(z) = 0 and lim

z→z0

∂v

∂z2
(z) =

1
2
(1− β2)γ.(2.19)

Here, as well as in the remainder of this proof, the notation limz→z0 means
that z ∈ D ∩ B2 and z → z0. If M(z) is defined as in the statement of
Theorem 2 then it follows from the definition of v that

lim
z→z0

∂v

∂z1
(z) =

1
8

lim
z→z0

[
(M(z))−1/2 ∂M

∂z1
(z)
]
,(2.20)

lim
z→z0

∂v

∂z2
(z) =

γ

2
+

1
8

lim
z→z0

[
(M(z))−1/2 ∂M

∂z2
(z)
]
.(2.21)

For z ∈ D ∩B2 let us introduce the following notations:

E1 = E1(z) =
|β2|z2|2 − (β2 − z2

1)|
|β2 − z2

1 | − β2|z2|2
,(2.22)

E2 = E2(z) =
β2|z2|2 −< (β2 − z2

1)
β2|z2|2 − |β2 − z2

1 |
,

F = F (z) =
|β2 − z2

1 | − < (β2 − z2
1)

(|β2 − z2
1 | − β2|z2|2)2

.
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We will prove (Lemma 2.13) that limz→z0 F (z) = 0. Since E2
1 − 1 =

2β2|z2|2F and E2−1 = (β2|z2|2−|β2−z2
1 |)F it follows that limz→z0 E1(z) =

limz→z0 E2(z) = 1.
A simple computation now shows:

∂M/∂z2(z)
β2|z2|2 − |β2 − z2

1 |
= 4β2|z2|2z2

[
β2(β2|z2|2 + |β2 − z2

1 |) + 2(1− β4)E2

]
− 4(1− β4)z2 |β2|z2|2 − (β2 − z2

1)|E1 → 8β2γ,

|∂M/∂z1(z)|
|β2 − z2

1 | − β2|z2|2

≤ 4|z1|
[
|β2 − z2

1 |(β2|z2|2 + |β2 − z2
1 |) + 2(1− β4)|z2|2E1

]
→ 0,√

M(z)
|β2 − z2

1 | − β2|z2|2

=
√

(β2|z2|2 + |β2 − z2
1 |)2 + 4(1− β4)|z2|2E2

1 → 2,

as z ∈ D ∩B2 → z0 = (0, γ). These formulas, together with relations (2.20)
and (2.21), now show that (2.19) is verified. �

Lemma 2.13. If F (z) is defined by (2.22) for z ∈ (D ∩ B2) \ {p, q} then
F (z) → 0 as z → z0 = (0, γ) ∈ ∂B2.

Proof. Let us define

F1(z) =
|β2 − z2

1 |+ < (β2 − z2
1)

(|β2 − z2
1 |+ β2|z2|2)2

F (z) =
(= z2

1)
2

(|β2 − z2
1 |2 − β4|z2|4)2

.

It is enough to show F1(z) → 0 as z → z0. We claim that for z ∈ D ∩ B2

we have
|β2 − z2

1 |2 − β4|z2|4 ≥ β2|z2|2 (|z1|2 + 2β|x|),
where z1 = x + iy. Indeed, let us assume without loss of generality that
x ≥ 0. Then since z ∈ D we have |β − z1| ≥ β|z2|, so

|β2 − z2
1 |2 − β4|z2|4 ≥ β2|z2|2

(
|β + z1|2 − β2|z2|2

)
=

= β2|z2|2
(
β2(1− |z2|2) + |z1|2 + 2βx

)
≥ β2|z2|2 (|z1|2 + 2βx) .

It follows that

F1(z) ≤ 1
β4|z2|4

(= z2
1)

2

(|z1|2 + 2β|x|)2
=

4
β4|z2|4

x2y2

(x2 + y2 + 2β|x|)2

≤ 4
β4|z2|4

y2

(2β + |x|)2
→ 0,

as z = (x+ iy, z2) → (0, γ) ∈ ∂B2. �
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Proof of Corollary 3. Let z = (z1, z′) ∈ Bn. If z′ = 0 then gn(z, p, q) =
gn(z, p) + gn(z, q) verifies the desired formula. So we assume z′ 6= 0 and
let u = (0, z′/‖z′‖). We denote by B2 the unit ball of the subspace Vu =
C e1 + Cu and consider the inclusion map j : B2 → Bn and the orthogonal
projection π : Bn → B2. As z = z1e1 + ‖z′‖u we get the desired formula
by using the fact that pluricomplex Green functions are decreasing with
respect to holomorphic mappings. The rest of the assertions of Corollary 3
now follow easily from Theorem 2. �

3. Proofs of Proposition 4 and Theorem 5.

In this section we consider the case when the poles have different weights.
Let us recall from Section 1 that A = {(p, µ), (q, ν)} ⊂ Bn× (0,+∞), µ ≥ ν,
and that gn(·, A) denotes the pluricomplex Green function of Bn with poles
in A. We saw that without loss of generality we can assume p = 0 and
q = (α, 0, . . . , 0), where α ∈ (0, 1). We also recall the following notations:
Lu = {ζu : ζ ∈ ∆}, where u = (u1, . . . , un) ∈ ∂Bn, Γ0 = ∪{Lu : |u1| ≤
α/2}, and Γq = Tq(Γ0), where Tq ∈ Aut(Bn) is given by (2.1).

Proof of Proposition 4. For the proof of (1.7) let us fix u ∈ ∂Bn such
that |u1| ≤ α/2. We construct a holomorphic map F : Bn → ∆ such
that F (q) = 0 and F (ζu) = ζ for all ζ ∈ ∆ (see [R], p. 164). We choose
u2, . . . , un ∈ ∂Bn such that {u, u2, . . . , un} is an orthonormal basis of Cn.
Then ‖z‖2 = |〈z, u〉|2 + |〈z, u2〉|2 + · · ·+ |〈z, un〉|2, for all z ∈ Cn; here 〈·, ·〉
denotes the standard scalar product on Cn. Let h(ζ) = 1 −

√
1− ζ, for

ζ ∈ ∆. Then h is holomorphic in ∆ and the Taylor expansion of h at 0 has
positive coefficients; hence |h(ζ)| ≤ h(|ζ|), for all ζ ∈ ∆. For a ∈ C with
|a| ≤ 1 and for θ2, . . . , θn ∈ R we define F : Bn → C by

F (z) = 〈z, u〉+ ah

 n∑
j=2

eiθj 〈z, uj〉2
 .

Since |a| ≤ 1 we have by the properties of h that

|F (z)| ≤ |〈z, u〉|+ h

 n∑
j=2

|〈z, uj〉|2
 < |〈z, u〉|+ h

(
1− |〈z, u〉|2

)
= 1;

here we also used the fact that h is increasing on [0, 1]. Hence F (Bn) ⊆ ∆
and clearly F (ζu) = ζ for all ζ ∈ ∆.

We now show that since u satisfies |u1| ≤ α/2 we can choose a with |a| ≤ 1
and θ2, . . . , θn ∈ R such that F (q) = 0. For j = 2, . . . , n we choose θj such
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that eiθj 〈q, uj〉2 = |〈q, uj〉|2. Next we define a by

a = − 〈q, u〉

h
(∑n

j=2 |〈q, uj〉|2
) .

Then clearly F (q) = 0, so we only have to check that |a| ≤ 1. But this is
equivalent to 1−

n∑
j=2

|〈q, uj〉|2
 1

2

≤ 1− |〈q, u〉|,

which in turn is equivalent to

α2 = |〈q, u〉|2 +
n∑
j=2

|〈q, uj〉|2 ≥ 2|〈q, u〉| = 2α|u1|.

Using the function F constructed above it follows from the definition of
gn(·, A) that µ log |F (z)| ≤ gn(z,A), for all z ∈ Bn. On the other hand we
clearly have gn(z,A) ≤ µ gn(z, 0) = µ log ‖z‖. So for z = ζu we obtain

µ log |ζ| = µ log |F (ζu)| ≤ gn(ζu,A) ≤ µ gn(ζu, 0) = µ log |ζ|,

so (1.7) holds for all z ∈ Γ0.
The proof of (1.8) is done in a similar way. We first interchange p = 0

and q by applying Tq, so the pole of smaller weight is now at the origin.
Then the lower bound in (1.8) is obtained exactly as before, and the upper
bound actually holds for all z ∈ Bn.

Since for z on the z1–axis we have gn(z,A) = µgn(z, p) + νgn(z, q) <
µgn(z, p), (1.7) implies that gn(·, A) cannot be real analytic on Bn \ {p, q}.
The last assertion of Proposition 4 follows from the next lemma. �

In the above setting we consider the case when p = 0, µ = 1, and q =
(α, 0, . . . , 0), ν = 1/2, with α ∈ (0, 1) arbitrary. For u = (u1, . . . , un) ∈ ∂Bn

we let
Γ̃0 =

⋃
{Lu : |u1|2 ≤ 1/2}.

Lemma 3.1. For any α ∈ (0, 1) and z ∈ Γ̃0 we have gn(z,A) = gn(z, 0) =
log ‖z‖. If α2 < 1/2 then there is no complex line L containing q and such
that gn(z,A) = gn(z, q)/2 along L ∩Bn.

Proof. We fix u ∈ ∂Bn with |u1|2 ≤ 1/2 and choose u2, . . . , un ∈ ∂Bn such
that {u, u2, . . . , un} is an orthonormal basis of Cn. For a ∈ C with |a| ≤ 1
and for θ2, . . . , θn ∈ R we consider the function F : Bn → ∆ defined by

F (z) = 〈z, u〉2 + a

n∑
j=2

eiθj 〈z, uj〉2.
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For j = 2, . . . , n we choose θj such that eiθj 〈q, uj〉2 = |〈q, uj〉|2 and then we
choose a ∈ C such that F (q) = 0. We note that |u1|2 ≤ 1/2 implies |a| ≤ 1.
Since F (ζu) = ζ2 and F (q) = 0, we get by the definition of gn(z,A) that

1
2

log |F (z)| ≤ gn(z,A) ≤ log ‖z‖,

hence gn(z,A) = log ‖z‖ for z = ζu.
We now assume that α2 < 1/2 and that L is a complex line containing q,

different from the z1–axis. We parametrize L ∩ Bn using the unit disc ∆;
for instance L ∩Bn = f(∆), where f(ζ) = Tq(ζu?) for a suitable u? ∈ ∂Bn.
Since α2 < 1/2 there is a nonempty open set G ⊂ ∆ such that f(G) ⊂ Γ̃0.
For z ∈ G we have gn(z,A) = log ‖z‖ 6= gn(z, q)/2. �

Remark. In the above setting let S = {z ∈ Bn \ {q} : gn(z,A) =
gn(z, q)/2}. If α2 < 1/2 we have in fact S = ∅. Indeed, if z ∈ S and L is
the complex line through q and z then by the maximum principle it follows
that L ∩Bn ⊂ S, which contradicts Lemma 3.1.

Remark. Let us recall the description of the foliation corresponding to
gn(·, p, q) given in Corollary 3: The leaves are embedded submanifolds of
Bn, some passing through p and not containing q, or through q and not
containing p, and some passing through both p and q. In the case of different
weights µ = 1, ν = 1/2, and when α2 < 1/2, Lemma 3.1 shows that there
are no “nice” leaves passing through q and not through p. Indeed, let us
assume that the function f : ∆ → Bn is proper holomorphic, that there
is a unique s ∈ ∆ with f(s) = q, and that f ′(s) 6= 0. If the function
ζ → gn(f(ζ), A) is harmonic on ∆ \ {s}, it follows from the maximum
principle that gn(f(ζ), q)/2 ≤ gn(f(ζ), A), hence these functions are equal
in ∆. This implies that f(∆) is a complex line, which is in contradiction to
Lemma 3.1.

Proof of Theorem 5. It is clear that if such a sequence {Fj}j exists then
gn(z0, A) = µ log |ζ| = µgn(z0, 0). Conversely, we assume that µgn(z0, 0) =
gn(z0, A). We first note that gn(tu,A) = µgn(tu, 0) for all t ∈ ∆. Indeed,
the function v(t) = gn(tu,A)− µgn(tu, 0) is subharmonic in ∆ \ {0}. Since
v ≤ 0 on ∆ \ {0} and since, by hypothesis, v(ζ) = 0, it follows from the
maximum principle that v ≡ 0.

Let Lu = {tu : t ∈ ∆} and let F : Bn → ∆, F (z) = 〈z, u〉. We consider
the following Hartogs domains in Cn+1:

D1 =
{

(z, w) ∈ Bn × C : |w| < e−gn(z,A)/µ
}
,

D2 =
{

(z, w) ∈ Bn × C : |w| < e−gn(z,0)
}
.

The domainsD1 andD2 are pseudoconvex (see [Br]). Let u = (u1, . . . , un)
and write z = (z1, . . . , zn). We consider the holomorphic functions hj(z) =
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zj − 〈z, u〉uj , j = 1, . . . , n, and we denote by X the analytic variety defined
by these functions in Bn × C:

X = {(z, w) ∈ Bn × C : h1(z) = · · · = hn(z) = 0} = Lu × C.

As log |F (z)| ≤ gn(z, 0), the function α(z, w) = 1/(1−F (z)w) is holomor-
phic in D2. Since gn(tu,A) = µgn(tu, 0) we have that X ∩D1 = X ∩D2. As
the variety X∩D1 is globally defined in D1 and α is holomorphic in a neigh-
borhood of X ∩D1, it is a standard result that there exists a holomorphic
function α̃ on D1 such that α̃ = α on X ∩D1 ([H2], Theorem 4.2.12). We
can easily adapt the proof of the above quoted theorem in order to ensure
that our extension α̃ also satisfies α̃(q, w) = 0, for all w ∈ C. This can be
done as follows: Let χ ∈ C∞(D1) be such that χ ≡ 1 in a neighborhood of
X∩D1 (relatively to D1), suppχ ⊂ D2, and {(q, w) : w ∈ C} ⊂ D1\suppχ.
Let φ(z, w) = 1

2 log(|h1(z)|2 + · · · + |hn(z)|2) + log ‖z − q‖, for (z, w) ∈ D1.
We consider the ∂-closed (0,1) form ∂(χα) = α∂χ and we solve ∂U = α∂χ
with the following L2 estimate ([H1], Theorem 4.4.2):∫

D1

|U |2e−2(n+1)(φ+ψ)(1 + ‖(z, w)‖)−2dλ ≤
∫
D1

|α∂χ|2e−2(n+1)(φ+ψ)dλ.

Here ψ is a plurisubharmonic exhaustion function for D1 increasing rapidly
to ∞, so that the right hand side of the above inequality is finite (this is
possible since the function |α∂χ|2e−2(n+1)(φ+ψ) is continuous on D1). Since
the function e−2(n+1)(φ+ψ) is not integrable near any point of X ∩ D1 and
near any point of the form (q, w), w ∈ C, it follows that U must vanish at
these points. Hence α̃ = χα−U is holomorphic in D1, and by the choice of
χ we have that α̃ = α on X ∩D1 and α̃(q, w) = 0, for all w ∈ C.

We note that α(z, w) =
∑∞

j=0[F (z)]jwj and by the definition of D1 we
can write

α̃(z, w) =
∞∑
j=0

Fj(z)wj ,

where Fj are holomorphic in Bn. Since for all z ∈ Bn the analytic discs
{(z, w) : w ∈ ∆} are contained in D1, it follows that

∞∑
j=0

Fj(tu)wj = α̃(tu, w) = α(tu, w) =
∞∑
j=0

tjwj ,

and
∞∑
j=0

Fj(q)wj = α̃(q, w) = 0,

for all t, w ∈ ∆. Hence for every j ≥ 1 we have Fj(tu) = tj , for all t ∈ ∆,
and Fj(q) = 0.
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Finally, as the function w → α̃(z, w) is holomorphic in the disc {|w| <
e−gn(z,A)/µ}, it follows that 1/(lim supj→∞ |Fj(z)|1/j) ≥ e−gn(z,A)/µ, for all
z ∈ Bn. This proves conclusion (ii) of the theorem. �

Remark. In view of the results of Lempert [Lm1] the last theorem
can also be stated in the more general situation when Bn is replaced by
a strongly convex domain Ω with C∞ smooth boundary. Indeed, let us as-
sume that gΩ(z0, A) = µgΩ(z0, p) for some point z0 ∈ Ω \ {p, q}, where A =
{(p, µ), (q, ν)}, µ ≥ ν. By the results of Lempert there is a unique extremal
disc f : ∆ → Ω for the Kobayashi metric such that f(0) = p and f(ζ) = z0,
for some ζ ∈ (0, 1). Along this disc we have gΩ(f(t), p) = log |t|. Moreover,
Lempert proved the existence of a holomorphic function F : Ω → ∆ satisfy-
ing F (f(t)) = t, for all t ∈ ∆. In this setting, we can proceed as in the proof
of the previous theorem to show the existence of a sequence of holomorphic
functions Fj : Ω → C, j = 1, 2, . . . , which satisfy Fj(q) = 0, Fj(f(t)) = tj ,
for all t ∈ ∆, and lim supj→∞

1
j log |Fj(z)| ≤ gΩ(z,A)/µ, for all z ∈ Ω.

Before we give the proof of Proposition 1, let us recall that a domain
Ω in Cn is said to be taut if every sequence of holomorphic functions fj :
∆ → Ω has a subsequence {fjk} that either converges locally uniformly to a
holomorphic function f : ∆ → Ω, or, for every compact sets K ⊂ ∆, L ⊂ Ω,
one has fjk(K) ⊂ Ω\L if k is sufficiently large. In particular, if Ω is bounded
and taut it follows from the classical Montel theorem that every sequence
of holomorphic functions fj : ∆ → Ω has a subsequence which converges
locally uniformly to a holomorphic function f : ∆ → Ω and either f(∆) ⊆ Ω
or f(∆) ⊆ ∂Ω.

Proof of Proposition 1. The assertions that the function δA
Ω

is negative with
logarithmic poles in A and that gΩ(z,A) ≤ δA

Ω
(z) are obvious. The upper

semicontinuity property holds for any bounded domain Ω. Indeed, as the
minimum of upper semicontinuous functions is upper semicontinuous, it is
enough to check that the function δΩ(·, A) is upper semicontinuous. For
z ∈ Ω\{p1, . . . , pk} and ε > 0 we fix a holomorphic function f : ∆ → Ω such
that f(0) = z, f(sj) = pj for j = 1, . . . , k, and ν1 log |s1|+ · · ·+ νk log |sk| <
δΩ(z,A) + ε. By shrinking ∆ we may assume that f is holomorphic in a
neighborhood of ∆ and that f(∆) ⊂ Ω. Let b : C → C be the finite Blaschke
product with zeros at s1, . . . , sk, and let z′ ∈ Ω. We define f̃ : ∆ → Cn by

f̃(ζ) = f(ζ) +
b(ζ)
b(0)

(z′ − z).

Then f̃(0) = z′, f̃(sj) = pj , and f̃(∆) ⊂ Ω provided that z′ is sufficiently
close to z; hence for such z′ we have δΩ(z′, A) < δΩ(z,A) + ε.

We finally show that the function δA
Ω

is lower semicontinuous when Ω is
taut. Let us assume for a contradiction that this does not hold at some point
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z ∈ Ω \ {p1, . . . , pk}. Then there is a sequence {zj}j ⊂ Ω and ε > 0 such
that zj → z and δA

Ω
(zj) < δA

Ω
(z)− ε. By the definition of δA

Ω
(zj) we see that

for each j there is a holomorphic map fj : ∆ → Ω and a nonempty subset
Sj of A with the following properties: fj(0) = zj , and for every (p, ν) ∈ Sj
there is some sj(p) ∈ f−1

j (p) such that∑
(p,ν)∈Sj

ν log |sj(p)| < δA
Ω
(z)− ε.

Since A is finite, it follows that A has a nonempty subset S such that Sj = S
for infinitely many j. So by passing to a subsequence we may assume that
Sj = S for all j. As Ω is bounded and taut it follows after passing to a
subsequence that {fj} converges locally uniformly to a holomorphic map
f : ∆ → Ω; moreover, we may assume (again by taking subsequences) that
sj(p) → s(p) ∈ ∆, for every (p, ν) ∈ S. By the above, we see that the set
S′ = {(p, ν) ∈ S : s(p) ∈ ∆} is clearly nonempty and∑

(p,ν)∈S′
ν log |s(p)| ≤ δA

Ω
(z)− ε.

Since f(0) = z and f(s(p)) = p for (p, ν) ∈ S′, it follows that δΩ(z, S′) ≤
δA
Ω
(z)− ε, which is in contradiction to the definition of δA

Ω
. �

Note. The extremal problem yielding the function δn(z, p, q) was also
considered by E. Amar and P. J. Thomas in [AT1] (see in particular Section
5 and Section 6 of [AT1]). Their work is in connection with interpolating
sequences in the unit ball for the space of bounded analytic functions. We
also refer to [AT2] for related results regarding extremal analytic discs. I
would like to thank Pascal Thomas for informing me about these results.
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