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The curvature of a surface can be recovered from the tan-
gent space to the graph of the Gauss map. Exploiting this
observation we manage to equip a generalized Gauss graph
with the standard tools of differential geometry: Weingarten
map, second fundamental form, Riemann curvature tensor.
Several variational applications are given.

1. Introduction and outline of the results.

In the recent past a lot of authors have devoted systematic efforts to indagate
problems related to compactness and degeneration phenomenons in classes
of surfaces with integral bounds on curvature, both on the front of geometric
measure theory and on that of differential geometry. As a general reference
reviewing the main results obtained in this area by differential geometers, we
refer the reader to [1] while, unfortunately, we have no paper so efficaciously
summarizing the theory developed in the setting of geometric measure theory
to recommend.

These two points of view are deeply different and only a few attempts to
bridge the gap existing between them have been done up to now. As very
interesting examples of steps in this direction from geometric measure the-
ory, we have to mention the papers about curvature varifolds by Hutchinson
([19], [20], [21], [22]) and Mantegazza ([24]) where a notion of generalized
second fundamental form is defined and applied to variational problems. We
also have to recall the papers on generalized Gauss graphs ([2], [3], [5], [10],
[11], [12], [13], [14], [15]). In particular, in paper [14], special generalized
Gauss graphs have been used to prove a result of differential geometry ([14,
Theorem 7.1]) which generalizes a theorem by Langer [23].

As far as this paper is concerned, our main goal will be to equip gener-
alized Gauss graphs with the standard tools of differential geometry (Wein-
garten map, second fundamental form, Riemann curvature tensor), coher-
ently extended, in such a way that they continue to have nice properties and
satisfy the usual relations, useful to perform geometric calculations. We be-
lieve that this machinery could be helpful in pursuing the “bridge project”
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mentioned above, making simpler a comparison between results from differ-
ential geometry and results from geometric measure theory.

The idea from which we proceed characterizes Section §3 and it can be
summarized as follows: The curvature of an oriented smooth surface at a
given point can be recovered from the tangent space of the Gauss graph, i.e.,
the graph of the Gauss map, at the corresponding point. As a consequence
of this simple observation, one is led in a natural way to look for a formula
expressing the Weingarten map through the multivector orienting the Gauss
graph. Hence we arrive to define the generalized Weingarten map, that is
the Weingarten map associated to a generalized Gauss graph (Definition
5.2), and to prove that it is self-adjoint just as in the smooth case. Then
generalized principal directions and curvatures can be defined, and the usual
linear properties of the Riemann curvature tensor can be extended easily to
this generalized setting (Proposition 5.2).

Section §4 is devoted to collecting some well known facts about gener-
alized Gauss graphs, going into some aspects which, otherwise, could be
incomprehensible for a reader unnaccustomed to this subject.

In Section §6 we compute the length of strata of the multivector orienting
a generalized Gauss graph and, as a consequence, we get an estimate of the
length of a fixed stratum by means of the length of a lower order stratum
(Proposition 6.1). Such a result has been applied in Section §7 where we
deduce an inequality (Proposition 7.5) useful for solving variational problems
involving special generalized Gauss graphs. Indeed the estimated functional
GFq has been proved in [13] to be cohercive enough to allow compactness
in the class of special generalized Gauss graphs. Proposition 7.6 implies, in
particular, that a conjecture stated in [14] is true.

In Proposition 7.1 we prove that, for codimension 1 special generalized
Gauss graphs, the integral of the greatest among the nonnegative parts of
principal curvatures is lower semicontinuous with respect to the weak con-
vergence of currents. Moreover, in view of future works involving integrals
of curvatures, we prove the measurability of the symmetric functions of
principal curvatures with respect to a normal vector field (Proposition 7.3).

In the last section, §8, we have collected some variational applications of
the theory developed in this paper and in the previous ones [12], [13], [14].

2. General notation.

For the general terminology we refer to the classical literature about geo-
metric measure theory (see [18], [26], [28]) and about differential geometry
(e.g., [9], [16], [17]). In regard to the classical measure theory, a completely
standard terminology will be adopted (e.g., [27]).

Rectifiable currents are the main tools we will work with. Let U be an
open subset of a given euclidean space. Then, according to a completely
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standard notation, the set of smooth differential h−forms having compact
support in U will be denoted by Dh(U), while Dh(U) will be the set of
h−dimensional currents in U . For the usual mass of a current T we use
the notation M(T ). More generally, if W is any open subset of U , then we
define MW (T ) according to 26.5 in [28].

We will also need the class Ih(U) of integral currents, i.e., the set of
T ∈ Dh(U) such that T is an integer multiplicity current and

MW (T ) + MW (∂T ) < +∞

for all W ⊂⊂ U . Note that, by Boundary Rectifiability Theorem, ∂T is an
integer multiplicity current whenever T ∈ Ih(U).

According to Definition 4.1 below, a generalized Gauss graph is an inte-
gral current satisfying certain relations trivially fulfilled by the graph of the
Gauss map to a smooth oriented surface viewed as a current. Dimension
and codimension of the surface will be denoted by n and k. The euclidean
spaces we need to introduce are the following

RN
x , ΛkRN

x
∼= Rd

y, RN
x × ΛkRN

x
∼= RN

x ×Rd
y

where

N := n + k, d :=
(

N

k

)
and the subscripts specify the variable names.

The standard basis (resp. dual basis) of RN
x (resp. (RN

x )′ ∼= RN
x ) will be

denoted by e1, . . . , eN (resp. dx1, . . . , dxN ) while {εβ}β∈I(N,k) will be the
standard basis of Rd

y.

To simplify the formulae, throughout the paper we will often omit mention
of the obvious isometric isomorphism

Φ : ΛkRN
x → Rd

y (Φ(eβ1 ∧ · · · ∧ eβk
) = εβ)

and immersions

RN
x ↪→ RN

x ×Rd
y , Rd

y ↪→ RN
x ×Rd

y .

Furthermore, for the convenience of the reader, we set also

[·]• := Φ , [·]• := Φ−1

e.g., [eβ1 ∧ · · · ∧ eβk
]• = εβ and [εβ]• = eβ1 ∧ · · · ∧ eβk

.

Given a couple of positive integers H and h such that H ≥ h ≥ 0, we
adopt the following notation for multi-indices sets:

I(H,h) :=

{{
δ = (δ1, . . . , δh)

∣∣ 1 ≤ δ1 < δ2 < . . . < δh ≤ H
}

if h > 0
∅ if h = 0.
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If α ∈ I(H,h), then σ(α, ᾱ) is the sign of the permutation of (1, 2, . . . , H)
into (α, ᾱ). The short notation for wedge products will often be used. For
example:

eα := eα1 ∧ . . . ∧ eαn or dxβ := dxβ1 ∧ . . . ∧ dxβk .

In order to distinguish the wedge and interior products in RN
x ×Rd

y from
the same operations in RN

x , the first ones will be indicated by

∧∧ and

respectively.

The projection operator from the product space RN
x ×Rd

y onto the first
factor space RN

x will be denoted p. Given a linear transformation L, we
shall use the so-called “Hilbert-Schmidt norm” of L, i.e.,

|L| :=
√

trace(Lt ◦ L).

Given a nonzero simple multivector τ , the corresponding linear subspace
Eτ will be called enveloping subspace of τ (according to [25]).

Both the standard inner product and the dual pairing for all the vector
spaces we will deal with will be denoted by 〈 · , · 〉. For example, if η, τ ∈
Λn(RN

x ),

〈η, τ〉 :=
∑
α

〈η, eα〉〈τ, eα〉 =
∑
α

ηατα.

The only notion of length we will need is the natural one induced by 〈 · , · 〉,
namely:

| · | :=
√
〈 · , · 〉.

It is convenient to introduce a notation also for the set of unit vectors in
Rd

y: Let it be denoted S1(Rd
y). For h = 0, 1, . . . , n, the h−th stratum of a

vector
ζ ∈ Λn

(
RN

x ×Rd
y

)
is defined as follows:

ζ(h) :=
∑

γ∈I(N,n−h)
δ∈I(N,h)

〈ζ, eγ ∧ εδ〉 eγ ∧ εδ.

Analogously one can define the strata ω(h) of a form ω ∈ Dn(RN
x ×Rd

y) and
hence, in the natural way, also the strata of a current can be defined. For
example, if T = [[G, η, θ]] is an integer multiplicity rectifiable n−current in
RN

x ×Rd
y and h ∈ {0, 1, . . . , n}, then we set

T(h)(ω) := T (ω(h)) =
∫

G
〈η(h), ω〉θdHn(2.1)
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for all ω ∈ Dn(RN
x ×Rd

y). Obviously the strata T(h), as the current T , can
be regarded as vector measures and then (2.1) implies that

|T(h)| = |η(h)|θHn G = |η(h)| |T |
where | · | denotes, in this case, the total variation.

Moreover, with reference to the same rectifiable current, we set also:

G∗ :=
{
(x, y) ∈ G

∣∣ η(0)(x, y) 6= 0
}
.

Finally we will adopt the standard inclusion and equality symbols to de-
note the corresponding notions in measure. For example, if A and B are
Hh−measurable sets, then “A ⊂ B” will mean Hh(A\B) = 0.

Further notations and conventions will be introduced in each section be-
low, if need be.

3. Some preliminary results about smooth submanifolds of RN
x .

Let M be a n−dimensional smooth submanifold of RN
x , oriented by a smooth

field τ of unit simple n−vectors tangent to M .
Define

ν := [∗τ ]• , ξ := ∧∧n (I ⊕ dν)τ(3.1)

and note that ξ is a simple n-vector field, tangent to the graph of ν. Note
also that ξ(0) = τ .

Since the curvature tensor is completely determined by dν, we expect a lot
of information about curvature could be easily deduced from ξ. According
to this expectation, in the first subsection below we show how to recover
the Weingarten map of M from ξ, while, in the second subsection, we get
the expression of ξ in terms of principal curvatures. These results will allow
to generalize the notion of curvature and to interpret integral functionals
involving curvatures as energies in the context of generalized Gauss graphs.

3.1. Weingarten map through ξ. Given p ∈ M and w ∈ [M⊥
p ]•, let

Aw
M,p : Mp → Mp

denote the classical Weingarten map of M at p with respect to w (e.g., see
[9]). Then the following proposition holds.

Proposition 3.1. One has

Aw
M,p(v) = (−1)k+n+1

[
ξ(1)(p) (τ(p) v)

]
• ([ν(p)]• w•) .

for all v ∈ Mp.

Proof. Obviously, we can assume |w| = 1. Let {ν1, . . . , νk} be an orthonor-
mal family of unit vector fields, defined and of class C1 close to p on M ,
such that

ν1(p) = w• and [ν1 ∧ · · · ∧ νk]• = ν.
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Then, at the point p, we have

[dν(v)]• =
∑

j

(−1)j−1dνj(v) ∧ νj(3.2)

=
∑

j

(−1)j−1 (dνj(v))T ∧ νj +
∑

j

(−1)j−1〈dνj(v)|νj〉 νj ∧ νj

=
∑

j

(−1)jA
ν•j
M (v) ∧ νj

whence we obtain

[dνp(v)]• ([ν(p)]• w•) = [dνp(v)]• ν1(p)(3.3)

= −
[
A

ν•1
M,p(v) ∧ ν1(p)

]
ν1(p)

= (−1)kAw
M,p(v).

Now, if {τh} is an orthonormal basis of Mp, then one has

ξ(1)(p) = [∧∧n (I ⊕ dνp)τ(p)](1) =
∑

h

(−1)h−1dνp(τh) ∧∧τh

which implies

ξ(1)(p) τh = (−1)n+hdνp(τh)

i.e.,

ξ(1)(p) (τ(p) τh) = (−1)n+1dνp(τh)

and then also

ξ(1)(p) (τ(p) v) = (−1)n+1dνp(v).

The conclusion follows by (3.3). �

3.2. Expression of ξ in terms of curvature. Before proceeding to the
computation in any dimension and codimension, let us consider the following
example concerning the case of a curve in three dimensional space.

Example 3.1 (n=2, k=1). Let M be a curve in R3
x and consider the Frenet

frame {τ,n,b} along M (see [16, §1-5]). If κn and κb denote the principal
curvatures of M with respect to n and b, i.e., the eigenvalues of An•

M and
Ab•

M respectively, then formula (3.2) above yields

dν(τ) =
[
−An•

M (τ) ∧ b + Ab•
M (τ) ∧ n

]•
= −κn(τ ∧ b)• + κb(τ ∧ n)•.

Hence
ξ = τ + dν(τ) = τ − κn(τ ∧ b)• + κb(τ ∧ n)•

i.e.,
ξ(0) = τ, ξ(1) = −κn(τ ∧ b)• + κb(τ ∧ n)•.
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The general case is rather complicated and requires a supplement of no-
tation. First of all, set

J := {1, . . . , k} × {1, . . . , n} =
{
(j, l)

∣∣ 1 ≤ j ≤ k, 1 ≤ l ≤ n
}

,

and define

X∗
h :=

{
(γ1, . . . , γh) ∈ Jh

∣∣ γi 6= γj whenever i 6= j
}

where h ∈ {1, . . . , n}. Then consider the following equivalence relation on
X∗

h:
Γ1 ∼ Γ2 if Γ2 is a permutation of Γ1

and choose a complete set of representatives from the equivalence classes,
which will be denoted by Xh.

Now consider an orthonormal basis {wj} of E[ν(p)]• . Then for all j one can
find the generalized principal curvatures κl(wj) of M at p with respect to
wj , i.e., the eigenvalues of A

wj

M,p, and the corresponding principal directions
τl(wj).

For γ = (j, l) ∈ J let us set

τγ := τl(wj), κγ := κl(wj).

Consider an orthonormal basis {uj} of Eτ(p) and α ∈ I(n, h). If for a given
Γ = (γ1, . . . , γh) ∈ X∗

h we define

τΓ := τγ1 ∧ · · · ∧ τγh
,

then we recall that one has

〈τΓ|uα〉 = det
(
〈τγr |uαs〉

)
r,s

i.e.,

〈τΓ|uα〉 =
∑
Γ′∼Γ

Γ′=(γ′1,... ,γ′
h
)

σ(Γ′,Γ)〈τγ′1
|uα1〉 · · · 〈τγ′h

|uαh
〉(3.4)

where σ(Γ′,Γ) denotes the signature of the permutation mapping Γ′ to Γ.
Finally, the first component of γ ∈ J will be indicated by jγ , while

κΓ := κγ1 · · ·κγh

for all given Γ = (γ1, . . . , γh) ∈ X∗
h.

Now we are ready to state the expression of ξ in terms of principal cur-
vatures. Indeed, the definition (3.1) of ξ implies immediately

ξ(h) =
∑

α∈I(n,h)

σ(α, α)
[(
∧∧hdν

)
uα

]
∧∧uα
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for h = 1, . . . , n, and it can be computed that(
∧∧hdν

)
uα

=
∑
Γ∈Xh

Γ=(γ1,... ,γh)

(−1)jγ1+···+jγh 〈τΓ|uα〉κΓ

[
τγ1 ∧ wjγ1

]•
∧∧ · · · ∧∧

[
τγh

∧ wjγh

]•
.

Hence it follows

|ξ(h)|2 =
∑

Γ∈Xh

κ2
Γ|τΓ|2, |ξ|2 = 1 +

n∑
h=1

∑
Γ∈Xh

κ2
Γ|τΓ|2.

In particular, note that |ξ(1)| coincides with the length of the second funda-
mental form of M (see [6, §29.4.2]).

As we shall see, these formulas and the argument necessary to prove them
hold also in the context of generalized Gauss graphs. This is the reason why
we prefer to postpone the proof to Section §6 below.

If M is a hypersurface, i.e., k = 1, the set {wj} consists of a single element.
Then the corresponding principal curvatures and directions can be simply
denoted by {κj} and {τj}. Taking uj = τj , the previous formulas become

ξ(h)(x) = (−1)h
∑

α∈I(n,h)

σ(α, α)κα τ•α ∧∧τᾱ

for h = 1, . . . , n, and

|ξ(h)|2 =
∑

α∈I(n,h)

κ2
α, |ξ|2 = 1 +

n∑
h=1

∑
α∈I(n,h)

κ2
α

where
κα := κα1 · · ·καh

, τ•α := τ•α1
∧∧ · · · ∧∧τ•αh

.

As an interesting subcase we have

|ξ(2)| =
|R|
2

(R is the Riemann tensor of M)

which will be proved below, in the generalized setting, along with the pre-
vious identities.

4. Generalized Gauss graphs.

Quite a lot of results about generalized Gauss graphs have been obtained
since they were defined in [5]. In this section, we recall just some basic
definitions and simple facts necessary to understand the statements in the
propositions of next sections. For a more exhaustive presentation of gen-
eralized Gauss graphs, their applications and relations with other subjects
(e.g., curvature varifolds), we refer to papers [2], [3], [4], [5], [10], [11], [12],
[13], [14] and [15].
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4.1. Basic definitions. The notion of generalized Gauss graph was intro-
duced at first in the particular case of codimension 1 (see [5, Definition 2.7])
and then for general codimension (see [11, Definition 3.1]). Special gener-
alized Gauss graphs were defined in [13, Definition 4.1] where we applied
them to solve variational problems. The class of generalized Gauss graphs
can be graded into subclasses with nice properties, the smallest of which is
just the set of special generalized Gauss graphs (see [14]).

Definition 4.1 ([5], [11]). Let Ω be an open subset of RN
x . Then we define

curvn(Ω) as the set of the currents T ∈ In(Ω×Rd
y) such that:

(i) T and ∂T are carried by rectifiable subsets of Ω× S1(Rd
y);

(ii) 〈T λ, ϕ ω〉 = 0 for all λ ∈ Dn−1(Ω ×Rd
y) and ω ∈ Dk−1(Ω ×Rd

y),
where ϕ(x, y) :=

∑
β∈I(N,k)y

β dxβ;
(iii) 〈∂T µ, ϕ ω〉 = 0 for all µ ∈ Dn−2(Ω×Rd

y) and ω ∈ Dk−1(Ω×Rd
y);

(iv) (−1)kn〈T ∗ϕ, g〉 ≥ 0 for all nonnegative g ∈ Cc(Ω×Rd
y), where ∗ is

the Hodge operator in RN
x with respect to the canonical basis, so that

∗ϕ(x, y) =
∑

β∈I(N,k)σ(β, β̄)yβdxβ̄ .

A current belonging to curvn(Ω) will be called generalized Gauss graph.

Definition 4.2 ([13]). A generalized Gauss graph T is called special if

|T | << |T(0)|.
The set of special generalized Gauss graphs belonging to curvn(Ω) is denoted
by curv*

n(Ω).

Remark 4.1. The geometrical meaning of Definition 4.1 has been discussed
in [11], from which we recall some facts now. By virtue of the natural
isomorphism between multivectors and multicovectors, it is easy to interpret
axioms (ii)-(iii) as “orthogonality conditions” and (iv) as an “orientation
condition”. Indeed, if T = [[G, η, θ]] ∈ curvn(Ω), then a standard localization
argument shows that (ii) is equivalent to

〈η(x, y) A|y• B〉 = 0

for all A ∈ Λn−1(RN
x ×Rd

y) and B ∈ Λk−1(RN
x ), at Hn G almost all (x, y).

But this is clearly equivalent to

p
(
Eη(x,y)

)
⊥ Ey•(4.1)

at Hn G almost all (x, y). Analogously, axiom (iii) is equivalent to

p
(
Eζ(x,y)

)
⊥ Ey•(4.2)

at Hn S almost all (x, y), where S and ζ denote the carrier and the orien-
tation of ∂T , respectively. As for (iv), the same argument shows that it is
equivalent to

〈∗η(0)(x, y)|y•〉 ≥ 0(4.3)
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at Hn G almost all (x, y). By using (4.1) and (4.3), one can easily verify
that

η(0)(x, y)
|η(0)(x, y)|

= (−1)kn ∗ y•

for |T(0)| almost all (x, y), [11, Proposition 4.1]. Finally, note that the ab-
solute continuity condition characterizing Definition 4.2 says that apD(p|G)
has rank n, i.e., the tangent space for G does not contain purely y-directions,
at Hn almost all points of G (compare [13, Proposition 7.1]).

Example 4.1 (GeneralizedGauss graphs induced by a smooth submanifold).
Let M be a n−dimensional surface, embedded in RN

x , smooth (enough), ori-
ented by a smooth field τ of unit simple n−vectors tangent to M and with
smooth boundary ∂M ⊂ M . Then, by considering ν and ξ as in (3.1), one
can define

G := graph of ν , η :=
ξ

|ξ|
◦ p

and verify that
[[G, η, 1]] ∈ curv*

n(R
N
x ).

Indeed Equations (4.1) and (4.2) are verified by virtue of the obvious reci-
procal orthogonality between the tangent space and the normal space, at all
points of M . Moreover (4.3) follows at once from

η(0) =
ξ(0)

|ξ|
◦ p =

τ

|ξ|
◦ p

which implies also the absolute continuity condition in Definition 4.2. Fi-
nally, note that the expression of η in explicit terms of principal curvatures
can be immediately obtained by the formulas of subsection §3.2.

4.2. Functionals. Given any nonnegative continuous function

F (x, y; ξ) :
(
Ω×Rd

y

)
× Λn

(
Ω×Rd

y

)
→ R

we can define a functional

GF : curvn(Ω) → R

as follows (if T = [[G, η, θ]]):

GF (T ) : =
∫

F

(
x, y;

η

|η(0)|
(x, y)

)
d|T(0)|(x, y)

=
∫

G∗
F

(
x, y;

η

|η(0)|
(x, y)

)
|η(0)(x, y)|θ(x, y) dHn(x, y).

Integrands we are particularly interested in are given by

F (h)
p (x, y; ξ) := |ξ(h)|p and Fp :=

n∑
h=0

F (h)
p
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where p ≥ 0. Let us set
E(h)

p := G
F

(h)
p

and note that

E(0)
p (T ) = ‖T(0)‖ := |T(0)|(Ω×Rd

y) and GFp =
n∑

h=0

E(h)
p .

If p ≥ 1 then one can easily verify that

GFp(T ) ≥ C|T |(G∗)

where C is a suitable positive constant, independent from T . In particular,
we get

GFp(T ) ≥ CM(T )

for every special generalized Gauss graph T (see [13, Remark 4.4]).

Recalling §3 and more precisely the formulas obtained in subsection §3.2,
we see that for the generalized Gauss graph T associated to an oriented
smooth hypersurface M (according to Example 4.1) one has

E(0)
p (T ) = Hn(M)

and

E(h)
p (T ) =

∫
M

( ∑
Γ∈Xh

κ2
Γ|τΓ|2

) p
2

dHn (h = 1, 2, . . . , n).

In particular, by the identities obtained in §3.2, one has

E
(1)
p (T ) =

∫
M

LpdHn(4.4)

where L is the length of the second fundamental form of M , and (if k = 1)

E
(2)
p (T ) = 2−p

∫
M
|R|pdHn(4.5)

where R is the Riemann tensor of M . In the next sections we will define
the Weingarten map and the Riemann curvature tensor corresponding to a
generalized Gauss graph and we will find that, even in such a generalized
setting, the equalities (4.4) and (4.5) continue to hold (see Proposition 5.3
and Proposition 6.1).

5. Generalized notions of Weingarten map, second fundamental
form and Riemann curvature tensor.

Let T = [[G, η, θ]] ∈ curvn(RN
x ). Then, on the basis of Proposition 3.1, we

are naturally led to consider a linear transformation

Ãw
T,(x,y) : RN

x → RN
x
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for almost every (x, y) ∈ G∗ and for w ∈ RN
x , defined by

Ãw
T,(x,y)(v) := (−1)kn+k+n+1

[
η(1)(x, y)
|η(0)(x, y)|

(∗[y]• v)
]
•

([y]• w).(5.1)

In particular, when T is the Gauss graph current associated to a smooth
submanifold M of RN , oriented by a smooth normal field ν, one has

Ãw
T,(p,ν(p))

∣∣
Mp

= Aw
M,p

at every p ∈ M and for w ∈ M⊥
p , by Proposition 3.1. This remark and the

nice properties proved in Proposition 5.1 below, motivate the introduction
of a generalized notion of Weingarten operator.

Definition 5.1. Given T = [[G, η, θ]] ∈ curvn(RN
x ), let us define

ξT (x, y) :=
η(x, y)

|η(0)(x, y)|
and τT (x, y) :=

η(0)(x, y)
|η(0)(x, y)|

= (−1)kn ∗ [y]•

at |T(0)|−a.e. (x, y). The n−vector ξT is called the scaled orientation of T.
The subscript T in ξT and in τT will often be omitted, for simplicity.

Remark 5.1. If T = [[G, η, θ]] ∈ curvn(RN
x ), then η is obtained by normal-

izing the scaled orientation of T , i.e.,

η(x, y) =
ξ(x, y)
|ξ(x, y)|

(5.2)

at |T(0)|−a.e. (x, y). Moreover, by [11, Theorem 4.3], at |T(0)|−a.e. point
(x, y) there exists a class C1 embedded submanifold M of RN

x , containing x
and oriented by a continuous normal simple k−vector field ν, approximately
differentiable at x, such that ν(x) = y and

ξ(x, y) := ∧∧n
(
I ⊕ ap-dν(x)

)
τ(x, y).

Proposition 5.1. Let T ∈ curvn(RN
x ). Then the following facts are true

at |T(0)|-a.e. (x, y):

1) given u ∈ RN
x , the map

w 7→ Ãw
T,(x,y)(u)

defines a linear operator in RN
x ;

2) for all w ∈ Ey, one has

Ãw
T,(x,y)

(
Eτ(x,y)

)
⊂ Eτ(x,y)

and the restricted operator

Aw
T,(x,y) := Ãw

T,(x,y)

∣∣
Eτ(x,y)

is self-adjoint, whereby its eigenvalues are all real numbers.
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In particular, the operator Aw
T,(x,y) (where w ∈ Ey) is self-adjoint almost

everywhere with respect to |T |, provided that T is special.

Proof. (1) This statement is obvious, by (5.1).

(2) Let us recall Remark 5.1. It follows that there exists a class C2

embedded submanifold M ′ of RN
x , containing x and oriented by a C1 normal

simple k−vector field ν ′ such that

ν ′(x) = ν(x) = y and dν ′(x) = ap-dν(x)

which implies

η(x, y)
|η(0)(x, y)|

= ξ(x, y) = ∧∧n
(
I ⊕ dν ′(x)

)
τ(x, y)(5.3)

by (5.2). It follows that

Aw
M ′,x(v) = (−1)k+n+1

[
η(1)(x, y)
|η(0)(x, y)|

(τ(x, y) v)
]
•

([ν(x)]• w)

= Ãw
T,(x,y)(v)

(5.4)

for all v ∈ M ′
x, by Proposition 3.1 and (5.1). We get the conclusion by

noting that Eτ(x,y) = M ′
x. �

Definition 5.2. The self-adjoint operator

Aw
T,(x,y) : Eτ(x,y) → Eτ(x,y)

of Proposition 5.1(2) will be called the generalized Weingarten operator of T
at (x, y) with respect to w. Its eigenvalues and eigenvectors will be referred
to as generalized principal curvatures and generalized principal directions
(with respect to w), respectively. The corresponding notations will be

κ
T,(x,y)
j (w) and τ

T,(x,y)
j (w)

j = 1, . . . , n, but the superscripts will often be omitted to simplify the
formulas, whenever it will cause no confusion.

5.1. Generalized second fundamental form and Riemann curva-
ture tensor. Through the classical relations existing among the Wein-
garten operator, the second fundamental form and the Riemann curvature
tensor (e.g., see [9] and [17]), now we can complete the extension to gen-
eralized Gauss graphs of the classical curvature machinery. More precisely,
if M is a smooth submanifold of RN

x , p ∈ M and {wj} is an orthonormal
basis of M⊥

p , recall that:
• the second fundamental form of M at p

Bp : Mp ×Mp → M⊥
p
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is given by
Bp(u, v) :=

∑
j

〈Awj
p u|v〉wj ;

• the Riemann tensor of M at p

Rp : Mp ×Mp ×Mp → Mp

satisfies

Rp(u, v, z) :=A
Bp(u,z)
p v −A

Bp(v,z)
p u

=
∑

j

〈Awj
p u|z〉Awj

p v −
∑

j

〈Awj
p v|z〉Awj

p u.

Then, by considering a generalized Gauss graph T and adopting the same
notation as in Proposition 5.1, the following definitions become natural.

Definition 5.3. The generalized second fundamental form of T

BT,(x,y) : Eτ(x,y) × Eτ(x,y) → E⊥
τ(x,y) = Ey

is defined at |T(0)|−a.e. (x, y) as follows:

BT,(x,y)(u, v) :=
∑

j

〈Awj

T,(x,y)u|v〉wj

where {wj} is an orthonormal basis of Ey.

Definition 5.4. The generalized Riemann curvature tensor of T

RT,(x,y) : Eτ(x,y) × Eτ(x,y) × Eτ(x,y) → Eτ(x,y)

is defined at |T(0)|−a.e. (x, y) by:

RT,(x,y)(u, v, z) :=
∑

j

〈Awj

T,(x,y)u|z〉A
wj

T,(x,y)v −
∑

j

〈Awj

T,(x,y)v|z〉A
wj

T,(x,y)u

where {wj} is an orthonormal basis of Ey.

In the following proposition, we prove that the generalized second funda-
mental form and the generalized Riemann curvature tensor are well defined.
We obtain also some generalized identities which are well known in the clas-
sical case and that could become useful to obtain results concerning our
generalized objects from classical arguments.

Proposition 5.2. Definitions 5.3 and 5.4 do not depend on the choice of
{wj}. Moreover, at |T(0)|−a.e. (x, y), the following identities hold for all
t, u, v, z ∈ Eτ(x,y):

1) B(u, v) = B(v, u)
2) R(u, v, z) = AB(u,z)v −AB(v,z)u
3) 〈R(u, v, z)|t〉 = −〈R(u, v, t)|z〉
4) 〈R(u, v, z)|t〉 = −〈R(v, u, z)|t〉
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5) 〈R(u, v, z)|t〉 = 〈R(z, t, u)|v〉
6) R(u, v, z) + R(v, z, u) + R(z, u, v) = 0

where we have omitted the subscripts, for the sake of simplicity.

Proof. Let us recall the following simple fact, from the proof of Proposi-
tion 5.1: At |T(0)|−a.e. (x, y) there exists a class C2 embedded submanifold
M ′ of RN

x , containing x and oriented by a C1 normal simple k−vector field
ν ′ such that

Ey = Eν′(x), Eτ(x,y) = M ′
x and Aw

T,(x,y) = Aw
M ′,x

for all w ∈ Ey = Eν′(x). Therefore, at |T(0)|−a.e. (x, y), the generalized sec-
ond fundamental form of T at (x, y) coincides with the second fundamental
form of M ′ at x, whereby it has to be independent from the choice of {wj}.
The same argument proves that the generalized Riemann curvature tensor
is well-defined.

Finally, all the identities follow immediately from Definition 5.3, Defini-
tion 5.4 and Proposition 5.1, through a standard computation. �

Proposition 5.3. Given T ∈ curvn(RN
x ), the following assertions are true

almost everywhere w.r.t. |T(0)|:
1) if k = 1 then |R| = 2|ξ(2)|
2) if n = 1 then |R| = |ξ(2)| = 0.

In general, one has |R| 6= |ξ(2)| and there is no constant c such that

|ξ(2)| ≤ c|R|
holds almost everywhere w.r.t. |T(0)|.

Proof. (1) Let τj = τ
T,(x,y)
j (y) and κj = κ

T,(x,y)
j (y) be the generalized prin-

cipal directions and curvatures, according to Definition 5.2. Then we get

|ξ(2)|2 =
∑
i<j

κ2
i κ

2
j(5.5)

by Proposition 6.1 below. On the other hand, we have
Rijhk := 〈R(τi, τj)τh|τk〉 = 〈Aτi|τh〉〈Aτj |τk〉 − 〈Aτj |τh〉〈Aτi|τk〉

= κiκj(δihδjk − δjhδik)

whence, recalling also (5.5), it follows that

|R|2 =
∑

i,j,h,k

R2
ijhk = 2

∑
i,j,h,k

κ2
i κ

2
jδihδjk −

∑
i,j,h,k

κ2
i κ

2
jδihδjkδjhδik


= 2

∑
i,j

κ2
i κ

2
j −

∑
i

κ4
i

 = 4
∑
i<j

κ2
i κ

2
j = 4|ξ(2)|2.
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(2) This statement is trivial.

To verify the last assertion, we will produce a counter-example where
R ≡ 0 while ξ(2) 6≡ 0. Consider the 2-dimensional submanifold of R4

parametrized by

ϕ(x1, x2) := (x1, x2, x
2
1, x

2
2) : R2 → R4

where we are assuming that R2 and R4 have been equipped with the canon-
ical bases. Then a short calculation shows that the metric matrix and its
inverse are given by

(gij) =
(

1 + 4x2
1 0

0 1 + 4x2
2

)
and (gij) =

(
1

1+4x2
1

0
0 1

1+4x2
2

)
.

By the classical expressions for the Christoffel symbols (e.g., [17], formula
(10) on p. 56), we get

Γm
ij =


4x1

1+4x2
1

if i = j = m = 1
4x2

1+4x2
2

if i = j = m = 2

0 otherwise

and hence it follows immediately (see [17], formula (2) on p. 93) that

R ≡ 0.

Now consider the Gauss map

ν :=

∗
(

∂ϕ
∂x1

∧ ∂ϕ
∂x2

)
∣∣∣ ∂ϕ
∂x1

∧ ∂ϕ
∂x2

∣∣∣ ◦ ϕ−1

•

and denote by T the corresponding generalized Gauss graph. The graph of
ν is parametrized by

Λ := (ϕ, ν ◦ ϕ)
i.e.,

Λ(x) =
(
x1e1 + x2e2 + x2

1e3 + x2
2e4,

a(x)[4x1x2e12 − 2x1e14 + 2x2e23 + e34]•
)

where {ej} is the canonical basis of R4, while

a :=
∣∣∣∣ ∂ϕ

∂x1
∧ ∂ϕ

∂x2

∣∣∣∣−1

= (1 + 4x2
1 + 4x2

2 + 16x2
1x

2
2)
−1/2.

Hence, by a quite boring computation and noting that

a(0) = 1 and ∇a(0) = 0,
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we obtain
∂Λ
∂x1

(0) ∧∧ ∂Λ
∂x2

(0) = (e1,−2[e14]•) ∧∧ (e2, 2[e23]•) .

It follows that[
∂Λ
∂x1

(0) ∧∧ ∂Λ
∂x2

(0)
]

(2)

= −4
(
0, [e14]•

)
∧∧
(
0, [e23]•

)
6= 0

whereby the scaled orientation of T has to be different from zero at every
point of a neighbourhood of Λ(0). �

6. Length of strata of the scaled orientation.

Consider T ∈ curvn(RN
x ). Then, at |T(0)| almost all (x, y), given an or-

thonormal basis {wj} of Ey, one can find the generalized principal curva-
tures and directions of T (according to Definition 5.2). We will denote them
by κl(wj) and τl(wj) respectively, omitting mention of the superscripts, for
simplicity.

The goal of this section is computing the length of the h-th stratum ξ(h)

of the scaled orientation ξ = ξT . Consider an orthonormal basis {uj} for
the enveloping subspace of τ = τT and then define J , X∗

h, Xh, τγ , κγ , τΓ,
κΓ as in subsection §3.2. We have the following result.

Proposition 6.1. For h = 1, . . . , n one has

|ξ(h)|2 =
∑

Γ∈Xh

κ2
Γ|τΓ|2

hence |ξ|2 = 1 +
n∑

h=1

∑
Γ∈Xh

κ2
Γ|τΓ|2

 .

In particular,

|ξ(1)|2 =
∑

Γ∈X1

κ2
Γ =

∑
j,l

κl(wj)2 =
∑

j

|Awj |2.

Moreover, the following estimate holds whenever 1 ≤ l ≤ h:

|ξ(h)| ≤ c(n, k)|ξ(l)|h/l.

Proof. Recalling Equation (5.3) we get:

ξ(x, y) = ∧∧n
(
I ⊕ dν ′x

)
(u1 ∧ · · · ∧ un) =

(
u1, dν ′x(u1)

)
∧∧ · · · ∧∧

(
un, dν ′x(un)

)
= τ(x, y) +

n∑
h=1

∑
α∈I(n,h)

σ(α, α)
[(
∧∧hdν ′x

)
uα

]
∧∧uα.

It follows (by dropping the obvious notation)

ξ(h) =
∑

α∈I(n,h)

σ(α, α)
[(
∧∧hdν ′

)
uα

]
∧∧uα
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for h = 1, . . . , n, whence

|ξ(h)|2 =
∑

α∈I(n,h)

∣∣( ∧∧hdν ′
)
uα

∣∣2(6.1)

for h = 1, . . . , n.
By identities (3.2) and (5.4), we find[

dν ′x(v)
]
• =

∑
j

(−1)jA
wj

T,(x,y)(v) ∧ wj

for all v ∈ Eτ(x,y) and then also(
∧∧hdν ′

)
uα

=
∑

j1,... ,jh

(−1)j1+···+jh

[
A

wj1
T (uα1) ∧ wj1

]•
∧∧ · · · ∧∧

[
A

wjh
T (uαh

) ∧ wjh

]•
=

∑
j1,... ,jh
l1,... ,lh

(−1)j1+···+jh〈uα1 |τl1(wj1)〉 · · · 〈uαh
|τlh(wjh

)〉 ·

· κl1(wj1) · · ·κlh(wjh
)
[
τl1(wj1) ∧ wj1

]•
∧∧ · · · ∧∧

[
τlh(wjh

) ∧ wjh

]•
.

Recalling the notation introduced above and (3.4), we obtain(
∧∧hdν ′

)
uα

=
∑
Γ∈X∗

h
Γ=(γ1,... ,γh)

(−1)jγ1+···+jγh 〈uα1 |τγ1〉 · · · 〈uαh
|τγh

〉 ·

· κΓ

[
τγ1 ∧ wjγ1

]•
∧∧ · · · ∧∧

[
τγh

∧ wjγh

]•
=

∑
Γ∈Xh

Γ=(γ1,... ,γh)

(−1)jγ1+···+jγh 〈τΓ|uα〉κΓ

[
τγ1 ∧ wjγ1

]•
∧∧ · · · ∧∧

[
τγh

∧ wjγh

]•
.

From the identity〈[
τl(wj) ∧ wj

]• ∣∣∣∣ [τl′(wj′) ∧ wj′

]•〉
= δll′δjj′

together with (6.1), we get

|ξ(h)|2 =
∑

Γ∈Xh

κ2
Γ

∑
α∈I(n,h)

〈τΓ|uα〉2 =
∑

Γ∈Xh

κ2
Γ|τΓ|2

that is just the first equality we had to prove. Now the second one is clear,
while the inequality follows from Proposition 6.2. �
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Proposition 6.2. If l and h are integers satisfying 1 ≤ l ≤ h, then there
exists a positive constant c(h, l) such that

|v1 ∧ · · · ∧ vh| ≤ c(l, h)
∑

β∈I(h,l)

|vβ1 ∧ · · · ∧ vβl
|

h
l(6.2)

for every set of vectors {v1, . . . , vh} ⊂ Rn.

Proof. Let us indicate with GS{z1, . . . , zm} the orthogonal set {z′1, . . . , z′m}
obtained by processing a linearly independent set {z1, . . . , zm} ⊂ Rn,
through the well-known Gram-Schmidt orthogonalization algorithm:

z′1 := z1, z′2 := z2 − 〈z2|ẑ′1〉ẑ′1, z′3 := z3 − 〈z3|ẑ′1〉ẑ′1 − 〈z3|ẑ′2〉ẑ′2
et cetera, where ẑ denotes the unit vector z/|z|. Obviously one has

|z1 ∧ · · · ∧ zm| = |z′1 ∧ · · · ∧ z′m| = |z′1| · · · |z′m|.(6.3)

Then let v1, . . . , vh be linearly independent (otherwise (6.2) trivially holds
for all nonnegative constants c) and consider

{v′1, . . . , v′h} := GS{v1, . . . , vh}, {v′′β1
, . . . , v′′βl

} := GS{vβ1 , . . . , vβl
}

where β ∈ I(h, l). From (6.3), (6.4) which will be proved below, and since

|v′βj
| ≤ |v′′βj

|,

we get

|v1 ∧ · · · ∧ vh| = |v′1| · · · |v′h| ≤ c(l, h)
∑

β∈I(h,l)

(
|v′β1

| · · · |v′βl
|
)h

l

≤ c(l, h)
∑

β∈I(h,l)

(
|v′′β1

| · · · |v′′βl
|
)h

l

= c(l, h)
∑

β∈I(h,l)

|vβ1 ∧ · · · ∧ vβl
|

h
l

i.e., just (6.2).

It remains to prove the following assertion which has been used above:
There exists a positive constant c(h, l) such that

x1 · · ·xh ≤ c(l, h)
∑

β∈I(h,l)

(xβ1 · · ·xβl
)

h
l(6.4)

for every set of nonnegative real numbers {x1, . . . , xh}.
Let us set x := (x1, . . . , xh) and note that, by homogeneity, one can

assume also |x| = 1. We shall prove by induction on l that

the statement holds for all h ≥ l.(6.5)
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Let l = 1, h ≥ l and m := maxj xj . Then the assertion (6.5) has to be
true in that ∑

j

x
h
1
j ≥ mh ≥ x1 · · ·xh.

Now, assume assertion (6.5) be true and prove the inductive step. Let
h ≥ l + 1 and consider

f(x) :=
∑

β∈I(h,l+1)

(
xβ1 · · ·xβl+1

) h
l+1 .

We get

f(x) ≥ x
h

l+1

h

∑
β∈I(h−1,l)

(
xβ1 · · ·xβl

) h
l+1

≥ c(h, l) x
h

l+1

h

[ ∑
β∈I(h−1,l)

(
xβ1 · · ·xβl

)h−1
l

] hl
(h−1)(l+1)

≥ c(h, l) x
h

l+1

h

(
x1 · · ·xh−1

) hl
(h−1)(l+1)

= c(h, l) x
h

l+1
− hl

(h−1)(l+1)

h

(
x1 · · ·xh

) hl
(h−1)(l+1) .

Since
x1 · · ·xh ≤ 1 and

hl

(h− 1)(l + 1)
≤ 1

we find
f(x) ≥ c(h, l) x

ρ(h,l)
h x1 · · ·xh

where
ρ(h, l) :=

h

l + 1
− hl

(h− 1)(l + 1)
.

It follows that
f(x) ≥ c(h, l) x

ρ(h,l)
j x1 · · ·xh

for all j, and hence also

f(x) ≥ c(h, l)
(

max
j

xj

)ρ(h,l)

x1 · · ·xh.

We obtain the conclusion by recalling that x 7→ maxj |xj | defines a norm in
Rh and that the norms in Rh are all equivalent. �

Remark 6.1. Proposition 6.1 shows, in particular, that the expression

LT :=
√∑

j,l

κl(wj)2

does not depend on the choice of the basis {wj}. This result generalizes a fact
which is well known in the classical case of a smooth immersed submanifold
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of RN . Then, by extending the classical terminology, LT will be referred to
as the length of the second fundamental form of T (compare [6, §29.4.2]).

Remark 6.2. The estimate stated in Proposition 6.1 generalizes the one
we got in the proof of the smooth estimate [14, Theorem 5.2].

7. Integrals of generalized curvatures: Some results in view of
variational applications.

The first proposition we state in this section, is a semicontinuity result (in
the special case k = 1), which can be used to solve geometric variational
problems by the direct method. Then we will get Proposition 7.2 and its
corollary Proposition 7.3, which make possible to define integral functionals
of symmetric functions of generalized curvatures, e.g., mean curvature or
Lipschitz-Killing curvature.

Finally, we prove some integral estimates which allow to get compactness
results for problems involving special generalized Gauss graphs (see [13]).
Applications will be given in the last section.

7.1. A semicontinuity result. Let us introduce some notation. If T ∈
curv∗n(Rn+1

x ) then, at |T(0)| almost every (x, y), we set:

γT (x, y) := max
j

(
κ

T,(x,y)
j (y)

∨
0
)

= max
u∈Eτ(x,y)

|u|≤1

〈Ay
T,(x,y)(u)|u〉

and

λT (x, y) := min
j

(
κ

T,(x,y)
j (y)

∧
0
)

= min
u∈Eτ(x,y)

|u|≤1

〈Ay
T,(x,y)(u)|u〉.

The maps γT and λT are evidently Hn−measurable and have constant sign:
γT is nonnegative while λT is nonpositive. Note also that

−λT (x, y) = max
u∈Eτ(x,y)

|u|≤1

〈−Ay
T,(x,y)(u)|u〉.(7.1)

Finally denote the usual operator norm by ||| · |||, so that

|||Ay
T,(x,y)||| = max

u∈Eτ(x,y)
|u|≤1

|Ay
T,(x,y)(u)|

= max
u∈Eτ(x,y)

|u|≤1

√
〈Ay

T,(x,y)(u)|Ay
T,(x,y)(u)〉 = max

j
|κT,(x,y)

j (y)|

= max
{
γT (x, y),−λT (x, y)

}
since the Weingarten operator is self-adjoint, by Proposition 5.1.

Now we are ready to state the announced result.
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Proposition 7.1. If Tj , T ∈ curv∗n(Rn+1
x ) are such that Tj ⇀ T , then the

following inequalities hold:

1)
∫

γT d|T(0)| ≤ lim infj
∫

γTj d|Tj(0)|
2)
∫

λT d|T(0)| ≥ lim supj

∫
λTj d|Tj(0)|

3)
∫
|||AT ||| d|T(0)| ≤ lim infj

∫
|||ATj ||| d|Tj(0)|

where the notation has been reduced, for the convenience of the reader.

Proof. Let [[G, η, θ]] and [[Gj , ηj , θj ]] be representations of T and Tj , respec-
tively.

(1) Consider a field

F ∈ C∞
c (Rn+1

x ×Rn+1
y ,Rn+1

x )

and let PF be its orthogonal projection on Eτ , i.e.,

PF (x, y) := F (x, y)− 〈F (x, y)|[y]•〉[y]•.

Since Tj and T are special generalized Gauss graphs and by definition of
Weingarten operator, we get

lim
j

∫
〈ATj (PF )|PF 〉 d|Tj(0)|(7.2)

= lim
j

∫
Gj

〈
ηj

∣∣( ∗ [y]• (PF )
)
∧∧[PF ]•

〉
θjdHn

=
∫

G

〈
η
∣∣( ∗ [y]• (PF )

)
∧∧[PF ]•

〉
θdHn

=
∫
〈AT (PF )|PF 〉 d|T(0)|

and hence ∫
〈AT (PF )|PF 〉 d|T(0)| ≤ lim inf

j

∫
γTj d|Tj(0)|

for all F such that sup |F | ≤ 1. The inequality follows by the arbitariness
of F .

(2) From (7.2) and (7.1) we obtain also∫
〈−AT (PF )|PF 〉 d

∣∣T(0)

∣∣ ≤ lim inf
j

∫
−λTj d

∣∣∣Tj(0)

∣∣∣
= − lim sup

j

∫
λTj d

∣∣∣Tj(0)

∣∣∣
provided that sup |F | ≤ 1, whence we conclude by the arbitrariness of F , as
before.
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(3) If F1, F2 ∈ C∞
c (Rn+1

x ×Rn+1
y ,Rn+1

x ) then, as before, one finds∫
〈AT (PF1)|PF2〉 d

∣∣T(0)

∣∣ = lim
j

∫
〈ATj (PF1)|PF2〉 d

∣∣∣Tj(0)

∣∣∣
≤ lim inf

j

∫
|||ATj ||| d

∣∣∣Tj(0)

∣∣∣
whenever sup |Fi| ≤ 1 (i = 1, 2). Once again the conclusion comes from the
arbitariness of the vector fields. �

7.2. Measurability of symmetric functions of generalized curva-
tures. Given a current

T = [[G, η, θ]] ∈ curvn(RN
x ),

let w be a Hn G∗−measurable map such that w(x, y) ∈ Ey almost every-
where and consider the characteristic polynomial of A

w(x,y)
T,(x,y):

p(x,y)(λ) = an(x, y)λn + an−1(x, y)λn−1 + · · ·+ a0(x, y).

Note that the coefficients aj are measurable w.r.t. Hn G∗.

Proposition 7.2. There exists a complete system of measurable trajecto-
ries of principal curvatures with respect to the map w. In other words, there
exist measurable maps

µi : G∗ → R (i = 1, . . . , n)

such that

p(x,y)(λ) = an(x, y)
(
λ− µ1(x, y)

)
· · ·
(
λ− µn(x, y)

)
at Hn G∗-a.e. (x, y).

Proof. It will be enough to prove the existence of one of such measurable
trajectories. Then the conclusion will follow from the division rule for poly-
nomials, by induction.

Let C : G∗ → Rn+1 and Z : Rn+1 → P(R) be a couple of maps defined
as follows: {

C(x, y) :=
(
a0(x, y), . . . , an(x, y)

)
Z(t0, . . . , tn) := {λ ∈ R |

∑n
j=0 tjλ

j = 0}.

By [8, Corollary III.3, p. 63] we get that Z is measurable w.r.t. B(Rn+1).
Then F := Z ◦ C is measurable w.r.t. Hn G∗ and hence the set{

(x, y) ∈ G∗ ∣∣ F (x, y) ∩ U 6= ∅
}

is measurable w.r.t. Hn G∗ whenever U ⊂ R is open, by [8, Theorem
III.2, p. 62].
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Now, Theorem III.6 of [8], p. 65, implies that F admits a measurable
(w.r.t. Hn G∗) selection, i.e., a measurable function

µ : G∗ → R

such that µ(x, y) ∈ F (x, y) = {λ ∈ R | p(x,y)(λ) = 0}. �

As a consequence, we get immediately the following corollary. By analogy
with [6, §29.3], let us denote by σi(x, y;w) the i−th elementary symmetric
function of principal curvatures at the point (x, y) with respect to the normal
vector w.

Proposition 7.3. Under the same assumptions of Proposition 7.2, the
maps

(x, y) 7→ σi

(
x, y;w(x, y)

)
are measurable with respect to Hn G∗.
7.3. Some integral estimates. As an immediate corollary of Proposi-
tion 6.1 and Hölder inequality, we get:

Proposition 7.4. If q is a nonnegative real number and l,h are integers
such that 1 ≤ l ≤ h ≤ n, then

E(h)
q (T ) ≤ c(n, k, q) E

(l)
qh
l

(T )

for all T ∈ curvn(RN
x ). Moreover, if p is a positive real number such that

p ≥ q and if h ∈ {0, 1, . . . , n}, then one has

E(h)
q (T ) ≤ E(h)

p (T )
q
p ‖T(0)‖

1− q
p

for all T ∈ curvn(RN
x ).

Hence the following result follows.

Proposition 7.5. Let p be a positive real number, l ∈ {1, 2, . . . , n} and
q ∈ [0, lp

n ]. Then

GFq(T ) ≤ ‖T(0)‖+ E(1)
q (T ) + · · ·+ E(l−1)

q (T )

+ c(n, k, q)
n∑

h=l

E(l)
p (T )

qh
pl ‖T(0)‖

1− qh
pl

for all T ∈ curvn(RN
x ).

In particular, one has

M(T ) ≤ ‖T(0)‖+ E
(1)
1 (T ) + · · ·+ E

(l−1)
1 (T )

+ c(n, k)
n∑

h=l

E(l)
p (T )

h
pl ‖T(0)‖

1− h
pl

for all T ∈ curv*
n(R

N
x ), provided that lp ≥ n.
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Proof. Let us recall from the subsection §4.2 that

E(0)
q (T ) = ‖T(0)‖ and GFq(T ) =

n∑
h=0

E(h)
q (T ).

Then the inequality follows at once by Proposition 7.4. �

Remark 7.1. Let V be a n−dimensional, compact and orientable Rie-
mannian manifold without boundary and consider the set

Imm2,p(V,Rn+1
x ) :=

{
ϕ ∈ H2,p(V,Rn+1

x )
∣∣ ϕ is an immersion

}
where p > n. Let us recall that the area of ϕ ∈ Imm2,p(V,Rn+1

x ) is defined
in a natural way by

Area(ϕ) :=
∫

V
|dϕ(τ)|

where τ denotes a smooth orientation of V . In [14] we showed that, given
ϕ ∈ Imm2,p(V,Rn+1

x ), the corresponding generalized Gauss graph Tϕ is spe-
cial and has null boundary, i.e.,

Tϕ ∈ curv*
n(R

n+1
x ) and ∂Tϕ = 0.

Note also that

Area(ϕ) = ‖Tϕ(0)‖.

Then, by Proposition 7.5, one gets immediately the following estimate. In
the special case l = 1, we obtain a result which was conjectured to be true
in [14] (where it was proved for ϕ of class C2).

Proposition 7.6. Given a positive real number p and l ∈ {1, 2, . . . , n}, the
estimate

GFq(Tϕ) ≤ Area(ϕ) + E(1)
q (Tϕ) + · · ·+ E(l−1)

q (Tϕ) +

+ c(n, k, q)
n∑

h=l

E(l)
p (Tϕ)

qh
pl Area(ϕ)1−

qh
pl

holds for all ϕ ∈ Imm2,p(V,Rn+1
x ) and q ∈ [0, lp

n ].

8. Variational applications.

In this section we give some simple examples where the results stated
above are used to handle variational problems.
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8.1. First application. Consider the problem of minimizing the Lr norm
of the Riemann curvature tensor, for r > n/2, among the immersions ϕ ∈
Imm2,p(V,Rn+1

x ) (see Remark 7.1) such that

(i) Area(ϕ) ≤ A, |Bar(ϕ)| ≤ B and E
(1)
p (Tϕ) ≤ C

(ii) ϕ(V ) ⊃ M

where A, B, C are fixed positive constants, Bar(ϕ) is the “center of gravity”
of ϕ (see [14]), and M is a given n−dimensional rectifiable subset of Rn+1

x .
Denote by D the set of such immersions, that is

D :=
{
ϕ ∈ Imm2,p(V,Rn+1

x )
∣∣ (i) and (ii) are satisfied

}
with p > n.

Proposition 8.1. Let F be the functional defined in D as follows

F(ϕ) := 2rE(2)
r (Tϕ)

i.e., F is the r−th power of the Lr norm of the Riemann curvature tensor,
by Proposition 5.3. Then F has a minimizer, provided that r > n/2.

Proof. Assume
inf F = m < +∞

otherwise the assertion is trivial, and let ϕj be a minimizing sequence. By
[14, Theorem 7.1] and [12, Proposition 5.1], there exist a subsequence ϕj′

and diffeomorphisms ∆j′ : V → V such that the ϕj′ ◦ ∆j′ converge in the
H2,p weak topology to an immersion ϕ ∈ D. It follows that

Tϕj′ = Tϕj′◦∆j′ ⇀ Tϕ

for [14, Corollary 5.6]. Hence, applying [14, Theorem 4.2] with F (ξ) =
|ξ(2)|r, we get

m ≤ F(Tϕ) ≤ lim inf
j′

F(Tϕj′ ) = m

i.e., ϕ is a minimizer. �

Remark 8.1. Let {Tj} ⊂ curv*
n(R

n+1
x ) be such that

sup
j

{∫ (
1 + LTj + |RTj |

n
2
)
d|Tj(0)|

}
< +∞(8.1)

where LTj denotes the length of the second fundamental form of Tj , ac-
cording to Remark 6.1. By Proposition 7.5 and Proposition 5.3, the masses
M(Tj) must be equi-bounded. If M(∂Tj) are also uniformly bounded, then
there exists a subsequence {Tj′} which converges weakly to T ∈curvn(Rn+1

x ).
It is easy to find situations (e.g., shrinking spherical surfaces in R3) show-
ing that condition (8.1) does not prevent the limit Gauss graph from having
vertical parts of positive measure. In other words, under the assumption
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(8.1), it can happen that T is not a special generalized Gauss graph. To be
sure that T ∈ curv*

n(R
n+1
x ), it is enough to replace (8.1) by

sup
j

{∫ (
1 + Lq

Tj
+ |RTj |p

)
d|Tj(0)|

}
< +∞

where p > n/2 and 1 < q ≤ 2p/n. Indeed, by Proposition 7.5 and Proposi-
tion 5.3, we can apply the compactness theorem [13, Corollary 4.2].

8.2. Second application. The domain of the functional will be the set D
of currents

T = [[G, η, θ]] ∈ curv*
n(R

N
x ) (N = n + k)

such that
(i) ‖T(0)‖ ≤ A, E

(i)
q (T ) ≤ B (i = 1, . . . , l − 1), and E

(l)
p (T ) ≤ C,

where l ∈ {1, 2, . . . , n}, p > n/l and 1 < q ≤ lp/n
(ii) p(G) ⊃ M and ∂T = 0.

As before A, B, C are fixed positive constants, while M is a given n−dimen-
sional rectifiable subset of RN

x .

Proposition 8.2. The functionals F ′ and F ′′ defined in D by

F ′(T ) :=
∫

γT d|T(0)|, F ′′(T ) :=
∫
|||AT |||d|T(0)|

(see Section 7) have a minimizer.

Proof. We will prove only the assertion about F ′ in that the same argument
works also for F ′′. As in the first application one can obviously assume

inf F ′ < +∞.

Then, from a minimizing sequence {Tj}, we can extract a subsequence {Tj′}
such that

Tj′ ⇀ T ∈ curv*
n(R

N
x )

by Proposition 7.5 and the compactness theorem [13, Corollary 4.2]. More-
over T satisfies (i) above, for the semicontinuity theorem [14, Theorem 4.2],
while (ii) is fulfilled by [12, Proposition 5.1]. So we get T ∈ D and the
conclusion follows from Proposition 7.1. �

8.3. Third application. Given a couple of real numbers p, q such that
p > n and 1 < q ≤ 2p/n, consider the set

D :=
{

ϕ ∈ Imm2,p(V,Rn+1
x )

∣∣ Area(ϕ) ≤ A, E(1)
q (Tϕ) ≤ B

}
where, as usual, A and B are positive constants. Then introduce the func-
tional defined in curvn(Rn+1

x ) by

F(T ) :=

{
E

(2)
p (Tϕ) = 2−p

∫
V |Rm(ϕ)|p if T = Tϕ with ϕ ∈ D

+∞ otherwise
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and denote by F the relaxed functional of F with respect to the weak
topology of currents, i.e.,

F = inf
{

lim inf
j

F(Tj)
∣∣ Tj ∈ curvn(Rn+1

x ), Tj ⇀ T

}
.

As a general reference about relaxation we recommend [7].

Proposition 8.3. The following facts hold:
1) if F(T ) < +∞, then T ∈ curv*

n(R
n+1
x )

2) one has F(Tϕ) = F(Tϕ) for all ϕ ∈ D.

Proof. (1) A sequence {Tj} ⊂ curvn(Rn+1
x ) has to exist such that

Tj ⇀ T and sup
j
F(Tj) < +∞.

Then, by definition of F , we get Tj = Tϕj with {ϕj} ⊂ D, which implies

Tj ∈ curv*
n(R

n+1
x )

by [14, Corollary 5.5]. On the other hand, Proposition 7.5 (l = 2) yields

sup
j
GFq(Tj) < +∞

and hence, recalling the compactness theorem [13, Corollary 4.2], we con-
clude that T is a special generalized Gauss graph.

(2) It follows at once from the lowersemicontinuity of E
(2)
p [14, Theorem

4.2]. �
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[18] H. Federer, Geometric Measure Theory, Springer-Verlag, 1969.

[19] J.E. Hutchinson, Second fundamental form for varifolds and the existence of surfaces
minimizing curvature, Indiana Univ. Math. J., 35 (1986), 45-71.

[20] , C1,α multiple function and tangent cone behaviour for varifolds with second
fundamental form in Lp, Proc. Sympos. Pure Math., 44 (1986), 281-306.

[21] , Some regularity theory for curvature varifolds, Proc. Center Math. Analysis,
Australian National University, 12 (1987), 60-66.

[22] , Poincare-Sobolev and related inequalities for submanifolds of Rn, Pacific
Journal of Math., 145 (1990), 59-69.

[23] J. Langer, A compactness theorem for surfaces with Lp-bounded second fundamental
form, Mathematische Annalen, 270 (1985), 223-234.

[24] C. Mantegazza, Curvature Varifolds with boundary, to appear on Journal of Differ-
ential Geometry.

[25] M. Marcus, Finite Dimensional Multilinear Algebra, Part II, Marcel Dekker, Inc.,
New York, 1975.

[26] F. Morgan, Geometric Measure Theory, a beginner’s guide, Academic Press Inc.,
1988.

[27] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1970.

[28] L. Simon, Lectures on Geometric Measure Theory, Proceedings of the Centre for
Mathematical Analysis, Canberra, Australia, Vol. 3, 1984.

Dipartimento di Matematica
Università di Trento
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