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In this paper we will show that every semialgebraic semi-
cone of codimension at least one is the tangent semicone to
an algebraic variety.

Introduction.

The definition of the tangent cone C(V, p) to an algebraic variety V at a
point p was given by Whitney more than 40 years ago as one of the tools
to get information about the geometric shape of a variety near a singular
point. While the complex case has been widely and successfully studied,
including from a computational point of view, only recently have some first
attempts been made to elucidate the situation in the real case. For example
in [O-W-3] (see also [O-W-1] and [O-W-2]), theorems are proven relating
the tangent cone of a surface in R3 to its Nash fiber (the set of limits of
tangent spaces at smooth points), and many examples are presented showing
how the real case differs from the complex case.

Since the tangent cone to a real algebraic variety is a semialgebraic set, a
question which, in our opinion, is very natural is that of investigating which
semialgebraic cones of Rn can be realized as tangent cones to real algebraic
subsets of Rn. Partial results in this direction were proven in [F-F]; there it
is shown that any closed semialgebraic cone of codimension at least one in
Rn admitting a presentation with only “few” polynomial inequalities is the
tangent cone to some real algebraic variety in Rn. In particular, this holds
for every semialgebraic cone of codimension at least one in R3.

In this paper we show that the same result is true in general for all
closed semialgebraic cones of codimension at least one, without any restric-
tive hypothesis on the number of inequalities. Actually this is obtained as
a corollary of a more general result stating that any closed semialgebraic
semicone (i.e., a union of rays) of codimension at least one in Rn is the
tangent semicone (i.e., a union of limits of secant rays) to a suitable real
algebraic variety in Rn.
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1. Preliminaries.

Let V denote a real algebraic subset of Rn and let p be a point of V . The
tangent cone C(V, p) at p to V is the set of points u ∈ Rn such that there
exist a sequence xm ∈ V converging to p and a sequence of real numbers
tm such that lim

m→∞
tm(xm − p) = u. For notational simplicity, we will always

take p = 0 and denote C(V, 0) by C(V ).
By definition C(V ) is the union of lines which are limits of secant lines

0xm when xm ∈ V tends to 0, so it is a cone with vertex at 0, i.e., a set
such that for every u ∈ C(V ), u 6= 0, the whole line through u and 0 is
contained in C(V ). It is known (see e.g., [O-W-2]) that C(V ) is a closed
semialgebraic subset of Rn with dimC(V ) ≤ dim0 V ; and, in general, it is
not algebraic.

The tangent cone to a variety V gives information about the behavior
of “tangent directions” to V at a singular point. If, for instance, V =
{(x, y, z) ∈ R3 | z3 = x2 + y2}, then C(V ) is the z-axis, though points on
the negative z-semiaxis look scarcely related to the geometric shape of V . In
this sense, a notion that seems to give better geometric information about
V is that of the tangent semicone, i.e., the union of limits of secant rays
starting from 0. Precisely, the tangent semicone C+(V ) at 0 to V is the set
of points u ∈ Rn such that there exist a sequence xm ∈ V converging to p
and a sequence of real positive numbers tm such that lim

m→∞
tmxm = u. For

example the tangent semicone to V = {(x, y, z) ∈ R3 | z3 = x2 + y2} is the
positive z-semiaxis, which shows that C+(V ) can be properly contained in
C(V ).

If B ⊆ Rn and 0 ∈ B, we will say that B is a semicone (with vertex
at the origin) if for every y ∈ B, y 6= 0, the whole ray starting from 0 and
passing through y is contained in B. So the tangent semicone C+(V ), which
is semialgebraic, is a semicone.

As mentioned in the introduction, we are interested in studying which
semialgebraic subsets of Rn are tangent cones or semicones to an algebraic
subvariety of Rn; we recall that all the cones and semicones will be assumed
to have vertex at the origin.

For semialgebraic subsets A of dimension 1 the answer is easy. If A is
a cone, then it is a finite union of lines, so it is algebraic, and it is both
the tangent cone and the tangent semicone to itself (which is true for any
algebraic cone). If A is a semicone, then it is a finite union of rays and
every ray l can be realized as a tangent semicone: By a suitable change of
coordinates, we can assume l = {x ∈ Rn | x1 = · · · = xn−1 = 0, xn ≥ 0},
so l is the tangent semicone to V = {x ∈ Rn | x3

n =
∑n−1

i=1 x
2
i }. It is then

enough to make use of the following:
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Property of the union: If A ⊂ Rn is a finite union of closed semialgebraic
semicones Ai such that, for each i, there exists an algebraic subset Vi ⊂ Rn

such that Ai = C+(Vi), then C+(
⋃

i Vi) =
⋃

iC
+(Vi) = A.

Before dealing with the question for any A, let us end the section by
recalling some further properties of cones and semicones in Rn.

First of all every cone is a semicone, and every semicone B uniquely
determines a sort of “associated cone”, that is B ∪ (−B), where −B =
{−x | x ∈ B}.

If A ⊂ Rn is a cone, it is a straightforward consequence of the definition
of a cone that the ideal I(A) ⊆ R[x1, . . . , xn] consisting of all the polyno-
mial functions vanishing on A is homogeneous (recall that I is said to be
homogeneous if for any f ∈ I, all the homogeneous parts of f belong to I).
As is well known ([C-L-O]), the algebraic subvariety of Rn defined by a ho-
mogeneous ideal I is a cone, since I admits a finite number of homogeneous
generators.

Incidentally, we recall that every real algebraic variety can be defined by
a single equation, since V (f1, . . . , fr) = V (

∑r
i=1 f

2
i ).

The next lemma contains some facts that will be useful later on; we will
denote by AZ the Zariski closure of a set A.

Lemma 1.1.
(1) The Zariski closure of a semicone is a cone.
(2) The irreducible components of an algebraic cone are cones.

Proof. (1) Let A be a semicone. Since AZ = A ∪ (−A)
Z

, we can assume
A is a cone. Therefore I(AZ) = I(A) is homogeneous, hence the variety it
defines, that is AZ , is a cone.

(2) Let Y be an irreducible component of an algebraic cone X. In order
to prove that I(Y ) is homogeneous, we show that for every f ∈ I(Y ) each
homogeneous component fi of f belongs to I(Y ).

Assume by contradiction that E = {i | fi /∈ I(Y )} 6= ∅; let us denote by
i0 the minimum of E.

If W = X \ Y Z
, then X = Y ∪W and there exists g ∈ I(W ) such that

g /∈ I(Y ). The function fg belongs to the ideal I(X), which is homogeneous
because X is a cone; so each homogeneous component (fg)k ∈ I(X).

Note that F = {j | gj /∈ I(Y )} 6= ∅, because g /∈ I(Y ); so let j0 = min F
and k0 = i0 + j0. Consider the homogeneous component

(fg)k0 = fi0gj0 +
∑

i+j=k0,i<i0

figj +
∑

i+j=k0,j<j0

figj .

We easily get that fi0gj0 ∈ I(Y ), which is absurd since neither fi0 nor gj0

belong to I(Y ) while I(Y ) is prime. �
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Finally note that if A is a closed semialgebraic cone in Rn, then the image
π(A) of A\{0} in RPn−1 by the canonical projection π : Rn\{0} → RPn−1

is a semialgebraic subset of RPn−1; so we have that

π(A) =
s⋃

i=1

{X ∈ RPn−1 | φi(X) = 0, ψij(X) ≥ 0 j = 1, . . . ,mi}

where φi and ψij are regular functions on RPn−1. Recall that, given a reg-
ular function η on RPn−1, then η = P

Q with P,Q homogeneous polynomials
of the same degree. So V (η) = V (PQ) and {η ≥ 0} = {PQ ≥ 0}. Hence A
can be presented as

A =
s⋃

i=1

{x ∈ Rn | fi(x) = 0, hi1(x) ≥ 0, . . . , himi(x) ≥ 0}

where fi, hij are homogeneous polynomials of even degree.

2. Basic tools.

One of the results proved in [F-F] is that, if A is a closed semialgebraic cone
of codimension at least one in Rn, with vertex at the origin, and admitting
a presentation with only one inequality, say A = {x ∈ Rn | f(x) = 0, h(x) ≥
0} with f, h homogeneous polynomials, then A is the tangent cone to the
variety V (g), where g(x) = f(x)2 − h(x)r for a suitable odd integer r.

In order to prove the same result when the presentation of A contains
more inequalities, the first natural idea would be that of iterating the pre-
vious procedure; but the iteration fails since g = f2 − h may no longer be
homogeneous. It is therefore necessary to study more closely the relation
between C(V (g)) and C(V (f)) when f is not homogeneous; this is precisely
what we do in this paragraph.

For simplicity, for any function h : Rn → R, we will use the following
notations:

V ≥(h) = {x ∈ Rn | h(x) ≥ 0} and V >(h) = {x ∈ Rn | h(x) > 0}.
Moreover, for any f ∈ R[x1, . . . , xn] we will denote by ord(f) the order of
f , i.e., the degree of the lowest degree homogeneous part of f .

We recall that a function f : Rn → R is said to be semialgebraic if its
graph is a semialgebraic subset of Rn+1.

Proposition 2.1. Let f : Rn → R be a continuous semialgebraic func-
tion, f(0) = 0. Then there exists a constant l(f) > 0 such that, for any
homogeneous polynomial h ∈ R[x1, . . . , xn] of degree d with d > 2l(f), we
have

C+(V (g)) ⊆ C+(V (f)) ∩ V ≥(h),
where g = f2 − h.
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Proof. Fix a rational number s > 1. For any x ∈ Rn, let B(x, r) denote the
open ball of radius r centered at x. Let

U =
⋃

x∈V (f)∩B(0, 1
2
)

B(x, ‖x‖s).

Then U is an open neighborhood of V (f)∩B(0, 1
2)\{0} in Rn. Furthermore,

U is semialgebraic: it is the projection to Rn of the semialgebraic set{
(x, y) ∈ Rn ×Rn | ‖x− y‖ < ‖x‖s, x ∈ V (f) ∩B

(
0,

1
2

)}
.

Since V (f) ∩ (B(0, 1
2) \ U) = {0}, by a  Lojasiewicz inequality there exist

positive real constants l = l(f) and C such that |f(x)| ≥ C‖x‖l for all
x ∈ (Rn − U) ∩B(0, 1

4).
Let h ∈ R[x1, . . . , xn] be a homogeneous polynomial of degree d. Using

Euler’s formula and induction on the degree, we get that there exists a
constant M such that |h(x)| ≤M‖x‖d for every x.

If d > 2l, let q = d−2l. Then g ≥ (C2−M‖x‖q)‖x‖2l on (Rn−U)∩B(0, 1
4).

So, for r sufficiently small, g is positive on (Rn − U) ∩ B(0, r) except at 0
and consequently

(1) (V (g) \ {0}) ∩B(0, r) ⊆ U ∩B(0, r).

From the last inclusion we get that C+(V (g)) ⊆ C+(V (f)). In fact, let
u ∈ C+(V (g)); since C+(V (g)) is a semicone, we can suppose that ‖u‖ = 1.
Let {xi} ∈ V (g)\{0} be a sequence converging to 0 such that lim

i→∞
xi
‖xi‖ = u.

By (1) and for any i big enough, there exists yi ∈ V (f)\{0} such that ‖xi−
yi‖ < ‖yi‖s with ‖yi‖ < r < 1. Any limit point y0 of the bounded sequence
{yi} satisfies ‖y0‖ ≤ ‖y0‖s and ‖y0‖ < 1, hence lim

i→∞
yi = 0. Moreover we

have ∥∥∥∥ xi

‖xi‖
− yi

‖yi‖

∥∥∥∥ =
‖(‖yi‖ − ‖xi‖)xi + ‖xi‖(xi − yi)‖

‖xi‖‖yi‖

≤ 2‖xi − yi‖
‖yi‖

≤ 2‖yi‖s−1,

hence lim
i→∞

yi

‖yi‖ = u. This proves that u ∈ C+(V (f)).

The inclusion C+(V (g)) ⊆ V ≥(h) follows easily from V (g) ⊆ V ≥(h). �

Lemma 2.2. Let f ∈ R[x1, . . . , xn], with ord(f) = d. Assume h ∈
R[x1, . . . , xn] is a homogeneous polynomial with deg h > 2d and define
g = f2 − h. Let x be a point in Rn such that h(x) > 0 and suppose that
b is a real positive number such that f(bx) = 0. Then there exist a point y
arbitrarily near x and a real number t0 with 0 < t0 < b such that t0y ∈ V (g).
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Proof. Denote by f0 the lowest degree homogeneous part of f . Since g(bx) <
0, we can find y arbitrarily near x with f0(y) 6= 0 and g(by) < 0. Let
λ(t) = g(ty). The lowest degree term of λ(t) is t2df0(y)2, therefore λ(t) > 0
for t > 0 sufficiently small. Since λ(b) < 0, by the Intermediate Value
Theorem λ(t0) = 0 for some t0 with 0 < t0 < b. �

Proposition 2.3. Suppose that f ∈ R[x1, . . . , xn] is a polynomial of order
d and h ∈ R[x1, . . . , xn] is a homogeneous polynomial with deg h > 2d. Let
g = f2 − h. Then C+(V (g)) ⊇ C+(V (f)) ∩ V >(h).

Proof. Pick x ∈ C+(V (f))∩V >(h). Then there exist a sequence of points xi

converging to x and a sequence of positive numbers ai converging to 0 such
that aixi ∈ V (f)∩V >(h). By Lemma 2.2, there exist points yi converging to
x and positive numbers ti converging to 0 such that tiyi ∈ V (g). Therefore
x ∈ C+(V (g)). �

3. Main theorem.

We are now ready to prove the main result of this paper:

Theorem 3.1. Let A be a closed semialgebraic semicone in Rn, dimA < n.
Then there exists a polynomial function F ∈ R[x1, . . . , xn] such that A is
the tangent semicone to the algebraic variety V (F ) = {x ∈ Rn | F (x) = 0}.

Proof. The theorem will be proved by induction on the dimension of A. If
dim A = 1, A is a finite union of rays, hence V (F ) can be found as seen in
Section 1.

Assume now dimA > 1 and that the theorem holds for any closed semi-
algebraic semicone of dimension < dimA.

Claim. Without any loss of generality, we may assume that

A = {x ∈ Rn | f(x) = 0, h1(x) ≥ 0, . . . , hm(x) ≥ 0}

with

(i) f, h1, . . . , hm homogeneous polynomials of positive degree,
(ii) {x ∈ Rn | f(x) = 0, h1(x) > 0, . . . , hm(x) > 0} 6= ∅,
(iii) AZ irreducible.

Proof of the Claim. By the property of the union recalled in Section 1, it is
enough to prove that A is a finite union of subsets with the properties stated
in the claim.
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Observe that A can be seen as A =
⋃p

i=1Ai, where each Ai is a closed
semialgebraic semicone such that Ai \ {0} ⊆ {li > 0} for a suitable linear
function li. Set Ci = Ai ∪ (−Ai). So A =

⋃p
i=1(Ci ∩ {li ≥ 0}) is a finite

union of subsets of the form C ∩ {l ≥ 0}, where C is a closed semialgebraic
cone and l is a linear function. By Section 1, C is a finite union of subsets
presented as

B = {x ∈ Rn | f(x) = 0, h1(x) ≥ 0, . . . , hm(x) ≥ 0},

where f, h1, . . . , hm are homogeneous polynomials of even degree.
Let X = B

Z , X = X1 ∪ . . . ∪Xp the decomposition of X into irreducible
components and Bi = B ∩Xi. Evidently B =

⋃p
i=1Bi and Xi is the Zariski

closure of Bi. By Lemma 1.1, X and its irreducible components Xi are
cones, so for each i there exists a homogeneous polynomial fi of even degree
such that Xi = V (fi). So

Bi = {x ∈ Rn | fi(x) = 0, h1(x) ≥ 0, . . . , hm(x) ≥ 0}.

Since we can assume that hj does not identically vanish on Bi for any j and
since Bi

Z is irreducible, then dim(Bi ∩ V (hj)) < dimBi for every j. This
implies that {x ∈ Rn | fi(x) = 0, h1(x) > 0, . . . , hm(x) > 0} 6= ∅, because
otherwise Bi =

⋃m
j=1(Bi ∩ V (hj)), which is absurd.

So the Bi’s fulfill conditions (i), (ii), (iii). Then our claim is proved by
just remarking that C ∩ {l ≥ 0} is a finite union of the semicones

B′i = {x ∈ Rn | fi(x) = 0, h1(x) ≥ 0, . . . , hm(x) ≥ 0, l ≥ 0},

which satisfy the requested properties (i), (ii), (iii); in particular B′i
Z

is

irreducible, as B′i
Z

= Bi
Z . �

Assume that A is presented as in the Claim. If we denote deg f = d0,
deg hi = di, let us now recursively define polynomials g0, . . . , gm and odd
positive integers s0, . . . , sm as follows:
• g0 = f and s0 = 1;
• if i > 0, let si be an odd positive integer such that

disi > 2 max{l(gi−1), 2i−1d0}

(where l(gi−1) is the exponent in Proposition 2.1) and let gi = g2
i−1 − hsi

i .

We can apply Proposition 2.1 m times to conclude that C+(V (gm)) ⊆ A.
Let A0 = V (f) and, ∀i = 1, . . . ,m, let Ai = {f = 0, hs1

1 > 0, . . . , hsi
i >

0}; by (ii), Ai 6= ∅ for each i.
Let us prove by induction on i that Ai ⊆ C+(V (gi)). This is obvious if

i = 0; if i > 0, we have by the inductive hypothesis that

Ai = Ai−1 ∩ {hsi
i > 0} ⊆ C+(V (gi−1)) ∩ {hsi

i > 0}.
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Moreover one can easily check that ord(gi) = 2id0 for any i, so that we can
apply Proposition 2.3 to obtain that

C+(V (gi−1)) ∩ {hsi
i > 0} ⊆ C+(V (gi)).

Since C+(V (gi)) is closed, we get that Ai ⊆ C+(V (gi)). In particular A′ =
Am ⊆ C+(V (gm)).

In general A′ may be strictly contained in A, so we cannot conclude that
A is contained in C+(V (gm)) and we need to consider the set B = A \A′ .
Since A′ is a closed semialgebraic semicone, so is B.

We claim that dimB < dimA.
Assume by contradiction that dimB = dimA. Then B

Z ⊆ A
Z and

dimB
Z = dimA

Z , hence BZ = A
Z because AZ is irreducible.

It is enough to prove that for each x ∈ B, at least one of hi(x) = 0; in
fact this implies that h = h1 ·h2 · · · · ·hm vanishes on B, hence on BZ = A

Z ,
which contradicts the fact that Am 6= ∅.

Let us now show that for each x ∈ B, there exists an index i such that
hi(x) = 0. If not, x ∈ Am∩B. Therefore there exists an open neighborhood
U of x in Rn on which hi > 0 for each i = 1, . . . ,m. Hence U ∩ V (f)∩ (A \
A′) = ∅. Since A ⊆ V (f), we get that U ∩ (A \ A′) = ∅, which is absurd
because x ∈ B = A \A′.

So, by induction, there exists a polynomial function G such that
C+(V (G)) = B. Then

A = A′ ∪B ⊆ C+(V (gm)) ∪ C+(V (G)) ⊆ A.

Hence A = C+(V (F )), where F = gmG. �

Note that, if the tangent semicone to an algebraic variety V is a cone,
then it coincides with the tangent cone to V . Therefore, as each cone is a
semicone, from the previous Theorem we deduce the following:

Corollary 3.2. Let A be a closed semialgebraic cone in Rn, dimA < n.
Then there exists a polynomial function F ∈ R[x1, . . . , xn] such that A is
the tangent cone to the algebraic variety V (F ) = {x ∈ Rn | F (x) = 0}.
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