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We show that for α ≥ 1
2
, the following inequality holds:

α

2

∫ 1

−1

(1 − x2)|g′(x)|2dx +
∫ 1

−1

g(x)dx − log
1

2

∫ 1

−1

e2g(x)dx ≥ 0,

for every function g on (−1, 1) satisfying ‖g‖2 =
∫ 1

−1
(1 −

x2)|g′(x)|2dx < ∞ and
∫ 1

−1
e2g(x)xdx = 0. This improves

a result of Feldman et al., 1998, and answers a question of
Chang and Yang in the axially symmetric case.

1. Introduction.

On S2 let Jα denote the functional on the Sobolev space H1,2(S2) defined
by

Jα(g) = α

∫
S2

|∇g|2dw + 2
∫

S2

gdw − log
∫

S2

e2gdw.

Here dw denotes the Lebesgue measure on the unit sphere, normalized to
make

∫
S2 dw = 1. The famous Moser-Trudinger inequality says that J1

is bounded below by a non-positive constant C1. Later Onofri [6] showed
that C1 can be taken to be 0. (Another proof was also given by Osgood-
Phillips-Sarnack [7].) On the other hand, if we restrict Jα to the class
of G of functions g for which e2g has centre of mass equal to 0, that is∫
S2 e2g~xdw = 0, then Aubin in [2] showed that for α ≥ 1

2 , the functional
Jα is again bounded below by a non-positive constant Cα. In [3] and [4] A.
Chang and P. Yang showed that Cα = 0 for α close enough to 1. This led
them to the following

Conjecture. Let G denote the functions in H1,2(S2) for which
∫
S2 e2g~xdw

= 0. If α ≥ 1
2 , then infg∈G Jα(g) = 0.

In this note, we prove this conjecture in the axially symmetric case. We
note that Feldman, Froese, Ghoussoub and Gui [5] proved that the above
conjecture holds for the axially symmetric case when α > 16

25 − ε for some
small ε. They also gave an example which says the inequality is not true
if α < 1

2 . It is also known that Jα(g) ≥ 0 if g is an even function, i.e.,
g(~x) = g(−~x) on S2. (See [7].)
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Let θ and ϕ denote the usual angular coordinates on the sphere, and
define x = cos(θ). Axially symmetric functions depend on x only. For such
functions, it is well-known (see [5]) that the functional Jα can be written as

Iα(g) :=
α

2

∫ 1

−1
(1− x2)|g′(x)|2dx +

∫ 1

−1
g(x)dx− log

1
2

∫ 1

−1
e2g(x)dx.

The set G is then replaced by

Gr :=
{

g|
∫ 1

−1
(1− x2)|g′(x)|2 < ∞,

∫ 1

−1
e2g(x)xdx = 0

}
.

It is proved in [5, Proposition 3.1] that any critical point g of Iα restricted
to Gr satisfies the following differential equation

α((1− x2)g′)′ − 1 +
2
λ

e2g = 0, λ =
∫ 1

−1
e2gdx.(1.1)

The main result of this note is the following:

Theorem 1.1. If α ≥ 1
2 , then the only critical points of the functional Iα

restricted to Gr are constant functions.

As a consequence, the above theorem implies that the Conjecture of
Chang and Yang is true in the axially symmetric case.

Theorem 1.2. If α ≥ 1
2 , then Iα(g) ≥ 0 for g ∈ Gr.

The rest of the paper is devoted to the study of (1.1). To this end, we
need some notations and some basic facts.

Let g be a solution of (1.1). Following [5], we set

G = (1− x2)g′.

Then G satisfies (see [5])

αG′ − 1 +
2
λ

e2g = 0,(1.2)

and {
(1− x2)G′′ + 2

αG− 2GG′ = 0
G(−1) = G(1) = 0.

(1.3)

We also need some facts about the Legendre’s polynomials.
Let Pn(x) be the n−th Legendre polynomial, i.e., Pn satisfies

((1− x2)P ′
n)′ + λnPn = 0, λn = n(n + 1), n = 0, 1, . . . .

Note that

P0 = 1, P1 = x, P2 =
1
2
(3x2 − 1), . . .
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Moreover (see [1])

|P ′
n(x)| ≤ 1

2
λn,

∫ 1

−1
P 2

n =
2

2n + 1
.(1.4)
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2. Proof of Theorem 1.1.

In this section, we shall prove Theorem 1.1.
Let

G(x) = βx + a2
1
2
(3x2 − 1) +

∞∑
k=3

akPk(x),

G2 =
∞∑

k=3

akPk(x)

and

b2
k = a2

k

∫ 1

−1
P 2

k , k ≥ 2.

We first derive some equalities:∫ 1

−1
(1− x2)(G′)2 =

(
2
α
− 1
)∫ 1

−1
G2,(2.1) ∫ 1

−1
P1G =

2
3
β,(2.2) ∫ 1

−1
(1− x2)

e2g

λ
=

2
3
(1− αβ),(2.3) ∫ 1

−1
PkG = − 2

αλk

∫ 1

−1
(1− x2)P ′

k

e2g

λ
, k ≥ 2,(2.4) ∫ 1

−1
G2 =

(
6− 2

α

)
2
3
β,(2.5)

2
3
β

(
4β +

(
7− 2

α

)(
2
α
− 6
))

=
∫ 1

−1
(1− x2)(G′

2)
2 − 6

∫ 1

−1
G2

2,(2.6)
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−1
(1− x2)(G′

2)
2 − 6

∫ 1

−1
G2

2 =
∞∑

k=3

(λk − 6)b2
k.(2.7)

Proofs of (2.1)-(2.7). Multiplying (1.3) by G and integrating over [−1, 1],
we obtain (2.1). The relation (2.2) follows by definition. Multiplying (1.2)
by
∫ x
−1 Pk(s)ds, k ≥ 1 and integrating over [−1, 1] we obtain (2.3) and (2.4).

Multiplying (1.3) by x and integrating from −1 to 1 we obtain (2.5). To
show (2.6), we just need to use (2.1), (2.5) and the definition of G2. The
equality (2.7) follows from definition. �

We will show β = 0, which implies G = 0 by (2.5). Our basic strategy is
to show that if β 6= 0, then

β =
1
α

,

which will lead to a contradiction.
Below we assume that β 6= 0.
Next we obtain some inequalities.
From (2.3) we have

1
α
− β > 0.(2.8)

By definition we have

b2
k = a2

k

∫ 1

−1
P 2

k =
(
∫ 1
−1 GPk)2∫ 1
−1 P 2

k

≤ 2k + 1
2

(
2

αλk

∫ 1

−1
(1− x2)|P ′

k|
e2g

λ

)2

≤ 2k + 1
2

(
2

αλk

λk

2
2
3
(1− αβ)

)2

.

Hence we obtain

b2
k ≤

2(2k + 1)
9

(
1
α
− β

)2

, k ≥ 2.(2.9)

Similarly we obtain

3
5
|a2| ≤

1
α
− β.(2.10)

From (2.6) (since β > 0),

4β +
(

7− 2
α

)(
2
α
− 6
)
≥ 0.
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Since α ≥ 0.5, we have

β ≥ 1
4

(
7− 2

α

)(
6− 2

α

)
≥ 1.5.(2.11)

From (2.6) and (2.8), we have

4
α

+
(

7− 2
α

)(
2
α
− 6
)
≥ 0

which implies that

α ≤ 0.537.

From (2.6) we have

2
3
β

(
4β +

(
7− 2

α

)(
2
α
− 6
))

=
∫ 1

−1
(1− x2)(G′

2)
2 − 6

∫ 1

−1
G2

2

≥ 1
2

∫ 1

−1
(1− x2)(G′

2)
2

≥ 1
2

[∫ 1

−1
(1− x2)(G′)2 − 4

3
β2 − 12

5
a2

2

]
≥ 1

2

[(
2
α
− 1
)(

6− 2
α

)
2
3
β − 4

3
β2 − 12

5
a2

2

]
.

Hence we obtain
2
3
β

[
5
α

+
(

7− 2
α

)(
2
α
− 6
)
− 1

2

(
2
α
− 1
)(

6− 2
α

)]
(2.12)

≥ 10
3

β

(
1
α
− β

)
− 6

5
a2

2

≥ 10
3

β

(
1
α
− β

)
− 6

5
× 25

9

(
1
α
− β

)2

≥ 10
3

(
2β − 1

α

)(
1
α
− β

)
.

Since ( 1
α−β) ≥ 0, α ≥ 0.5 and 2β− 1

α ≥ 0, we conclude that (since β > 0)

0 ≤ 5
α

+
(

7− 2
α

)(
2
α
− 6
)
− 1

2

(
2
α
− 1
)(

6− 2
α

)
≤ 1(2.13)

which implies, by a simple computation, that

α ≤ 0.52.(2.14)
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Moreover since α ≥ 0.5 and β ≥ 1.5, we obtain from (2.12) and (2.13) that

1
α
− β ≤ β

5(2β − 1
α)
≤ β

5
.(2.15)

To obtain better estimates, we fix an integer n ≥ 3. We have by (2.6)
and (2.7)

2
3
β

(
4β +

(
7− 2

α

)(
2
α
− 6
))

=
∞∑

k=3

(λk − 6)b2
k

=
n∑

k=3

(λk − 6)b2
k +

∞∑
k=n+1

(λk − 6)b2
k

≥
n∑

k=3

(λk − 6)b2
k +

λn+1 − 6
λn+1

∞∑
k=n+1

λkb
2
k

=
n∑

k=3

(λk − 6)b2
k

+
λn+1 − 6

λn+1

(
2
3
β

(
2
α
− 1
)(

6− 2
α

)
− 4

3
β2 − 12

5
a2

2 −
n∑

k=3

λkb
2
k

)

=
n∑

k=3

(
λk − 6− λn+1 − 6

λn+1
λk

)
b2
k

+
λn+1 − 6

λn+1

(
2
3
β

(
2
α
− 1
)(

6− 2
α

)
− 4

3
β2 − 12

5
a2

2

)
=

n∑
k=3

6
λk − λn+1

λn+1
b2
k −

12
5

a2
2

λn+1 − 6
λn+1

+
λn+1 − 6

λn+1

(
2
3
β

(
2
α
− 1
)(

6− 2
α

)
− 4

3
β2

)
.

Hence we have

2
3
β

(
4β +

(
7− 2

α

)(
2
α
− 6
))

(2.16)

− λn+1 − 6
λn+1

(
2
3
β

(
2
α
− 1
)(

6− 2
α

)
− 4

3
β2

)
≥

n∑
k=3

6
λk − λn+1

λn+1
b2
k −

12
5

a2
2

λn+1 − 6
λn+1

.
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After some simple computations, the left hand of (2.16) equals to

12β

(
1
α
− 2
)

+
4β

λn+1

[(
2
α
− 1
)(

6− 2
α

)
− 2

α

]
− 4β

(
1− 2

λn+1

)(
1
α
− β

)
.

Thus we have by (2.9), (2.10) and (2.16)

12β

(
1
α
− 2
)

+
4β

λn+1

[(
2
α
− 1
)(

6− 2
α

)
− 2

α

]
(2.17)

≥ 4β

(
1− 2

λn+1

)(
1
α
− β

)
− 12

5
a2

2

λn+1 − 6
λn+1

+ 6
n∑

k=3

λk − λn+1

λn+1

2(2k + 1)
9

(
1
α
− β

)2

≥ 4β

(
1− 2

λn+1

)(
1
α
− β

)
− 20

3
λn+1 − 6

λn+1

(
1
α
− β

)2

− 4
3

n∑
k=3

λn+1 − λk

λn+1
(2k + 1)

(
1
α
− β

)2

≥
[
4β

(
1− 2

λn+1

)
−20

3
λn+1 − 6

λn+1

(
1
α
− β

)
− 4

3
cn

(
1
α
− β

)](
1
α
− β

)
where

cn =
n∑

k=3

λn+1 − λk

λn+1
(2k + 1).

Since 1/2 < α ≤ 1 and λn > 2 for n ≥ 1, we have

12β

(
1
α
− 2
)

+
4β

λn+1

[(
2
α
− 1
)(

6− 2
α

)
− 2

α

]
− 8β

λn+1

= 4β

(
1
α
− 2
)[

3− 4
λn+1

(
1
α
− 1
)]

≤ 0.

Thus the left hand side of (2.17) satisfies

LHS of (2.17) ≤ 8β

λn+1
.(2.18)

We now claim
1
α
− β ≤ 4

λn
, ∀n ≥ 4.(2.19)
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By (2.18), we just need to show that the right hand side of (2.17) satisfies

RHS of (2.17) ≥ 2β

(
1
α
− β

)
.(2.20)

We prove it by induction.
We first prove n = 4. To this end, we iterate the inequality (2.17). Note

that the right hand side of (2.17) with n = 3 equals[
4β

(
1− 2

20

)
− 20

3
20− 6

20

(
1
α
− β

)
(2.21)

−4
3

20− 12
20

× 7
(

1
α
− β

)](
1
α
− β

)
≥
[
4β

9
10
− 14

3

(
1
α
− β

)
− 56

15

(
1
α
− β

)](
1
α
− β

)
≥
[
3.6β − 126

15

(
1
α
− β

)](
1
α
− β

)
≥
[
3.6β − 126

15
β

5

](
1
α
− β

)
(by (2.15))

≥ 1.92β

(
1
α
− β

)
.

By using (2.18) and (2.17) again, we obtain

1
α
− β ≤ 8

20
1

1.92
< 0.25.(2.22)

Similarly, by using (2.22), we have

RHS of (2.17) ≥
[
3.6β − 126

15
× 0.25

](
1
α
− β

)
(by (2.22))

≥ 2β

(
1
α
− β

)
(since β ≥ 1.5 by (2.11)).

Thus (2.20) holds for n = 4 and hence (2.19) holds for n = 4.
Let us now assume that

1
α
− β ≤ 4

λk
, k = n ≥ 4.

We observe that for n ≥ 4

cn =
n∑

k=3

(2k + 1)− 1
λn+1

n∑
k=3

λk(2k + 1)

=
n∑

k=3

(2k + 1)− 1
λn+1

n∑
k=3

k(k + 1)(2k + 1)
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=
1
2
λn+1 − 9 +

36
λn+1

.

Hence we have by (2.17)

12β

(
1
α
− 2
)

+
4β

λn+1

[(
2
α
− 1
)(

6− 2
α

)
− 2

α

](2.23)

≥
[
4β

(
1− 2

λn+1

)
−
(

20
3

λn+1 − 6
λn+1

+
4
3

(
1
2
λn+1 − 9 +

36
λn+1

))(
1
α
− β

)](
1
α
− β

)
.

The right hand of (2.23) satisfies

RHS of (2.23)

≥
[
4β

(
1− 2

λn+1

)
+

64
3

1
λn

− 32
λnλn+1

− 8
3

λn+1

λn

](
1
α
− β

)
.

To show (2.20), we only need to show

β

(
1− 4

λn+1

)
≥ −32

3
1
λn

+
16

λnλn+1
+

4
3

λn+1

λn
,

or

β ≥ 4
3
·
λ2

n+1 − 8λn+1 + 12
λn(λn+1 − 4)

.

In view of the inductive assumption, it suffices to show

1
α
≥ 4

3
· λn+1

λn
· λn+1 − 5
λn+1 − 4

.

Because of (2.14), it is easy to verify that the above inequality holds for
n ≥ 4.

In conclusion, we have obtained (2.19).
Finally we can finish the proof of Theorem 1.1. In fact, if we let n → +∞

in (2.19), we obtain

1
α
− β = 0

which is a contradiction to (2.8).
This implies that β = 0 and therfore G ≡ 0. Hence g′ ≡ 0, and g ≡

Constant. �
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