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The classical Hardy space H2 has a natural structure of a
module over the algebra of polynomials C[z]. In this setting
the theorem of Beurling describes all closed C[z]-submodules
of H2. In this paper we prove a Beurling-type theorem for
H2 as a module over a finitely generated polynomial algebra.

1. Introduction.

The celebrated theorem of Beurling [3] states that any closed z-invariant
subspace of the Hardy space H2 in the unit disk is of the form M = g ·H2

where g is a classical inner function. The result of Apostol, Bercovici, Foias,
and Pearcy [2] emphasized the importance of a Beurling type theorem for
the Bergman space A2 in the unit disk, and such a theorem was proved in
1996 by by Aleman, Richter, and Sundberg [1]. Their approach uses the
concept of wandering property introduced by Halmos in 1961 [7]. More
precisely the result in [1] states that if M is a closed z-invariant subspace of
A2, then the set M 	 zM generates M in the sense that M is the minimal
closed z-invariant subspace of A2 which contains M 	 zM . This gives rise
to the following interpretation of a Beurling type theorem.

Let C[z] stand, as usual, for the ring of polynomials. Then both the Hardy
and Bergman spaces have a natural C[z]-module structure. Any z-invariant
subspace corresponds to a C[z]-submodule in this setting. Thus a Beurling
type theorem describes a constructive way of obtaining a generating set
of closed submodules. In the Hardy setting for a closed C[z]-submodule
M = g ·H2, M 	 zM has dimension 1 and is spanned by g.

This leads to the following general question. Let A be a subalgebra of
H∞; then both Hardy and Bergman spaces can be considered as modules
over A. Then given a closed A-submodule M of the Hardy (Bergman) space,
how can one describe a canonical procedure of finding a set of generators
of M? In particular, is every closed A-submodule finitely generated, and if
A0 = {f ∈ A : f(0) = 0}, must M 	A0M generate M as an A-submodule?
We single out zero to follow the classical route for a canonical construction,
but we could replace it with any point w in the unit disk, and all the results
of this paper would remain valid.
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Beurling’s theorem for the Hardy space and Aleman, Richter, and Sund-
berg’s theorem for the Bergman setting give an affirmative answer to the last
question when A = C[z]. If the algebra A is singly generated by a classical
inner function g, A = C[g], the result also holds in H2. This follows from
the Wold Decomposition theorem (see [9] for details).

In general, we say that an algebra A has the wandering property if for
any closed A-submodule M , the set M 	A0M is a generating set of M . It
was proved in [4], [8] that if a singly generated subalgebra of H∞, A =
C[g], where g ∈ H∞, has the wandering property in H2 or A2, then g is a
composition of a bounded univalent function and a classical inner function.

In this paper we deal with subalgebras A generated by more than one
element, focusing on polynomial subalgebras, A = C[p1, . . . , pd] where the
generators p1, . . . , pd are themselves polynomials. We consider the case
when polynomials p1, . . . , pd satisfy the following two conditions:

1) greatest common divisor (deg p1, . . . , deg pd) = 1

2) |p′1(z)|+ · · ·+ |p′d(z)| > 0, z ∈ C.
(1)

Our first result states that any closed submodule of H2 over such an algebra
is finitely generated.

Theorem 1. Let A = C[p1, . . . , pd] be a finitely generated polynomial subal-
gebra of H∞ whose polynomial generators p1, . . . , pd satisfy (1). Then every
closed A-submodule of H2 is finitely generated.

At the same time we show that such algebras almost never have the
wandering property in the Hardy space. In other words, there is a closed
submodule M of H2 such that the set M 	 A0M does not generate M .
Nevertheless, it turns out that for polynomial algebras satisfying the condi-
tions (1) only a finite number of elements need to be added to M 	A0M in
order to obtain a generating set. In fact, the proof of Proposition 3 below
describes a canonical procedure for finding these additional generators. The
maximum possible number of additional generators is called the deficiency
of the algebra and denoted by D(A) (the maximum is taken over all closed
A-submodules of H2). We express the deficiency in terms of geometric char-
acteristics of part of an algebraic curve in Cd associated with the algebra A.
Let A = C[p1, . . . , pd] and p1, . . . , pd satisfy (1). Consider the map:

(2) P : ∆ → Cd

P(z) = (p1(z), . . . , pd(z)).

Write P(∆) = Γ. The condition 2) of (1) implies that Γ has no other
singularities but self-intersections. We will show in Section 2 that (1) guar-
antees that the number of self-intersections is finite. Let ρ equal the number
of self-intersections of Γ. The curve Γ is reducible at every point of self-
intersection. Some of the components could be tangent (of course, the order
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of tangency is finite). We refer to this tangency as self-tangency of Γ. Let
m be equal to the highest order of self-tangency of Γ. Since we could have
at most finite number of self-tangencies, m is finite. Finally, let β be the
first Betti number of Γ (recall that the first Betti number is the rank of the
first homology group with coefficients in Z). The following result gives an
upper bound for the deficiency:

Theorem 2. Let A be a subalgebra of C[z] generated by polynomials p1,
. . . ,pd which satisfy (1). Let β, ρ, and m be as described above then,

D(A) ≤ 2(m + 1)β(β + ρ).

In fact, we prove a little more general result, but for the sake of presen-
tation clarity we do not mention it here in full generality.

In the case of some special algebras called level set algebras, the upper
bound given by Theorem 2 could be sharpened. For such algebras we give
a lower bound for the deficiency. It is possible to prove (though we do not
do it here) that for level set algebras the lower bound given by Theorem 3
below is also the (sharpened) upper bound and, therefore, the deficiency is
equal to this bound.

Definition 1. Let {ak}N
k=1 be a collection of N distinct points in ∆. Com-

bine the points into r groups, each group containing nj + 1 points, j =
1, . . . , r.

group 1 group r

(3)

a11 ar1

a10

nnnnnnnnnnnnn

PPPPPPPPPPPPP a12 · · · ar0

nnnnnnnnnnnnn

PPPPPPPPPPPPP ar2

a1n1 arnr

For each group we pick a base point aj0. If zero is among {ak}n
k=1, then

for convenience we choose zero to be in the first group and designate 0 to be
the base point, a10. Let A be the collection of all polynomials which satisfy
the following conditions:

P (ak0) = P (aki), k = 1, . . . , r, i = 1, . . . , nk.

Then A is a subalgebra of C[z]. We call a subalgebra of this form a level set
algebra.

Theorem 3. Let A be a level set algebra. If a10 = 0, then D(A) ≥ N − 1.
If a10 6= 0, then D(A) ≥ N .

The structure of this paper is as follows. First, we prove that the H2-
closure of a polynomial subalgebra which satisfies the conditions of (1) has a
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special form, called point evaluation type. This is the main result of Section
2. Further, we show that every closed A-submodule of H2 is of the form gM
where g is a classical inner fuction and M is a point evaluation type subspace
of H2 of finite codimension which is also a finitely generated A-submodule.
Theorem 1 immediately follows from this result. This is done in Section 3.
Finally, Section 4 is devoted to proving upper and lower estimates for the
deficiency given by Theorems 2 and 3.

Acknowledgement. The authors would like to thank the referee for very
helpful comments about the early version of the paper.

2. Subalgebras of Point Evaluation type.

In this section we prove that H2-closures of finitely generated polynomial
subalgebras of H∞ have a special form.

Definition 2. Let a1, . . . , an be a finite collection of points inside the open
unit disk in the complex plane and M be a closed subspace of H2 consisting
of functions f which satisfy the following conditions:

n∑
j=1

rj∑
k=0

ci
jkf

(k)(aj) = 0 where ci
jk ∈ C, i = 1, . . . , t.

We call such a subspace M a subspace of Point Evaluation type, or P.E.
subspace. If A is a subalgebra of H∞ such that the H2-closure of A is a P.E.
subspace, we call A a subalgebra of point evaluation type, or P.E. algebra.

Let M be a P.E. subspace generated by a single condition:
n∑

j=1

rj∑
k=0

cjkf
(k)(aj) = 0.

Write g(z) as:

(4) g(z) =
n∑

j=1

rj∑
k=0

cjkk! zk

(1− ajz)k+1
.

It readily follows that the codimH2M = 1 and M⊥ is spanned by g(z).
Now let M be a P.E. subspace generated by t independent conditions at
points a1, . . . , an ∈ ∆, and let Mi be the P.E. subspace generated by the ith

condition, i = 1, . . . , t. For each i there is a function gi, given by (4), such
that M⊥

i is spanned by gi. It is readily apparent that M⊥ is spanned by
{g1(z), . . . , gt(z)}. It also follows that a closed subspace M of H2 is a P.E.
subspace if M⊥ is spanned by a finite set of functions each in the form of
(4). This immediately leads to the fact that the finite intersection of P.E.
subspaces is again a P.E. subspace and to the following results.
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Lemma 1. If M is any closed subspace of H2 containing a P.E. subspace,
Mpe, then M is also a P.E. subspace.

Proof. Since M⊥ j M⊥
pe, M⊥ is spanned by functions which are linear

combinations of elements of M⊥
pe, and hence linear combination of function

of the form (4). Thus M is a P.E. subspace. �

Lemma 2. A closed subspace M is a P.E. subspace if and only if it contains
a z-invariant subspace of H2 of finite codimension.

Proof. Let M be a P.E. subspace generated by the following conditions at
points a1, . . . , an:

(5)
n∑

j=1

rj∑
k=0

ci
jkf

(k)(aj) = 0; i = 1, . . . , η.

Let B(z) be the Blaschke product:

(6) B(z) =
n∏

j=1

(
aj − z

1− aj · z

)rj+1

.

Any f ∈ B · H2 trivially satisfies the conditions (5). Hence, B · H2 ⊂ M
and, thus, M contains a z-invariant subspace of finite codimension.

Conversely, let M be a closed subspace containing a z-invariant subspace
of finite codimension. By Beurling’s theorem any z-invariant subspace of
finite codimension is in the form g ·H2 where g is a finite Blaschke product.
Let b1, . . . , bn be the zero set of g with multiplicity r1, . . . , rn respectively. It
is clear that g ·H2 is a P.E. subspace which is determined by the conditions

f (i)(bj) = 0, i = 1, . . . , rj , j = 1, . . . , n.

Thus, by Lemma 1, M is a P.E. subspace. �

Lemma 3. Let a1, . . . , an ∈ C be distinct points and |a1| ≤ · · · ≤ |an|,
and M ⊆ C[z] be the collection of all of polynomials satisfying the single
condition:

n∑
j=1

rj∑
k=0

cjkP
(k)(aj) = 0, where cjk ∈ C and cjrj 6= 0.

If |an| ≥ 1, then M is dense in H2. If |an| < 1, then

M =

f ∈ H2 : f satisfies
n∑

j=1

rj∑
k=0

cjkf
(k)(aj) = 0

 .

Proof. The case |an| < 1 is clear since H2 convergence implies uniform
convergence on compacta of all derivatives, so let |an| ≥ 1.
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Let P(z)∈ C[z]. Consider the following sequence of polynomials:

(7) RN (z) =
(

K

QN (an)
·QN (z)

)(z − an)rn ·
n−1∏
j=1

(z − aj)rj+1

 ,

where K is a constant to be determined shortly and

QN (z) =


(λz)N , if |an| > 1
1− (1− z

an
)(1 + · · ·+ ( z

an
)N + N−1

N ( z
an

)N+1 + · · ·
· · ·+ 1

N ( z
an

)2N−1), if |an| = 1,

where λ is a complex number which satisfies |λan| > 1, |λ| < 1. It is easily
seen that |QN (an)| ≥ 1. Now, it follows from (7) that

(8)
n∑

j=1

rj∑
k=0

cjkR
(k)
N (aj) = cnrn

K · rn!
n−1∏
j=1

(an − aj)rj+1

 .

Consider the following sequence of polynomials:

(9) PN (z) = P (z) + RN (z).

Note that (9) implies
n∑

j=1

rj∑
k=0

cjkP
(k)
N (aj) =

n∑
j=1

rj∑
k=0

cjkP
(k)(aj) +

n∑
j=1

rj∑
k=0

cjkR
(k)
N (aj),

and, therefore, we have by (8)
(10)

n∑
j=1

rj∑
k=0

cjkP
(k)
N (aj) =

n∑
j=1

rj∑
k=0

cjkP
(k)(aj) + cnrn

(
K · rn!

n−1∏
j=1

(an − aj)rj+1

)
.

Set

K =
−
(∑n

j=1

∑rj

k=0 cjkP
(k)(aj)

)
cnrn · rn!

∏n−1
j=1 (an − aj)rj+1

.

It is easily seen that K is independent of N , and that PN ∈ M .
It follows from the definition of QN (z) that ‖QN (z)‖H2 → 0 as N →∞.

Hence,
‖PN (z)− P (z)‖H2 = ‖RN (z)‖H2 .

It also follows from (10) that for all N

‖PN (z)− P (z)‖H2

≤

∥∥∥∥∥∥ K

QN (an)
(z − an)rn

n−1∏
j=1

(z − aj)rj+1

∥∥∥∥∥∥
H∞

· ‖QN (z)‖H2 .
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Since ‖QN (z)‖H2 → 0 as N → ∞ and |QN (an)| ≥ 1 for all N , it follows
immediately that

‖PN (z)− P (z)‖H2 → 0, N →∞.

Hence, we have for any polynomial P (z), P (z) ∈ M and, therefore, M =
H2. �

Definition 3. Let p1, . . . , pd be a collection of polynomials in C[z]. Let
P : C → Cd be the mapping (2). If there is a finite collection of points
a1, . . . , an ∈ C such that P is injective on C\{a1, . . . , an} we say that the
polynomials p1, . . . , pd almost separate points.

The following Lemma is probably not new. However, the authors could
not find a reference in the literature, and so included a detailed proof below.

Lemma 4. Let p1, . . . , pd ∈ C[z]. If the greatest common divisor (deg p1,
. . . ,deg pd) = 1, then the polynomials p1, . . . , pd almost separate points.

Proof. We need to show that the number of points in Cd with more than
one preimage is finite. Let S={w ∈ Cd : card {P−1(w)} > 1}. Suppose
that card {S} is not finite, then there exists a sequence of distinct points
{wr}∞r=1 ∈ Cd and a sequence of points {(z1r, z2r)}∞r=1 ∈ C2 such that z1r 6=
z2r and P(z1r) = P(z2r) = wr.

Write

(11) Ri(z1, z2) =
pi(z1)− pi(z2)

z1 − z2
, i = 1, . . . , d.

Each Ri(z1, z2) is a polynomial in z1 and z2. Since the collection of poly-
nomials Ri share an infinite number of zeros, Bezout’s theorem [5, p. 178]
implies that there is an irreducible algebraic manifold of degree 1 belong-
ing to the algebraic variety generated by R1, . . . , Rn. Let q(z1, z2) be a
non-constant polynomial generating the corresponding ideal, I. Since each
Ri(z1, z2) is in I, we have

(12) Ri(z1, z2) = q(z1, z2)Mi(z1, z2), i = 1, . . . , d.

Write the homogeneous decomposition of the polynomials Ri(z1, z2),
Mi(z1, z2), and q(z1, z2):

Ri(z1, z2) =
deg Ri∑

j=0

ri,j(z1, z2),

(13) Mi(z1, z2) =
deg Mi∑

j=0

mi,j(z1, z2),
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q(z1, z2) =
deg q∑
j=0

qj(z1, z2),

where ri,j ,mi,j , and qj are all homogeneous polynomials in z1, z2 of degree
j. Now for each i the relations (12) and (13) yield

(14) Ri(z1, z2) =
deg Ri∑

j=0

ri,j(z1, z2) =
deg q∑
j=0

qj(z1, z2) ·
deg Mi∑

j=0

mi,j(z1, z2).

Let k0 = deg q(z1, z2) and ki = deg Mi(z1, z2). In particular, (11) and (14)
imply

ri,deg Ri
= qk0(z1, z2) ·mi,ki

(z1, z2) = C

deg Pi−1∏
j=1

(z1 − ζj
i z2)

where C ∈ C is some constant and ζi is the (deg Pi)-root of unity. Since
each ri,deg Ri

is divisible by qk0 , the polynomial qk0(z1, z2) divides all the
products

deg Pi−1∏
j=1

(z1 − ζj
i z2), i = 1, . . . , d.

This is not possible since (deg p1, . . . , deg pd) = 1. Hence, card {S} must
be finite. �

Corollary. If polynomials p1, . . . , pd satisfy the relations (1), then they al-
most separate points.

We are now ready to prove the main result of this section.

Proposition 1. Let p1, . . . , pd ∈ C[z] such that
(1) the polynomials p1, . . . , pd almost separate points
(2) |p′1(z)|+ · · ·+ |p′d(z)| > 0, z ∈ C,

then C[p1, . . . , pd] is a P.E. algebra.

Proof. Let P : C→Cd be the mapping (2), and Γ̂ = P(C). Let {a1, . . . , an}
be the finite number of points where the map P fails to be injective. Since
P is injective except at a finite number of points, then Γ̂ has at most a
finite number of self-intersections. Let {ζ1, . . . , ζt} be those points. Given
a polynomial q(z) ∈ C[z] we define Q : Γ̂ → C by Q(ω) = q ◦ P−1(ω). The
question is: When is Q a well-defined analytic map?

Let ζ ∈ Γ̂ be any point such that the preimage of ζ under P contains
a single point z0. By assumption there is a polynomial pj , 1 ≤ j ≤ d, so
that p′j(z0) 6= 0. By the inverse mapping theorem [6, p. 17] there are open
neighborhoods U, V ⊂ C of the points z0, pj(z0) = wj respectively so that
p−1

j : V → U exists and is analytic. Let D = P(U) ∩ Γ̂. It follows that P is
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injective on U . Define P−1
j : D → U by ω → p−1

j (ωj). This map is analytic
since p−1

j (ωj) is analytic. Now Q(ω) = q ◦ P−1
j (ω) = q ◦ p−1

j (ωj) = Q(ωj)
can be analytically extended in an open neighborhood Oζ ⊂ Cn of ζ, by
Q̂ : Oζ → C, Q̂(ω) = Q(ωj). Thus, Q is analytic at any ζ such that the
preimage of ζ under P is a single point.

Let ζ be one of the points {ζ1, . . . , ζt} so that card{P−1(ζ)} > 1. Now we
use a standard argument to find sufficient conditions for q which guarantee
that Q is analytic at ζ. Let P−1(ζ) = {a1, . . . , ar}. For each 1 ≤ i ≤ r there
is a polynomial pji , 1 ≤ ji ≤ d, so that p′ji

(ai) 6= 0. Again by the inverse
mapping theorem there are open neighborhoods Ui, Vi ⊂ C about the points
ai, pji(ai) = wji respectively which satisfy the following conditions:

(1) p−1
ji

: Vi → Ui exists and is analytic,

(2) if ji = jl then Vi = Vl,

and

(3) P is injective on ∪r
i=1(Ui\ai).

For each i let Di = Γ̂ ∩ P(Ui) be the corresponding irreducible component
of the curve Γ in a neighborhood of ζ. For each component Di of Γ the
function fi = q ◦ P−1|Di is analytic on Di as shown above.

For k = 1, . . . , d, i = 1, . . . , r write

λki : Oζ → C

λki(ω) → pk(p−1
ji

(ωji)).

Locally Di is given by ωk = λki(ωji), k = 1, . . . , d. For s = 1, . . . , d, i =
1, . . . , r write

φs,i(ω) = ωs − λsi(ωji).
Obviously φs,i are analytic in a neighborhood Os,i of ζ and φs,i vanishes on
Di. Since the intersection ∩r

i Di consists of the single point ζ, for each pair
Dk, Di ,k 6= i, there is a φski,k, 1 ≤ ski ≤ d, such that φski,k is not identically
zero on Di. Let µ be the order of tangency between Di and Dk at ζ. We
can choose φski,k so that the order of zero φski,k|Di has at ζ is maximal and,
hence, is equal to µ + 1. Thus, the point ζ is an isolated zero of φski,k|Di of
order µ + 1; passing if necessary to smaller neighborhoods we might assume
that ζ is the only zero of φski,k|Di .

Let Oζ = ∩Os,i. For 1 ≤ t ≤ r write

Υt(ω) =
r∏

i=1i6=t

φsit,i(ω).

Then Υt is analytic in Oζ , vanishes on Di, i = 1, . . . , r, i 6= t, and the
restriction Υt|Dt vanishes only at ζ. Let νt be the order of zero Υt|Dt has
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at ζ. We obviously have

(15) νt ≤ (r − 1)(m + 1),

where m is the highest order of self tangency Γ has at ζ. Now write

F (ω) = f1(wj1) + Υ2(ω) ·Ψ2(ω) + · · ·+ Υr(ω) ·Ψr(ω),

where the functions Ψi(ω), i = 1, . . . , r are to be determined. Then we have

F |Dk
(ω) = f1|Dk

+ Υ2 ·Ψ2|Dk
+ · · ·+ Υr ·Ψr|Dk

= f1|Dk
+ Υk ·Ψk|Dk

.

Now, F |Dk
= fk(ωjk

) is equivalent to

fk(ωjk
) = f1(λ1j ,1(ωjk

)) + (Υk|Dk
)(ωjk

)Ψk(ω).

The last relation yields

(16) Ψk(ω) = Ψk(ωjk
) =

fk(ωjk
)− f1(λ1j ,1(ωjk

))
Υk|Dk

(ωjk
)

.

The function Ψk given by (16) is analytic at ζ if the order of zero the
numerator has at ζ is greater than or equal to νk, which by (15) does not
exceed (r − 1)(m + 1). Thus, if

(17)
Dα

Dωα
jk

[fk(ωjk
)− f1(pj1(p

−1
jk

(ωjk
)))](ζ) = 0, α = 0, . . . , νk − 1,

then Ψk are analytic at ζ.
The relations (17) are equivalent to certain linear relations between values

of q(z) and its derivatives of order not higher than (m + 1)(r− 1) at points
a1, . . . , ar . Hence, if q(z) satisfies a finite collection of P.E. conditions at
the points a1, . . . , an, then Q(ω) = q ◦ P−1(ω) is analytic on Γ̂.

Our next step is to show that if Q(ω) = q ◦P−1(ω) is analytic on Γ̂, then
q(z) is in C[p1, . . . , pd].

Choose ρ > 0 large enough so that the ball of radius ρ, ∆d
ρ ⊂ Cd, contains

P(∆) as a compact subset. Since Γ̂∩∆d
ρ is a closed analytic set in ∆d

ρ, Q is
analytically extendable in ∆d

ρ to Q̂(ω) : ∆d
ρ → C [6, p. 212]. Write for Q̂

Q̂(ω1, . . . , ωd) =
∑

(N1,... ,Nd)∈Nd

CN · ωN1
1 · · ·ωNd

d , ω ∈ ∆d
ρ.

This series converges uniformly on P(∆), therefore,

q(z) =
∑

(N1,... ,Nd)∈Nd

CN · pN1
1 (z) · · · pNd

d (z), z ∈ ∆

converges uniformly on ∆.
Hence, if q(z) satisfies the mentioned above P.E. conditions at a1, . . . , an

then q(z) ∈ C[p1, . . . , pd]. Thus by Lemmas 2 and 3, C[p1, . . . , pd] contains
a P.E. subspace and, hence, is a P.E. subspace. �
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Corollary 1. Let A = C[p1, . . . , pd] be a polynomial subalgebra satisfying
the conditions (1). Then A is a P.E. subalgebra.

Proof. The result follows from Proposition 1 and Lemma 4. �

Corollary 2. Let A = C[p1, . . . , pd] be a polynomial subalgebra of C[z] sat-
isfying the conditions (1) and let β be the first Betti number of P(∆), where
P is the mapping (2). Then

codimH2A ≤ (m + 1)β(β + ρ),

where ρ is the number of self-intersections of P(∆) and m is the highest
order of self-tangency of P(∆).

Proof. By Proposition 1 A is a P.E. subspace. Let N be equal to the
number of points defining the point evaluating conditions of A. It follows
directly from the proof of Proposition 1 that N = β +ρ. It also follows from
this proof (relation (17)) that the highest order of the derivative involved
in these point evaluation conditions does not exceed maxζ(m + 1)(rζ − 1)
where the maximum is taken over all points ζ ∈ P(∆) which are points of
self-intersection and rζ = card(P−1(ζ)). Since rζ − 1 ≤ β, we obtain that Ā
contains the z-invariant subspace generated by the Blaschke product with
zeros of order (m + 1)β at each of the N = β + ρ evaluation points, and the
result follows. �

3. Submodules over Point Evaluation Algebras, Proof of
Theorem 1.

The main result of this section is that every closed submodule of H2 over a
P.E. algebra is finitely generated. We also show that such submodules are
determined by an inner function and a P.E. subspace.

Lemma 5. Let A be a subspace of H∞ such that closureH2A is a P.E.
subspace. If F ⊂ H2 be a subset such that the minimal z-invariant subspace
containing F is H2, then the closed subspace

S = closure{fp : p ∈ A, f ∈ F}

is a P.E. subspace.

Proof. Let A be determined by the conditions:
n∑

j=1

rj∑
k=0

ci
jkf

(k)(aj) = 0; i = 1, . . . , η.

Write:

B(z) =
n∏

i=1

(
ai − z

1− ai · z

)rj+1

.
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Then B ·H2 ⊂ A. Since the minimal z-invariant subspace containing F is
H2, there are polynomials {pi,m} and functions {fi,m} ⊂ F such that

(18)
m∑

i=1

fi,m · pi,m → 1

in H2 as m →∞. Let q(z) be any polynomial in B ·H2. We obviously have

fi,m · (q · pi,m) ∈ S, ∀i, m

since each polynomial q · pi,m ∈ B ·H2 ⊂ A and S is closed. Further, (18)
implies

(19)

∥∥∥∥∥
m∑

i=1

fi · q · pi,m − q

∥∥∥∥∥
H2

≤ ‖q‖H∞ ·

∥∥∥∥∥
m∑

i=1

fi · pi,m − 1

∥∥∥∥∥
H2

→ 0, as m →∞.

Now, (19) implies that B ·H2 is contained in S. By Lemma 1, S is a P.E.
subspace. �

Lemma 6. Let A be a P.E. subspace in H2 and F be an outer function in
H∞. Then

(20) codimH2A = codimH2F ·A.

Proof. Let S = F ·A and s1, . . . , sη be functions of the form (4) which span
A⊥ (codimH2A = η). Since F is cyclic in H2, we have
(21)
H2 = span {s1, . . . , sη} ⊕A = span {F · s1, . . . , F · sη}+ F ·A = F ·H2.

Let PS be the orthogonal projection operator onto S. We now show that
none of the functions

fi = F · si − PS(F · si), i = 1, . . . , η

is zero, and that they are linearly independent. This is equivalent to the fact
that no linear combination of the functions F · si lies within F ·A. Suppose
that there is a Q(z) ∈ F ·A and coefficients bi ∈ C, i = 1, . . . , n such that

(22)
η∑

i=1

biF · si = Q.

Since Q(z) ∈ F ·A, there is a sequence of polynomials {Qj}∞j=1 in A such
that

(23) F ·Qj
H2

−→ Q as j →∞.
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Now (22) and (23) yield
η∑

i=1

biF · si = lim
j→∞

F ·Qj .

Let 0 < r < 1 be such that the points defining A are contained in ∆r. Since
H2 convergence implies uniform convergence on compacta of all derivatives,
the last relation implies

(24)

(
η∑

i=1

bi · si

)∣∣∣∣
∆r

= lim
j→∞

Qj

∣∣∣
∆r

.

Let r → 1 in (24). We obtain
∑η

i=1 bisi is in S, which implies b1 = · · · =
bη = 0. This and (21) imply (20). �

For a subset F ⊂ H2 we denote by [F ]A the smallest closed A-submodule
of H2 which contains F .

Lemma 7. Let A be a P.E. subalgebra and F ⊂ H2 be such that the minimal
z-invariant subspace of H2 containing F is H2. Let M = [F ]A . If h(z) ∈ M
is analytic in ∆ and µ is equal to the sum of the orders of zeros h has in ∆,
then

codimM h ·A = codimH2A− codimH2M + µ.

Proof. Let h = gF be the canonical factorization of h, where g is inner
and F is outer. Since h is analytic in ∆, g is a finite Blaschke product
and F ∈ H∞. By Lemmas 5 and 6, F ·A = S is a P.E. subspace and
codimH2S = codimH2A.

Since codimH2 g ·H2 = µ and multiplication by an inner function g is an
isometry on H2, the following equality holds

H2 = g ·H2 ⊕ (g ·H2)⊥ = (g ·H2)⊥ ⊕ g · S⊥ ⊕ g · S.

Since h ·A = g · S, we have

codimH2h ·A = codimH2S + codimH2 g ·H2 = codimH2A + µ.

Now, the inclusion h ·A ⊂ M implies

codimMh ·A = codimH2A− codimH2M + µ.

�

Proposition 2. Let A be a P.E. subalgebra and M be a closed A-submodule
H2. Then there are an inner function g and a finitely generated closed A-
submodule of H2, M ′, which is also a P.E. subspace such that

M = g ·M ′ and [M ′]C[z] = H2.
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Proof. Consider the z-invariant subspace M of H2 generated by M (that
is M is the minimal closed z-invariant subspace of H2 which contains M).
There is an inner function g such that M = gH2. Write

M ′ = {h : gh ∈ M}.

It easily follows that M ′ is a closed A-submodule of H2. Since the whole
space H2 is the minimal z-invariant subspace which contains M ′, Lemma
5 and the obvious relation M ′ = closure{hp : p ∈ A, h ∈ M ′} imply that
M ′ is a P.E. subspace. By Lemma 1 M ′ contains a z-nvariant subspace of
finite codimension. Let B be the finite Blaschke product which generates
this z-invariant subspace. Then B ∈ M ′ and by Lemma 7 the codimension
codimM ′BA is finite. This implies that M ′ is finitely generated as an A-
module. �

Proof of Theorem 1. The result follows directly from Proposition 2. �

4. Proofs of Theorems 2 and 3.

Definition 4. Let A be a subalgebra of H∞. The number D(A) defined as

D(A) = sup
S
{codimS(S � A0S)A},

where A0 = {p ∈ A|p(0) = 0} and S runs over all closed A-submodules of
H2, is called the dediciency of A. If D(A) < ∞, we say that A is an algebra
of finite deficiency (in H2).

Proposition 3. Let A be a P.E. subalgebra of H∞ satisfying η independent
conditions,

n∑
j=1

rj∑
k=0

ci
jkf

(k)(aj) = 0 where ci
jk ∈ C, i = 1, . . . , η.

Then D(A) ≤ µ + η, where µ =
∑n

j=1 rj + 1.

Proof. Let S be a closed A-submodule of H2. By Proposition 2 we have
S = g · M , where g is an inner function and M is a finitely generated A
submodule which is also a P.E. subspace such that the minimal z-invariant
subspace containing M is H2. Since multiplication by an inner function is
an isometry, it follows that

(25) codimS(S 	A0S)A = codimM (M 	A0M)A.

Let {h1, . . . , ht} be a set of generators for M . Now, A0 is generated by
the same conditions as A with one additional condition f(0) = 0. Therefore,
Lemma 5 implies that

A0M = closure(span{hi · p : p ∈ A0, i = 1, . . . , t})
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is a P.E. subspace. This subspace contains the z-invariant subspace gener-
ated by the Blaschke product,

B(z) = z ·
n∏

j=1

(
z − aj

1− aj · z

)rj+1

.

Thus A0M
⊥ is contained in the span of the following functions

(26)
{

1,
k! · zk

(1− ajz)k+1
: j = 1, . . . , n k = 0, . . . , rj

}
.

If f ∈ M 	 A0M , then f is a linear combination of functions (25), and,
therefore, can have no more than µ =

∑n
j=1(rj + 1) zeros. Hence,

(27) codimM (M 	A0M)A ≤ codimMf ·A.

Since f is analytic in the closed unit disk, Lemma 7 yields

(28) codimMf ·A ≤ codimH2A − codimH2M + µ.

Now (27) and (28) imply

codimM (M 	A0M)A ≤ codimH2A + µ ≤ µ + η.

�

Proof of Theorem 2. It follows from Corollary 1 to Proposition 1 that
C[p1, . . . , pd] is a P.E. algebra, and from Corollary 2 - that both µ and
η do not exceed (m + 1)β(β + ρ). Thus, by Proposition 3, for any closed
A-submodule S of H2 we have

codimS(S 	A0S)A ≤ 2(m + 1)β(β + ρ).

�

Remark. The upper bound for the deficiency of a polynomial algebra
given by Theorem 1 is not sharp. It is possible to prove that in the case of
a level set algebra the deficiency does not exceed N - the number of points
defining the algebra. This estimate is sharp by Theorem 2.

Before proving Theorem 3 we mention that every level set algebra is a
finitely generated polynomial algebra.

Proposition 4. Any level set algebra A can be written in the form A =
C[p1, . . . , pt] for some set of polynomials p1, . . . , pt.
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Proof. Let A be a level set algebra. Consider the following polynomials,

P0(z) =
r∏

j=1

nj∏
i=0

(z − aji),

qji(z) =
P0(z)

(z − aji)
, j = 1, . . . , r, i = 0, . . . , nj ,

Pj(z) =
nj∑
i=0

qji(z)
qji(aji)

, j = 1, . . . , r,

and

Pr+k(z) = zkP0(z), k = 1, . . . , N = deg P0.

Then,

(29) Pj(aki) =


1, if k = j, 1 ≤ j, k ≤ r

0, if k 6= j, 1 ≤ j, k ≤ r

0, if j ≥ r + 1, 1 ≤ k ≤ r

and, therefore Pj ∈ A, j = 0, . . . , r + N.
Let us show that

A = C[P0, . . . , Pr+N ].

Obviously C[P0, . . . , Pr+N ] ⊂ A. To prove the inverse inclusion note that

(30) znP0 ∈ C[P0, . . . ., Pr+N ] for any n ≥ 0.

Indeed, for n ≤ N = deg P0 it is true since Pr+n = znP0. Further,

(31) zk · P 2
0 = zN+kP0(z) + T,

where T ∈ span{P0, zP0, . . . , zN+k−1P0}. Now proceed by induction in m.
Assume zkP0(z) ∈ C[P0, . . . , Pr+N ] for k ≤ N + n− 1 = m, then we have

zm−NP 2
0 = (zm−NP0)(P0) ∈ C[P0, . . . , Pr+N ]

by the induction hypothesis, and, thus by (31), zmP0 ∈ C[PO, . . . , Pr+N ].
Let Q ∈ A, Q(a10) = · · · = Q(a1n1) = c1, . . . , Q(ar0) = · · · = Q(arnr) =

cr. Then by (29) and (30) we have

Q(z)−
r∑

j=1

cjPj(z) = s(z)P0(z) ∈ C[P0, . . . , Pr+N ].

�

Remark. Let A be a level set algebra and P0, . . . , Pr be the polynomials
from Proposition 4. It is easily seen that the first Betti number of the
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image of ∆ under the corresponding map (2), P : C → Cr+N given by
z → (P1(z), . . . , Pr(z), P0(z), . . . , zN−1P0(z)), is equal to

β = n1 + · · ·+ nr = N − r.

The number of points of self-intersections in this case is equal to r.

Definition 5. Let A be a subalgebra of H∞and M be a closed A-submodule
of H2. We say that M has the A- codimension 1 property if

dim(M 	A0M) = 1.

Lemma 8. Let A be a level set algebra determined by the points a1, . . . , aN

= a10, . . . , a1n1 , a20, . . . , a2n2 , . . . , arnr and M be a closed A-submodule given
by

f(ak0) = αkif(aki), i = 1, . . . , nk, k = 1, . . . , r,

where
αki 6= 0 i = 1, . . . , nk, k = 1, . . . , r.

Then M has the A-codimension 1 property.

Proof. Let M0 be an A-submodule determined by the following conditions

f(0) = 0, f(ak0) = αkif(aki), i = 1, . . . , nk, k = 1, . . . , r.

We will show that M0 ⊂ A0M . First, consider the case when a10 = 0.
Let h ∈ M0. Denote by m0, . . . , mn1 the orders of zeros which h has at
a10, . . . , a1n1 respectively. Write

P0(z) = zm0(z − a11)m1 · · · (z − a1n1)
mn1 ,

Pj(z) =
P0(z)

(z − a1j)mj
, j = 0, 1, . . . , n1,

and define w10, . . . , wrnr by

wki = log
(

1
P0(aki)

)
, k = 2, . . . , r, i = 0, . . . , nk

w1j = log

(
h(mj)(a1j)
mj !Pj(a1j)

)
, j = 0, . . . , n1.

Finally, let q(z) be a polynomial which interpolates (w10, . . . , wrnr) at
(a10, . . . , arnr). Then ĥ = P0e

q(z) is in the closure of A0 in the disk-
algebra metric. The function φ = h/ĥ is holomorphic in ∆ and satisfies
the conditions of M . Hence h = ĥφ ∈ A0M . Thus M0 ⊂ A0M . Since
codimH2M0 = codimH2M + 1, it follows that A0M = M0 and that M has
codimension 1 property.

The case of a10 6= 0 follows in a similar manner. �
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Proof of Theorem 3. Let A be any level set algebra defined by r groups of
total N points.

Case 1: a10 = 0.
For the sake of notational simplicity we renumerate the points {ak}N

k=0
defining A as a10, . . . , a1n1 , a20, . . . , arnr and use either notation when con-
venient. Let

(32) g(z) = 1 +
N−1∑
k=1

ck

1− akz
, ck ∈ C.

We will choose ck in some way so that g has exactly N − 1 = β + ρ − 1
zeros in ∆ and then will show that there is an A-submodule M such that
M 	 A0M is generated by g. Let bl, l = 1, . . . , N − 1, be a fixed set of
distinct points in ∆. Consider the following system of equations linear in
ci, i = 1, . . . , N − 1,

g(b1) = 0

(33)
...

g(bN−1) = 0.

Write

D =
[

1
1− akbl

]N−1

l,k=1

,

and let C = (c1, . . . , cN−1) and 1 = (1, . . . , 1) be (N − 1)-dimensional
complex vectors. Then the system (33) can be written as

(34) DCt = −1t.

The Determinant Det(D) is an analytic function in (b1, . . . , bN−1) in the
polydisc ∆N−1. When al = bl, l = 1, . . . , N − 1 it is well known that
D is invertible and, hence, Det(D) 6= 0. (For the explicit expression cf
[10].) Since Det(D) is analytic in the bl, l = 1, . . . , N − 1, there exists an
open neighborhood, Oa, of the point a = (a1, . . . , aN−1) ∈ CN−1 such that
Det(D)|Oa 6= 0. Pick (b1, . . . , bn1 , an1+1, . . . , aN−1) ∈ Oa such that bj 6= ak

and bj 6= bk for all j, k ≤ n1. Now (34) has a unique solution, (ĉ1, . . . , ĉN−1),
and the corresponding ĝ vanishes at b1, . . . , bn1 , an1+1, . . . , aN−1. Notice
that this implies that the none of the constants ĉi = 0, since a function in
the form (32) has N − 1 zeros only when all c1, . . . , cN−1 do not vanish.

We now show that it is possible to choose constants {αkj , λkj}, k =
1, . . . , r, j = 1, . . . , nk, such that ĝ is represented as

(35) ĝ(z) = 1 +
n1∑
i=1

λ1iα1i

1− a1iz
+

r,nk∑
k=2,j

λkj

(
1

1− ak0z
−

αkj

1− akj

)
.



HARDY SUBMODULES 391

Since ĝ(a1i) 6= 0, write,

(36) α1i = ĝ(a10)/ĝ(a1i), i = 1, . . . , n1,

λ1i = ĉ1i/α1i, i = 1, . . . , n1.

For k = 2, . . . , r, j = 1, . . . , nk, write:

λkj = ĉk0/nk,

αji = −nk ĉkj/ĉk0.

Now (35) is easy to verify.
Let M be an A-submodule defined by the following conditions

(37) P (ak0) = αkiP (aki), k = 1, . . . , r, i = 1, . . . , nk.

Note that

(38) (A0M)⊥

= span
{

1,
1

1− ak0z
− αki

1− akiz

∣∣∣ k = 1, . . . , r, i = 1, . . . , nk

}
,

and that ĝ is a linear combination of function (38).
If k ≥ 2, ĝ(aki) = 0, i=1, . . . ,nk. Thus ĝ satisfies (37) for these k trivially.

When k = 1 it follows from (36) that ĝ satisfies (37) and, therefore, it is in
M . Now, we have ĝ ∈ M	A0M . By Lemma 8 M has the A-codimension 1
property and, therefore, it follows that ĝ generates M 	A0M . By Lemma 7

codimM (M 	A0M)A = codimM ĝA = N − 1,

since the codimH2A = codimH2M . Thus, D(A) ≥ N − 1.

Case 2: a10 6= 0.
This case is almost identical to the first so we only sketch the details.

We now choose ĝ along with non-zero constants (ĉ1, . . . , ĉN ) as above with
the only difference that bj = aj , j = 1, . . . , n1. Hence ĝ vanishes at all
N = β + ρ points defining A. Write

λki = ĉk0/nk

αki = −nk ĉki/ĉk0,

for k = 1, . . . , r. It follows that

ĝ(z) = 1 +
r,nk∑

k=1,i=0

ĉki

1− akiz
= 1 +

r,nk∑
k=1,i=1

λki

(
1

1− ak0z
− αki

1− aki

)
.

Let M be an A-submodule M determined by

P (ak0) = αkiP (aki) k = 1, . . . , r i = 1, . . . , nk.

It follows at once that ĝ ∈ M 	A0M
⊥ and, since M has the A-codimension

1 property we are done, D(A) ≥ N . �
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