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Under broad conditions, two analytic self-maps of the disk
fixing 0 commute under composition precisely when they have
the same Schroeder map, where the Schroeder map for an
analytic ϕ : D → D with ϕ(0) = 0 is the unique analytic
function σ on D solving Schroeder’s equation σ ◦ ϕ = ϕ′(0)σ
and satisfying σ′(0) = 1. For analytic self-maps of the ball in
CN fixing 0 we may still seek analytic CN−valued solutions
σ to Schroeder’s equation with σ′(0) = I, but considerable
complications for existence and uniqueness of σ may ensue.
Nevertheless, we show that there are reasonably general hy-
potheses under which it will still be the case that two analytic
self-maps of the ball fixing 0 commute if and only if they share
a common Schroeder map σ with σ′(0) = I.

1. Introduction.

If ϕ is an analytic map of the unit diskD into itself which fixes the origin and
has derivative there satisfying 0 < |ϕ′(0)| < 1 then there exists an analytic
map σ on D that satisfies Schroeder’s functional equation

σ ◦ ϕ = ϕ′(0)σ.

This “Schroeder map” σ is unique up to constant multiples; its existence
and uniqueness was proved by Koenigs in 1884 ([3]). It is usually convenient
to require that σ satisfy σ′(0) = 1. Koenigs showed that in this case σ can
be obtained as the almost uniform limit of normalized iterates of ϕ:

σ = lim
n→∞

ϕn
ϕ′(0)n

,

where ϕ1 = ϕ and ϕk+1 = ϕ ◦ ϕk. When ϕ is univalent in D, σ will
be also, so that ϕ is conjugate to multiplication by ϕ′(0) on σ(D) : ϕ =
σ−1ϕ′(0)σ. Suppose ψ is an analytic self-map of D which commutes with
ϕ under composition. Then necessarily ψ(0) = 0. Moreover, ϕ and ψ will
have the same Schroeder maps, and conversely if ψ : D → D is analytic,
fixes 0 and has the same Schroeder map as ϕ, then ϕ ◦ ψ = ψ ◦ ϕ. These
results follow from the existence and (essential) uniqueness of the Schroeder
map in one variable. ([1], [4].)
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If ϕ is an analytic self-map of the unit ball BN in CN which fixes the
origin, then by a Schroeder map for ϕ we will mean an analytic map σ :
BN → CN which satisfies the functional equation

σ ◦ ϕ = ϕ′(0)σ(1)

where ϕ′(0) is the linear map from CN to CN given by the matrix whose ijth

entry is Djϕi(0). By analogy to the one variable case we restrict to the case
that the eigenvalues of ϕ′(0) are non-zero and of modulus strictly less than
1. In addition we exclude maps which are “unitary on a slice” of the ball;
that is, maps ϕ for which there exists ζ, η in ∂BN so that ϕ(λζ) = λη for
all λ ∈ D. We are chiefly interested in Schroeder maps σ which are locally
univalent near 0. This is equivalent to requiring that σ′(0) be invertible ([5,
1.3.7 and 15.1.8]). In fact when there is a solution to Equation (1) with
σ′(0) invertible, there will be a solution with σ′(0) = I. Precise conditions
under which such a solution exists for a given ϕ are known ([2]; see also
Theorem 1 and Corollary 2 below), but are somewhat complicated. A basic
issue is whether any algebraic relationships of the form

λj = λk11 λ
k2
2 · · ·λkN

N

hold between the eigenvalues λk of ϕ′(0), where ki ≥ 0 and
∑
ki ≥ 2, and if

any such relationships do hold, whether they in fact prevent the existence
of a locally univalent Schroeder map. Such an algebraic relationship for an
eigenvalue of ϕ will be called a resonance of ϕ.

The results which make this precise are as follows. As a convenient nor-
malization we may assume, by a unitary change of variables, that ϕ′(0) is
upper triangular.

Theorem 1 ([2]). Suppose ϕ is an analytic map of BN into BN with ϕ(0) =
0 and A = ϕ′(0) an upper triangular diagonalizable matrix, with diagonal
entries λ1, λ2, . . . , λN such that 0 < |λj | < 1. Assume further that ϕ is not
unitary on any slice. Suppose that λj = λk11 · · ·λkN

N is the longest expression
(maximal

∑
ki) for one eigenvalue of A as a product of any number of

the eigenvalues of A. Set m = k1 + · · · + kN and M = the number of
multi-indices for CN of total order less than or equal to m. Let M be the
upper left M ×M corner of the matrix for the composition operator Cϕ with
respect to the standard (non-normalized) basis for any weighted Hardy space
H2
β(BN ), ordered in the usual way. If M is diagonalizable, then Schroeder’s

Equation (1) has a solution σ with σ′(0) = I.

The “standard basis” referred to in this theorem consists of the monomials
1, z1, z2, . . . , zn, z2

1 , z1z2, . . . ordered as follows: zα precedes zγ where α =
(α1, . . . , αN ) and γ = (γ1, . . . , γN ) are multi-indices, if either |α| < |γ| or,
in the case |α| = |γ|, if there is a j0 so that αj = γj for j < j0 and αj0 > γj0 .
The matrix for the composition operator Cϕ with respect to this basis has as
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its jth column the coefficients of ϕα with respect to this basis, where zα is the
jth monomial in the prescribed ordering. A weighted Hardy space H2

β(BN )
is a Hilbert space of analytic functions on BN for which the monomials form
a complete orthogonal set of non-zero vectors satisfying

β(|α1|) ≡
‖zα1‖
‖zα1‖2

=
‖zα2‖
‖zα2‖2

whenever |α1| = |α2|, where ‖ · ‖ denotes the norm in H2
β(BN ) and ‖ · ‖2

denotes the norm in L2(σN ), σN being normalized Lebesgue measure on BN .
When ϕ(0) = 0 and ϕ is not unitary on any slice there exist weighted Hardy
spaces on which the composition operator Cϕ (defined by Cϕ(f) = f ◦ ϕ) is
a compact operator ([2]).

There is a converse to Theorem 1 which says, under the same hypotheses
on ϕ, that if ϕ has a Schroeder map with invertible derivative at the origin,
then every upper left corner of the matrix for Cϕ is diagonalizable.

While we won’t have direct need for the full strength of Theorem 1 here,
the following corollary will play a crucial role in our study of commuting
analytic self-maps of BN . It gives a description of all Schroeder maps (locally
univalent or not) for ϕ, based on the presence or absence of resonances for
ϕ.

Corollary 2 ([2]). Suppose the hypotheses of Theorem 1 hold and that in
addition A = ϕ′(0) is diagonal. Then all solutions to Schroeder’s Equation
(1) can be described as f = g ◦ σ where σ is a Schroeder map with σ′(0) =
I, as given in Theorem 1 and g = (g1, g2, . . . , gN ) is a mapping on CN

with polynomial coordinate functions. Moreover, if gk =
∑
c(γ)zγ, then the

coefficients c(γ), γ = (γ1, . . . , γN ) are 0 unless λk = λγ11 λ
γ2
2 · · ·λγN

N (γi ≥ 0),
in which case c(γ) can be chosen arbitrarily.

If A = ϕ′(0) is merely diagonalizable, with SAS−1 = diag(λ1, λ2, . . . , λN ),
then an arbitrary Schroeder map has the form S−1 ◦ g ◦ S ◦ σ with σ and g
as just described.

Note that gk always includes a linear term bkzk (bk arbitrary), and if
λk is a repeated eigenvalue of ϕ′(0) there will be other linear terms with
arbitrary coefficients. The terms of gk with order at least two correspond
to the resonance relations for λk. When no resonance relations hold, g is
linear. We emphasize that a resonance relation expresses an eigenvalue λj
as a product λk11 λ

k2
2 · · ·λkN

N where
∑
ki ≥ 2; a relation λj = λk is not a

resonance relation.
The goal of this paper is to study commuting analytic self-maps of BN

and to see, by analogy with known results in one variable, to what extent
it still is the case that commuting maps are those which share a locally
univalent Schroeder map. Our main results (Theorems 3 and 7) will show
that under natural hypotheses on ϕ, a map ψ which commutes with ϕ and
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has no resonances in common with ϕ will share a locally univalent Schroeder
map with ϕ. Examples will be give to show that this can fail if ϕ and ψ
have resonances in common.

2. Non-resonant maps.

In studying the Schroeder maps for commuting self-maps ϕ,ψ of BN , the
easiest situation arises when at least one of ϕ,ψ has no resonances. This
means, say, that no eigenvalue of ϕ′(0) can be written as a product of two
or more of the other eigenvalues, although repeated eigenvalues are allowed.

Theorem 3. Suppose ϕ : BN → BN is analytic, with ϕ(0) = 0. As-
sume that A = ϕ′(0) is upper triangular diagonalizable with eigenvalues
λ1, λ2, . . . , λN , 0 < |λj | < 1. Assume further that ϕ is not unitary on any
slice and that no resonance relations hold for any of the λj’s. If ψ : BN →
BN is analytic and ψ ◦ ϕ = ϕ ◦ ψ then ϕ and ψ share a common Schroeder
map which is locally univalent near 0.

Proof. Since ϕ is not unitary on any slice and ϕψ(0) = ψϕ(0) = ψ(0) we
must have ψ(0) = 0, since the fixed point set of ϕ in BN is affine ([5, 8.2.3]).
By the m = 1,M = N+1 case of Theorem 1 we know that ϕ has a Schroeder
map σϕ with σ′ϕ(0) = I. Moreover,

(σϕ ◦ ψ) ◦ ϕ = σϕ ◦ ϕ ◦ ψ = ϕ′(0)(σϕ ◦ ψ)

so σϕ ◦ψ is a Schroeder map for ϕ. By Corollary 2 this tells us that σϕ ◦ψ =
S−1BSσϕ where S diagonalizes ϕ′(0) and B is linear. Differentiation of this
equation gives σ′ϕ(0)ψ′(0) = S−1BSσ′ϕ(0) so that in fact S−1BS = ψ′(0)
and σϕ is a Schroeder map for both ϕ and ψ, with derivative at 0 equal to
I. �

It need not be the case that ϕ and ψ have the same set of Schroeder maps;
see Example 1 in the next section.

As a converse to this result we have the following theorem.

Theorem 4. Suppose ϕ,ψ are analytic self-maps of BN , each fixing 0, with
ϕ′(0)ψ′(0) = ψ′(0)ϕ′(0). Suppose further that there exists an analytic σ :
BN → CN with σ′(0) invertible and both σ ◦ϕ = ϕ′(0)σ and σ ◦ψ = ψ′(0)σ.
Then ϕ ◦ ψ = ψ ◦ ϕ.

Proof. Since σ is locally univalent near 0 we may write

ϕ = σ−1ϕ′(0)σ

and

ψ = σ−1ψ′(0)σ

in an open neighborhood of 0. Thus near 0 we have

ϕ ◦ ψ = σ−1ϕ′(0)σσ−1ψ′(0)σ = σ−1ϕ′(0)ψ′(0)σ = σ−1ψ′(0)ϕ′(0)σ = ψ ◦ ϕ.
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Since ϕ ◦ ψ = ψ ◦ ϕ in an open neighborhood of 0 and the compositions are
defined on BN we must have ϕ ◦ ψ = ψ ◦ ϕ in BN . �

The last result need not hold if the hypothesis on the commutability of
the derivatives at 0 is omitted: Take ϕ,ψ to be linear maps which do not
commute. They share σ(z) = z as a common locally univalent Schroeder
map.

3. Resonances.

We begin with several examples which will help set the stage for Theorem 7,
the main result of this section.

Example 1. Let ϕ(z1, z2) = (c1z1, c31z2 + c2z
2
1) where c1, c2 are sufficiently

small non-zero constants so that ϕ(B2) ⊂ B2. Note that

ϕ′(0) =
(
c1 0
0 c31

)
and the resonance λ2 = λ3

1 holds for the eigenvalues λ1 = c1, λ2 = c31 of
ϕ′(0). It is easy to check that

σϕ =
(
z1, z2 +

c2
c31 − c21

z2
1

)
is a Schroeder map for ϕ with derivative at 0 equal to I (this example is
also discussed in [2]). By Corollary 2 all Schroeder maps for ϕ are of the
form g ◦ σϕ where g is a polynomial map (b1z1, b2z2 + b3z

3
1) for arbitrary

constants b1, b2 and b3, and thus have the form(
b1z1, b2z2 +

b2c2
c31 − c21

z2
1 + b3z

3
1

)
.

Now suppose that ψ commutes with ϕ. We know from the calculations in
Theorem 3 that σϕ ◦ ψ is a Schroeder map for ϕ and hence σϕ ◦ ψ = g ◦ σϕ
for g as above. From this we easily determine that ψ must be of the form(

b1z1, b2z2 +
c2

c31 − c21
(b2 − b21)z

2
1 + b3z

3
1

)
for some constants b1, b2, b3, and moreover any choice of these constants will
give a map which commutes with ϕ. If these constants are chosen sufficiently
small, ψ(B2) ⊂ B2. Note that whenever b3 6= 0 we have a commuting map
which is not an iterate of ϕ, so the set of maps which commute with ϕ is
considerably larger than just the natural iterates of ϕ.

If b2 6= b31 then (
z1, z2 +

c2
c31 − c21

z2
1 +

b3
b2 − b31

z3
1

)
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is a common Schroeder map for ϕ and ψ with derivative at 0 equal to I. We
remark that (

z1, z2 +
c2

c31 − c21
z2
1 + αz3

1

)
where α 6= b3/(b2− b31) is a Schroeder map for ϕ but not for ψ, so that while
ϕ and ψ have a locally univalent Schroeder map in common, their sets of
Schroeder maps are not the same.

On the other hand, if b2 = b31, b3 6= 0 and

ψ(z1, z2) =
(
b1z1, b2z2 +

c2
c31 − c21

(b2 − b21)z
2
1 + b3z

3
1

)
then ψ commutes with ϕ but ψ has no locally univalent Schroeder map
by the converse of Theorem 1. One can check that the upper left 7 × 7
corner of the matrix for Cψ has diagonal entries 1, b1, b31, b

2
1, b

4
1, b

6
1, b

3
1 and

three non-zero off diagonal entries: c2(b31 − b21)/(c31 − c21) in the 4-3 position,
c2(b31 − b21)b1/(c

3
1 − c21) in the 7-5 position, and b3 6= 0 in the 7-3 position.

This matrix is not diagonalizable. Note that the situation being considered
here is that of the resonances of ϕ also being resonances of ψ, where ψ is
not a natural iterate of ϕ.

We also note that this example shows that two self-maps of the ball which
each commute with ϕ need not commute with each other as

ψ1(z1, z2) =
(
b1z1, b2z2 +

c2
c31 − c21

(b2 − b21)z
2
1 + b3z

3
1

)
and

ψ2(z1, z2) =
(
b1z1, b2z2 +

c2
c31 − c21

(b2 − b21)z
2
1 +

1
2
b3z

3
1

)
both commute with ϕ but fail to commute with each other if b1, b2 and b3
are chosen to be sufficiently small non-zero values with b31 6= b2.

In two variables only one resonance relation is possible (either λ1 = λn2
or λ2 = λm1 ), but as the number of dimensions increases so do the possible
variety of resonance equations. The next example, describing a general
situation in C3 will be instructive for formulating a general theorem.

Example 2. Consider any analytic mapping ϕ : B3 → B3, fixing 0 and
not unitary on any slice, where ϕ′(0) is diagonal, with diagonal entries λj
satisfying 1 > |λ1| > |λ2| > |λ3| > 0 where the resonances

λ2 = λn1 , (n ≥ 2) and

λ3 = λm1 λ
k
2 = λm+nk

1 (m, k ≥ 0,m+ k ≥ 2, and m < n)
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hold. Notice that we, in fact, have k + 1 different resonances for λ3:

λ3 = λm+nk
1 = λr11 λ2 = λr21 λ

2
2 = · · · = λrk1 λ

k
2

where

rj + jn = m+ nk(2)

for j = 1, . . . , k. If ϕ satisfies the hypotheses of Corollary 2 then all
Schroeder maps are of the form g◦σϕ where σϕ is a Schroeder map satisfying
σ′ϕ(0) = I and g is a polynomial mapping with

g1 = b1z1, g2 = b2z2 + c1z
n
1

and

g3 = b3z3 + c2z
m+nk
1 + c3z

r1
1 z2 + c4z

r2
1 z

2
2 + · · ·+ ck+2z

rk
1 z

k
2

for arbitrary choice of the coefficients. Denote the collection of all such
polynomial maps Gϕ.

Now suppose ψ : B3 → B3 commutes with ϕ and that no resonance of
ϕ is also a resonance of ψ. We know σϕ ◦ ψ is a Schroeder map for ϕ so
σϕ◦ψ = g◦σϕ for some g ∈ Gϕ. Taking derivatives, we see that σ′ϕ(0)ψ′(0) =
g′(0)σ′ϕ(0) and thus ψ′(0) = g′(0) = diag(b1, b2, b3). Our hypothesis on the
resonances of ψ implies that b2 6= bn1 , b3 6= bm+nk

1 , b3 6= br11 b2, . . . , b3 6= brk1 b
k
2.

We claim that there exists ĝ in Gϕ with ĝ′(0) = I solving ĝ ◦ g = g′(0)ĝ.
Once the claim is verified we see the following holds in a neighborhood of 0:

(ĝ ◦ σϕ) ◦ ψ = (ĝ ◦ σϕ) ◦ σ−1
ϕ ◦ g ◦ σϕ = ĝ ◦ g ◦ σϕ

= g′(0) ◦ ĝ ◦ σϕ = ψ′(0)(ĝ ◦ σϕ)

since ψ = σ−1
ϕ gσϕ near 0. If (ĝ ◦σϕ) ◦ψ = φ′(0)(ĝ ◦σϕ) holds near 0, then it

holds in B3 since ĝ is defined on C3. This shows that ĝ ◦ σϕ is a Schroeder
map for ψ with derivative at 0 equal to I; it is also a Schroeder map for ϕ
by Corollary 2.

To verify the claim we will show that coefficients ĉ1, ĉ2, . . . , ĉk+2 may be
determined so that ĝ given by

ĝ1 = z1, ĝ2 = z2 + ĉ1z
n
1

and

ĝ3 = z3 + ĉ2z
m+nk
1 + ĉ3z

r1
1 z2 + ĉ4z

r2
1 z

2
2 + · · ·+ ĉk+2z

rk
1 z

k
2

solves ĝ ◦ g = g′(0)ĝ. Notice that ĝ1 ◦ g = g1 = b1z1 = b1ĝ1 and that
ĝ2 ◦ g = b2ĝ2 provided ĉ1 = c1/(b2 − bn1 ); the hypothesis b2 6= bn1 being used
here.

Finally, we turn to

ĝ3 ◦ g = b3ĝ3.(3)
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Using the forms of ĝ3 and g, we expand the left side of Equation (3) into a
sum of monomials and observe that each of these monomials is a scalar multi-
ple of a monomial which also appears in b3ĝ3, the right side of Equation (3).
To see this, observe that when we expand g

rj
1 g

j
2 = (b1z1)rj (b2z2 + c1z

n
1 )j

we get terms which are scalar multiples of the monomials zrj1 z
s
2(z

n
1 )j−s =

z
rj+n(j−s)
1 zs2(0 ≤ s ≤ j). Since rj + n(j − s) = rs, this monomial, with some

scalar coefficient, appears in b3ĝ3.
By equating in turn the coefficients of

zrk1 z
k
2 , z

rk−1

1 zk−1
2 , . . . , zr11 z2, z

m+nk
1 ,

we obtain equations for the unknown coefficients ĉk+2, ĉk+1, . . . , ĉ2. The
equation obtained from the coefficients of zrk1 z

k
2 is

ck+2 + ĉk+2b
k
2b
rk
1 = b3ĉk+2

which may be solved for ĉk+2 provided b3 6= brk1 b
k
2; this is guaranteed

by the hypothesis on the resonances of ψ. Continuing, suppose that by
comparing the coefficients of zrk1 z

k
2 , z

rk−1

1 zk−1
2 , . . . , z

rj+1

1 zj+1
2 the coefficients

ĉk+2, ĉk+1, . . . , ĉj+3 have been determined. Next we compare coefficients of
z
rj
1 z

j
2 on both sides of Equation (3). None of the terms

ĉ2g
m+nk
1 , ĉ3g

r1
1 g2, . . . , ĉj+1g

rj−1

1 gj−1
2

contribute any terms of the form z
rj
1 z

j
2. The expansion of ĉj+2g

rj
1 g

j
2 con-

tributes a term ĉj+2b
rj
1 b

j
2z
rj
1 z

j
2. The expansions of

ĉj+3g
rj+1

1 gj+1
2 , . . . , ĉk+2g

rk
1 g

k
2

contribute terms zrj2 z
j
2 all of whose coefficients involve the previously deter-

mined coefficients ĉj+3, . . . , ĉk+2 (and b1, b2). Thus equating the coefficients
of zrj1 z

j
2 on both sides of Equation (3) leads to an equation of the form

cj+2 + ĉj+2b
rj
1 b

j
2 + known terms = b3ĉj+2

where “known terms” refers to a sum involving the known values ĉj+3, . . . ,

ĉk+2 and the bi’s. This equation may be solved for ĉj+2 provided b3 6= b
rj
1 b

j
2,

which is part of our hypothesis. Continuing this process we determine all
of the coefficients of the second and higher order terms of ĝj . Note that the
only first order term in ĝ3 ◦ g is b3z3 and this is the only first order term on
the right side of Equation (3). Thus we have found a choice of coefficients
so that ĝ ◦ g = g′(0)ĝ, verifying the claim.

We set some notation and terminology which will be useful in the main
result. We now restrict attention to the case that the eigenvalues ϕ′(0)
are distinct, non-zero, and of modulus less than 1. There is no loss of
generality in assuming that ϕ′(0) is upper triangular, with diagonal entries
λ1, λ2, . . . , λN satisfying 1 > |λ1| ≥ |λ2| ≥ · · · ≥ |λN | > 0, since there is a
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unitary map U so that U∗ϕ′(0)U is upper triangular with the eigenvalues
of ϕ′(0) appearing in the prescribed order. Moreover, if ϕ and ψ commute,
then so do U∗ϕU and U∗ψU , and ϕ and ψ have a common locally univalent
Schroeder map if and only if U∗ϕU and U∗ψU do. This ordering on the
eigenvalues of ϕ′(0) implies that λ1 has no resonance relations, and in general
a resonance for λj is of the form

λj = λk11 λ
k2
2 · · ·λkj−1

j−1

where ki ≥ 0 and
∑
ki ≥ 2.

For j ≥ 2 we say that a monomial czk11 z
k2
2 · · · zkj−1

j−1 (c any non-zero scalar)
is j-permissible (for ϕ) if

λj = λk11 λ
k2
2 · · ·λkj−1

j−1 ;

call the corresponding multi-index (k1, k2, . . . , kj−1, 0, . . . , 0) j-permissible
as well. There is a one-to-one correspondence between a resonance for λj
and a j-permissible monomial with scalar coefficient 1 (or a j-permissible
multi-index). For a given ϕ, let Γj denote the j-permissible multi-indices,
so that (k1, k2, . . . , kj−1, 0, . . . , 0) ∈ Γj if and only if λj = λk11 λ

k2
2 · · ·λkj−1

j−1

and Γj is empty if λj has no resonance relations. We order the multi-indices
in Γj according to the following rule: A multi-index α in Γj preceedes a
multi-index β if either the kj−1 entry of α is greater than the kj−1 entry of
β, or if the entries in the ki through kj−1 positions agree for some i < j,
then the ki−1 entry of α is greater than the ki−1 entry of β. This is not the
“usual” ordering on multi-indices. For example, if ϕ has resonance relations
λ2 = λ2

1, λ3 = λ3
1 = λ1λ2 and

λ4 = λ2
3λ1 = λ2

2λ3 = λ2
1λ2λ3 = λ3

2λ1 = λ4
1λ3 = λ2

2λ
3
1 = λ5

1λ2 = λ7
1(4)

then the ordering on Γ4 is

(1, 0, 2, 0), (0, 2, 1, 0), (2, 1, 1, 0), (4, 0, 1, 0)

(1, 3, 0, 0), (3, 2, 0, 0), (5, 1, 0, 0), (7, 0, 0, 0).

Recall the notation Gϕ is used for the collection of all polynomial mappings
g = (g1, g2, . . . , gN ) where

gj(z1, . . . , zN ) = bjzj +
∑
γ∈Γj

cj(γ)zγ

where the coefficients bj and cj(γ) are arbitrary.

Lemma 5. With ϕ as just described, suppose g ∈ Gϕ and ĝ ∈ Gϕ with
ĝ′(0) = I. Then the monomials of order at least two in the expansion of
ĝj ◦ g are all j-permissible, for j ≥ 2.
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Proof. The coordinate functions ĝj are of the form

ĝj = zj +
∑

ĉj(γ)zγ

where the sum is over all multi-indices γ in Γj . Thus

ĝj ◦ g = gj +
∑
Γj

ĉj(γ)gγ

and it suffices to show that each monomial in the expansion of gγ is j-
permissible. Consider gγ where γ = (γ1, γ2, . . . , γj−1, 0, . . . , 0), γi ≥ 0,∑
γi ≥ 2. Computing a term of gγ = gγ11 g

γ2
2 · · · gγj−1

j−1 involves making a
choice of γ1 terms from g1 (necessarily each of these will be b1z1), γ2 terms
from g2, γ3 terms from g3, etc. Since λj = λγ11 λ

γ2
2 · · ·λγj−1

j−1 , making these
successive choices produces a j-permissible monomial. �

As an example, again suppose as above that ϕ has resonances λ2 = λ2
1,

λ3 = λ3
1 = λ1λ2 and λ4 has the resonance relations in Equation (4). In

the expansion of ĝ4 ◦ g we obtain, for example, the terms from g2
2g3 since

(0, 2, 1, 0) ∈ Γ4. The monomials obtained by choosing two terms from g2
(either b2z2 or a multiple of z2

1) and one from g3 (either b3z3, a multiple of
z3
1 or a multiple of z1z2) are all in Γ4.
Since Theorem 3 applies when ϕ has no resonances, in the next two results

we consider the resonant case.

Theorem 6. Let ϕ be an analytic self-map of BN fixing 0 and not unitary
on any slice with ϕ′(0) upper triangular with distinct diagonal entries λj
satisfying

1 > |λ1| ≥ |λ2| ≥ · · · ≥ |λN | > 0.

Suppose ϕ has at least one resonance relation. Let g ∈ Gϕ with

g′(0) = diag{b1, b2, . . . , bN}

and assume that whenever a resonance relation

λj = λk11 · · ·λkj−1

j−1

holds then

bj 6= bk11 · · · bkj−1

j−1 .

Then there exists ĝ ∈ Gϕ with ĝ′(0) = I and ĝ ◦ g = g′(0)ĝ.

Proof. By hypotheses the coordinate functions of g are

gj(z1, . . . , zN ) = bjzj +
∑
γ∈Γj

cj(γ)zγ .
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Set

ĝj(z1, . . . , zN ) = zj +
∑
γ∈Γj

ĉj(γ)zγ

so that ĝ′(0) = I. We need only show that the coefficients ĉj(γ) may be
determined so that

ĝ ◦ g = g′(0)ĝ(5)

holds. We will determine these coefficients in the order of the multi-indices
in Γj . For γ = (γ1, . . . , γj−1, 0, . . . , 0) ∈ Γj , write bγ for bγ11 b

γ2
2 · · · bγj−1

j−1 .
If Γj = ∅, then ĝj ◦ g = bj ĝj holds automatically. If Γj 6= ∅, let τ1 be the

first multi-index in Γj , and compare the coefficients of zτ1 on both sides of

ĝj ◦ g = bj ĝj(6)

to obtain

cj(τ1) + ĉj(τ1)bτ1 = bj ĉ
j(τ1)

which can be solved for the unknown ĉj(τ1) since bj 6= bτ1 .
Next compare the coefficients of zτ2 in Equation (6), where τ2 is the second

multi-index of Γj . Only for γ = τ1, τ2 can gγ contribute a zτ2 term. Thus
we are led to the equation

cj(τ2) + bτ2 ĉj(τ2) + · · · = bj ĉ
j(τ2)

where · · · indicates terms depending only on coefficients of g and/or the
just determined value ĉj(τ1). This can be solved for ĉj(τ2) since bτ2 6= bj .
Proceeding in this way through the multi-indices of Γj in the prescribed
order we obtain equations

cj(τk) + bτk ĉj(τk) + · · · = bj ĉ
j(τk)

where the omitted terms on the left are known quantites, possibly involving
the coefficients ĉj(τi) where τi preceedes τk.

At this point we have determined ĉj(γ), γ ∈ Γj so that in Equation (6) the
coefficients of any zτ , τ ∈ Γj agree on both sides. Recall that by Lemma 5
the monomials of order at least two which appear in the expansion of the
left side of Equation (6) are all j-permissible, so in fact we have shown that
the coefficients of zτ for any multi-index τ of total order at least two on both
sides of the equation agree. The only non-zero first order terms on either
side of Equation (6) are bjzj . Hence with the determined values of ĉj(γ),
Equation (5) holds. �

Theorem 7. Let ϕ : BN → BN be analytic such that ϕ(0) = 0, ϕ is not
unitary on any slice, and A = ϕ′(0) is upper triangular with distinct diagonal
entries λj satisfying 1 > |λ1| ≥ |λ2| ≥ · · · ≥ |λN | > 0. Assume that ϕ has
resonances so Γj is non-empty for at least one j. Suppose ϕ has a Schroeder
map σϕ with σ′ϕ(0) = I. If ϕ ◦ ψ = ψ ◦ ϕ for some analytic self-map ψ of
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BN , and the resonances of ϕ are not also resonances of ψ, then ϕ and ψ
have a common Schroeder map which is locally univalent near 0.

Before giving the proof, we clarify the meaning of the hypothesis “the
resonances of ϕ are not also resonances of ψ”. Since ϕ and ψ commute,
so do ϕ′(0) and ψ′(0). Since ϕ′(0) is assumed to have distinct eigenvalues,
this means that ϕ′(0) and ψ′(0) may be simultaneously diagonalized, and
we may find an N ×N invertible matrix S so that

Sϕ′(0)S−1 = diag (λ1, λ2, . . . , λN )

and

Sψ′(0)S−1 = diag (µ1, µ2, . . . , µN )

where the λj ’s appear in non-increasing order, but there is no apriori order-
ing on the µj ’s. To say that the resonances of ϕ are not also resonances of
ψ means that if

λj = λk11 · · ·λkj−1

j−1

then

µj 6= µk11 · · ·µkj−1

j−1

(with the given ordering on the µj ’s).

Proof. If ϕ ◦ ψ = ψ ◦ ϕ we have already observed that σϕ ◦ ψ is a Schroeder
map for ϕ. By Corollary 2, we must have

σϕ ◦ ψ = S−1 ◦ g ◦ S ◦ σϕ
where S diagonalizes ϕ′(0) and ψ′(0) as just described and g ∈ Gϕ so that
the coordinate functions of g are

gj(z1, . . . , zN ) = bjzj +
∑
γ∈Γj

cj(γ)zγ .

Upon differentiation of the relation σϕ ◦ ψ = S−1gSσϕ we see that ψ′(0) =
S−1g′(0)S so that

diag(µ1, . . . , µN ) = Sψ′(0)S−1 = g′(0) = diag(b1, . . . , bN )

and by hypothesis λj = λk11 · · ·λkj−1

j−1 ⇒ bj 6= bk11 · · · bkj−1

j−1 . By Theorem 6,
there exists ĝ ∈ Gϕ with ĝ′(0) = I and ĝ ◦ g = g′(0)ĝ. By Corollary 2,
S−1ĝSσϕ is a Schroeder map for ϕ; its derivative at 0 is I. The following
calculation shows that it is also a Schroeder map for ψ:

(S−1ĝSσϕ)ψ = S−1ĝSS−1gSσϕ = S−1ĝgSσϕ

= S−1g′(0)ĝSσϕ
= (S−1g′(0)S)S−1ĝSσϕ

= ψ′(0)(S−1ĝSσϕ). �
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In Example 1 we saw that Theorem 7 can fail if the resonances of ϕ are
also resonances of ψ. Of course, if ψ is a natural iterate of ϕ, then ϕ and
ψ will commute, have the same resonances, and have a common Schroeder
map.

One application of Theorems 7 and 3 is to extract qualitative information
about the maps which commute with a given map. Our next theorem is a
result in this direction. It depends on the following result from [2].

Proposition 8 ([2]). Let ϕ be an analytic map of BN into itself with ϕ(0) =
0 and A = ϕ′(0) invertible and suppose ϕ is not unitary on any slice of BN .
If σϕ is an analytic map of BN into CN that solves Schroeder’s functional
equation σϕ ◦ϕ = Af and σ′ϕ(0) is invertible, then σϕ is univalent on BN if
and only if ϕ is univalent on BN .

Corollary 9. Suppose ϕ and ψ are commuting analytic self-maps of BN ,
both fixing 0, not unitary on any slice, and having invertible derivative at
0. Suppose further that they satisfy the hypotheses of either Theorem 3 or
Theorem 7. Then if ϕ is univalent in BN so is ψ.

Proof. There is a common locally univalent Schroeder map for ϕ and ψ
which by the “if” direction of Proposition 8 is univalent in BN . Now apply
the “only if” direction of the proposition for ψ to conclude that ψ is univalent
in BN . �

The invertibility of ϕ′(0) and ψ′(0) is necessary in this corollary, as the
maps ϕ(z1, z2) = (1/2z1, 1/3z2) and ψ(z1, z2) = (1/2z1, 0) which share the
Schroeder map σ(z1, z2) = (z1, z2) show.

Finally, we observe that our proof of Theorem 7 depends on the hypothesis
that the eigenvalues of ϕ′(0) are distinct. This hypothesis plays a significant
role in Theorem 6 as it means each coordinate function gj has at most one
non-zero linear term. We leave consideration of the repeated eigenvalue case
for a later time.
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