Pacific Journal of Mathematics

COMMUTING ANALYTIC SELF-MAPS OF THE BALL

BARBARA D. MACCLUER

Volume 194 No. 2

June 2000

COMMUTING ANALYTIC SELF-MAPS OF THE BALL

BARBARA D. MACCLUER

Under broad conditions, two analytic self-maps of the disk fixing 0 commute under composition precisely when they have the same Schroeder map, where the Schroeder map for an analytic $\varphi : D \to D$ with $\varphi(0) = 0$ is the unique analytic function σ on D solving Schroeder's equation $\sigma \circ \varphi = \varphi'(0)\sigma$ and satisfying $\sigma'(0) = 1$. For analytic self-maps of the ball in C^N fixing 0 we may still seek analytic C^N -valued solutions σ to Schroeder's equation with $\sigma'(0) = I$, but considerable complications for existence and uniqueness of σ may ensue. Nevertheless, we show that there are reasonably general hypotheses under which it will still be the case that two analytic self-maps of the ball fixing 0 commute if and only if they share a common Schroeder map σ with $\sigma'(0) = I$.

1. Introduction.

If φ is an analytic map of the unit disk D into itself which fixes the origin and has derivative there satisfying $0 < |\varphi'(0)| < 1$ then there exists an analytic map σ on D that satisfies Schroeder's functional equation

$$\sigma \circ \varphi = \varphi'(0)\sigma.$$

This "Schroeder map" σ is unique up to constant multiples; its existence and uniqueness was proved by Koenigs in 1884 ([3]). It is usually convenient to require that σ satisfy $\sigma'(0) = 1$. Koenigs showed that in this case σ can be obtained as the almost uniform limit of normalized iterates of φ :

$$\sigma = \lim_{n \to \infty} \frac{\varphi_n}{\varphi'(0)^n},$$

where $\varphi_1 = \varphi$ and $\varphi_{k+1} = \varphi \circ \varphi_k$. When φ is univalent in D, σ will be also, so that φ is conjugate to multiplication by $\varphi'(0)$ on $\sigma(D) : \varphi = \sigma^{-1}\varphi'(0)\sigma$. Suppose ψ is an analytic self-map of D which commutes with φ under composition. Then necessarily $\psi(0) = 0$. Moreover, φ and ψ will have the same Schroeder maps, and conversely if $\psi : D \to D$ is analytic, fixes 0 and has the same Schroeder map as φ , then $\varphi \circ \psi = \psi \circ \varphi$. These results follow from the existence and (essential) uniqueness of the Schroeder map in one variable. ([1], [4].) If φ is an analytic self-map of the unit ball B_N in C^N which fixes the origin, then by a Schroeder map for φ we will mean an analytic map σ : $B_N \to C^N$ which satisfies the functional equation

(1)
$$\sigma \circ \varphi = \varphi'(0)\sigma$$

where $\varphi'(0)$ is the linear map from C^N to C^N given by the matrix whose ij^{th} entry is $D_j\varphi_i(0)$. By analogy to the one variable case we restrict to the case that the eigenvalues of $\varphi'(0)$ are non-zero and of modulus strictly less than 1. In addition we exclude maps which are "unitary on a slice" of the ball; that is, maps φ for which there exists ζ, η in ∂B_N so that $\varphi(\lambda\zeta) = \lambda\eta$ for all $\lambda \in D$. We are chiefly interested in Schroeder maps σ which are locally univalent near 0. This is equivalent to requiring that $\sigma'(0)$ be invertible ([5, 1.3.7 and 15.1.8]). In fact when there is a solution to Equation (1) with $\sigma'(0)$ invertible, there will be a solution with $\sigma'(0) = I$. Precise conditions under which such a solution exists for a given φ are known ([2]; see also Theorem 1 and Corollary 2 below), but are somewhat complicated. A basic issue is whether any algebraic relationships of the form

$$\lambda_j = \lambda_1^{k_1} \lambda_2^{k_2} \cdots \lambda_N^{k_N}$$

hold between the eigenvalues λ_k of $\varphi'(0)$, where $k_i \ge 0$ and $\sum k_i \ge 2$, and if any such relationships do hold, whether they in fact prevent the existence of a locally univalent Schroeder map. Such an algebraic relationship for an eigenvalue of φ will be called a *resonance* of φ .

The results which make this precise are as follows. As a convenient normalization we may assume, by a unitary change of variables, that $\varphi'(0)$ is upper triangular.

Theorem 1 ([2]). Suppose φ is an analytic map of B_N into B_N with $\varphi(0) = 0$ and $A = \varphi'(0)$ an upper triangular diagonalizable matrix, with diagonal entries $\lambda_1, \lambda_2, \ldots, \lambda_N$ such that $0 < |\lambda_j| < 1$. Assume further that φ is not unitary on any slice. Suppose that $\lambda_j = \lambda_1^{k_1} \cdots \lambda_N^{k_N}$ is the longest expression (maximal $\sum k_i$) for one eigenvalue of A as a product of any number of the eigenvalues of A. Set $m = k_1 + \cdots + k_N$ and M = the number of multi-indices for C^N of total order less than or equal to m. Let \mathcal{M} be the upper left $M \times M$ corner of the matrix for the composition operator C_{φ} with respect to the standard (non-normalized) basis for any weighted Hardy space $H^2_{\beta}(B_N)$, ordered in the usual way. If \mathcal{M} is diagonalizable, then Schroeder's Equation (1) has a solution σ with $\sigma'(0) = I$.

The "standard basis" referred to in this theorem consists of the monomials $1, z_1, z_2, \ldots, z_n, z_1^2, z_1 z_2, \ldots$ ordered as follows: z^{α} precedes z^{γ} where $\alpha = (\alpha_1, \ldots, \alpha_N)$ and $\gamma = (\gamma_1, \ldots, \gamma_N)$ are multi-indices, if either $|\alpha| < |\gamma|$ or, in the case $|\alpha| = |\gamma|$, if there is a j_0 so that $\alpha_j = \gamma_j$ for $j < j_0$ and $\alpha_{j_0} > \gamma_{j_0}$. The matrix for the composition operator C_{φ} with respect to this basis has as

its j^{th} column the coefficients of φ^{α} with respect to this basis, where z^{α} is the j^{th} monomial in the prescribed ordering. A weighted Hardy space $H^2_{\beta}(B_N)$ is a Hilbert space of analytic functions on B_N for which the monomials form a complete orthogonal set of non-zero vectors satisfying

$$\beta(|\alpha_1|) \equiv \frac{\|z^{\alpha_1}\|}{\|z^{\alpha_1}\|_2} = \frac{\|z^{\alpha_2}\|}{\|z^{\alpha_2}\|_2}$$

whenever $|\alpha_1| = |\alpha_2|$, where $\|\cdot\|$ denotes the norm in $H^2_{\beta}(B_N)$ and $\|\cdot\|_2$ denotes the norm in $L^2(\sigma_N)$, σ_N being normalized Lebesgue measure on B_N . When $\varphi(0) = 0$ and φ is not unitary on any slice there exist weighted Hardy spaces on which the composition operator C_{φ} (defined by $C_{\varphi}(f) = f \circ \varphi$) is a compact operator ([2]).

There is a converse to Theorem 1 which says, under the same hypotheses on φ , that if φ has a Schroeder map with invertible derivative at the origin, then *every* upper left corner of the matrix for C_{φ} is diagonalizable.

While we won't have direct need for the full strength of Theorem 1 here, the following corollary will play a crucial role in our study of commuting analytic self-maps of B_N . It gives a description of all Schroeder maps (locally univalent or not) for φ , based on the presence or absence of resonances for φ .

Corollary 2 ([2]). Suppose the hypotheses of Theorem 1 hold and that in addition $A = \varphi'(0)$ is diagonal. Then all solutions to Schroeder's Equation (1) can be described as $f = g \circ \sigma$ where σ is a Schroeder map with $\sigma'(0) = I$, as given in Theorem 1 and $g = (g_1, g_2, \ldots, g_N)$ is a mapping on C^N with polynomial coordinate functions. Moreover, if $g_k = \sum c(\gamma) z^{\gamma}$, then the coefficients $c(\gamma), \gamma = (\gamma_1, \ldots, \gamma_N)$ are 0 unless $\lambda_k = \lambda_1^{\gamma_1} \lambda_2^{\gamma_2} \cdots \lambda_N^{\gamma_N} (\gamma_i \ge 0)$, in which case $c(\gamma)$ can be chosen arbitrarily.

If $A = \varphi'(0)$ is merely diagonalizable, with $SAS^{-1} = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_N)$, then an arbitrary Schroeder map has the form $S^{-1} \circ g \circ S \circ \sigma$ with σ and gas just described.

Note that g_k always includes a linear term $b_k z_k$ (b_k arbitrary), and if λ_k is a repeated eigenvalue of $\varphi'(0)$ there will be other linear terms with arbitrary coefficients. The terms of g_k with order at least two correspond to the resonance relations for λ_k . When no resonance relations hold, g is linear. We emphasize that a resonance relation expresses an eigenvalue λ_j as a product $\lambda_1^{k_1} \lambda_2^{k_2} \cdots \lambda_N^{k_N}$ where $\sum k_i \geq 2$; a relation $\lambda_j = \lambda_k$ is not a resonance relation.

The goal of this paper is to study commuting analytic self-maps of B_N and to see, by analogy with known results in one variable, to what extent it still is the case that commuting maps are those which share a locally univalent Schroeder map. Our main results (Theorems 3 and 7) will show that under natural hypotheses on φ , a map ψ which commutes with φ and has no resonances in common with φ will share a locally univalent Schroeder map with φ . Examples will be give to show that this can fail if φ and ψ have resonances in common.

2. Non-resonant maps.

In studying the Schroeder maps for commuting self-maps φ, ψ of B_N , the easiest situation arises when at least one of φ, ψ has no resonances. This means, say, that no eigenvalue of $\varphi'(0)$ can be written as a product of two or more of the other eigenvalues, although repeated eigenvalues are allowed.

Theorem 3. Suppose $\varphi : B_N \to B_N$ is analytic, with $\varphi(0) = 0$. Assume that $A = \varphi'(0)$ is upper triangular diagonalizable with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_N, 0 < |\lambda_j| < 1$. Assume further that φ is not unitary on any slice and that no resonance relations hold for any of the λ_j 's. If $\psi : B_N \to B_N$ is analytic and $\psi \circ \varphi = \varphi \circ \psi$ then φ and ψ share a common Schroeder map which is locally univalent near 0.

Proof. Since φ is not unitary on any slice and $\varphi\psi(0) = \psi\varphi(0) = \psi(0)$ we must have $\psi(0) = 0$, since the fixed point set of φ in B_N is affine ([5, 8.2.3]). By the m = 1, M = N + 1 case of Theorem 1 we know that φ has a Schroeder map σ_{φ} with $\sigma'_{\varphi}(0) = I$. Moreover,

$$(\sigma_{\varphi} \circ \psi) \circ \varphi = \sigma_{\varphi} \circ \varphi \circ \psi = \varphi'(0)(\sigma_{\varphi} \circ \psi)$$

so $\sigma_{\varphi} \circ \psi$ is a Schroeder map for φ . By Corollary 2 this tells us that $\sigma_{\varphi} \circ \psi = S^{-1}BS\sigma_{\varphi}$ where S diagonalizes $\varphi'(0)$ and B is linear. Differentiation of this equation gives $\sigma'_{\varphi}(0)\psi'(0) = S^{-1}BS\sigma'_{\varphi}(0)$ so that in fact $S^{-1}BS = \psi'(0)$ and σ_{φ} is a Schroeder map for both φ and ψ , with derivative at 0 equal to I.

It need not be the case that φ and ψ have the same *set* of Schroeder maps; see Example 1 in the next section.

As a converse to this result we have the following theorem.

Theorem 4. Suppose φ, ψ are analytic self-maps of B_N , each fixing 0, with $\varphi'(0)\psi'(0) = \psi'(0)\varphi'(0)$. Suppose further that there exists an analytic σ : $B_N \to C^N$ with $\sigma'(0)$ invertible and both $\sigma \circ \varphi = \varphi'(0)\sigma$ and $\sigma \circ \psi = \psi'(0)\sigma$. Then $\varphi \circ \psi = \psi \circ \varphi$.

Proof. Since σ is locally univalent near 0 we may write

$$\varphi = \sigma^{-1} \varphi'(0) \sigma$$

and

$$\psi = \sigma^{-1} \psi'(0) \sigma$$

in an open neighborhood of 0. Thus near 0 we have

$$\varphi \circ \psi = \sigma^{-1} \varphi'(0) \sigma \sigma^{-1} \psi'(0) \sigma = \sigma^{-1} \varphi'(0) \psi'(0) \sigma = \sigma^{-1} \psi'(0) \varphi'(0) \sigma = \psi \circ \varphi.$$

Since $\varphi \circ \psi = \psi \circ \varphi$ in an open neighborhood of 0 and the compositions are defined on B_N we must have $\varphi \circ \psi = \psi \circ \varphi$ in B_N .

The last result need not hold if the hypothesis on the commutability of the derivatives at 0 is omitted: Take φ, ψ to be linear maps which do not commute. They share $\sigma(z) = z$ as a common locally univalent Schroeder map.

3. Resonances.

We begin with several examples which will help set the stage for Theorem 7, the main result of this section.

Example 1. Let $\varphi(z_1, z_2) = (c_1 z_1, c_1^3 z_2 + c_2 z_1^2)$ where c_1, c_2 are sufficiently small non-zero constants so that $\varphi(B_2) \subset B_2$. Note that

$$\varphi'(0) = \left(\begin{array}{cc} c_1 & 0\\ 0 & c_1^3 \end{array}\right)$$

and the resonance $\lambda_2 = \lambda_1^3$ holds for the eigenvalues $\lambda_1 = c_1, \lambda_2 = c_1^3$ of $\varphi'(0)$. It is easy to check that

$$\sigma_{\varphi} = \left(z_1, z_2 + \frac{c_2}{c_1^3 - c_1^2} z_1^2\right)$$

is a Schroeder map for φ with derivative at 0 equal to I (this example is also discussed in [2]). By Corollary 2 all Schroeder maps for φ are of the form $g \circ \sigma_{\varphi}$ where g is a polynomial map $(b_1z_1, b_2z_2 + b_3z_1^3)$ for arbitrary constants b_1, b_2 and b_3 , and thus have the form

$$\left(b_1z_1, b_2z_2 + \frac{b_2c_2}{c_1^3 - c_1^2}z_1^2 + b_3z_1^3\right).$$

Now suppose that ψ commutes with φ . We know from the calculations in Theorem 3 that $\sigma_{\varphi} \circ \psi$ is a Schroeder map for φ and hence $\sigma_{\varphi} \circ \psi = g \circ \sigma_{\varphi}$ for g as above. From this we easily determine that ψ must be of the form

$$\left(b_1z_1, b_2z_2 + \frac{c_2}{c_1^3 - c_1^2}(b_2 - b_1^2)z_1^2 + b_3z_1^3\right)$$

for some constants b_1, b_2, b_3 , and moreover any choice of these constants will give a map which commutes with φ . If these constants are chosen sufficiently small, $\psi(B_2) \subset B_2$. Note that whenever $b_3 \neq 0$ we have a commuting map which is not an iterate of φ , so the set of maps which commute with φ is considerably larger than just the natural iterates of φ .

If $b_2 \neq b_1^3$ then

$$\left(z_1, z_2 + \frac{c_2}{c_1^3 - c_1^2} z_1^2 + \frac{b_3}{b_2 - b_1^3} z_1^3\right)$$

is a common Schroeder map for φ and ψ with derivative at 0 equal to *I*. We remark that

$$\left(z_1, z_2 + \frac{c_2}{c_1^3 - c_1^2} z_1^2 + \alpha z_1^3\right)$$

where $\alpha \neq b_3/(b_2 - b_1^3)$ is a Schroeder map for φ but not for ψ , so that while φ and ψ have a locally univalent Schroeder map in common, their sets of Schroeder maps are not the same.

On the other hand, if $b_2 = b_1^3, b_3 \neq 0$ and

$$\psi(z_1, z_2) = \left(b_1 z_1, b_2 z_2 + \frac{c_2}{c_1^3 - c_1^2}(b_2 - b_1^2)z_1^2 + b_3 z_1^3\right)$$

then ψ commutes with φ but ψ has no locally univalent Schroeder map by the converse of Theorem 1. One can check that the upper left 7×7 corner of the matrix for C_{ψ} has diagonal entries $1, b_1, b_1^3, b_1^2, b_1^4, b_1^6, b_1^3$ and three non-zero off diagonal entries: $c_2(b_1^3 - b_1^2)/(c_1^3 - c_1^2)$ in the 4-3 position, $c_2(b_1^3 - b_1^2)b_1/(c_1^3 - c_1^2)$ in the 7-5 position, and $b_3 \neq 0$ in the 7-3 position. This matrix is not diagonalizable. Note that the situation being considered here is that of the resonances of φ also being resonances of ψ , where ψ is not a natural iterate of φ .

We also note that this example shows that two self-maps of the ball which each commute with φ need not commute with each other as

$$\psi_1(z_1, z_2) = \left(b_1 z_1, b_2 z_2 + \frac{c_2}{c_1^3 - c_1^2} (b_2 - b_1^2) z_1^2 + b_3 z_1^3\right)$$

and

$$\psi_2(z_1, z_2) = \left(b_1 z_1, b_2 z_2 + \frac{c_2}{c_1^3 - c_1^2}(b_2 - b_1^2)z_1^2 + \frac{1}{2}b_3 z_1^3\right)$$

both commute with φ but fail to commute with each other if b_1, b_2 and b_3 are chosen to be sufficiently small non-zero values with $b_1^3 \neq b_2$.

In two variables only one resonance relation is possible (either $\lambda_1 = \lambda_2^n$ or $\lambda_2 = \lambda_1^m$), but as the number of dimensions increases so do the possible variety of resonance equations. The next example, describing a general situation in C^3 will be instructive for formulating a general theorem.

Example 2. Consider any analytic mapping $\varphi : B_3 \to B_3$, fixing 0 and not unitary on any slice, where $\varphi'(0)$ is diagonal, with diagonal entries λ_j satisfying $1 > |\lambda_1| > |\lambda_2| > |\lambda_3| > 0$ where the resonances

$$\begin{split} \lambda_2 &= \lambda_1^n, (n \geq 2) \quad \text{ and} \\ \lambda_3 &= \lambda_1^m \lambda_2^k = \lambda_1^{m+nk} (m,k \geq 0, m+k \geq 2, \text{ and } m < n) \end{split}$$

hold. Notice that we, in fact, have k + 1 different resonances for λ_3 :

$$\lambda_3 = \lambda_1^{m+nk} = \lambda_1^{r_1} \lambda_2 = \lambda_1^{r_2} \lambda_2^2 = \dots = \lambda_1^{r_k} \lambda_2^k$$

where

(2)
$$r_j + jn = m + nk$$

for j = 1, ..., k. If φ satisfies the hypotheses of Corollary 2 then all Schroeder maps are of the form $g \circ \sigma_{\varphi}$ where σ_{φ} is a Schroeder map satisfying $\sigma'_{\varphi}(0) = I$ and g is a polynomial mapping with

$$g_1 = b_1 z_1, g_2 = b_2 z_2 + c_1 z_1^n$$

and

$$g_3 = b_3 z_3 + c_2 z_1^{m+nk} + c_3 z_1^{r_1} z_2 + c_4 z_1^{r_2} z_2^2 + \dots + c_{k+2} z_1^{r_k} z_2^k$$

for arbitrary choice of the coefficients. Denote the collection of all such polynomial maps \mathcal{G}_{φ} .

Now suppose $\psi : B_3 \to B_3$ commutes with φ and that no resonance of φ is also a resonance of ψ . We know $\sigma_{\varphi} \circ \psi$ is a Schroeder map for φ so $\sigma_{\varphi} \circ \psi = g \circ \sigma_{\varphi}$ for some $g \in \mathcal{G}_{\varphi}$. Taking derivatives, we see that $\sigma'_{\varphi}(0)\psi'(0) = g'(0)\sigma'_{\varphi}(0)$ and thus $\psi'(0) = g'(0) = \operatorname{diag}(b_1, b_2, b_3)$. Our hypothesis on the resonances of ψ implies that $b_2 \neq b_1^n, b_3 \neq b_1^{m+nk}, b_3 \neq b_1^{r_1}b_2, \ldots, b_3 \neq b_1^{r_k}b_2^k$.

We claim that there exists \hat{g} in \mathcal{G}_{φ} with $\hat{g}'(0) = I$ solving $\hat{g} \circ g = g'(0)\hat{g}$. Once the claim is verified we see the following holds in a neighborhood of 0:

$$\begin{aligned} (\hat{g} \circ \sigma_{\varphi}) \circ \psi &= (\hat{g} \circ \sigma_{\varphi}) \circ \sigma_{\varphi}^{-1} \circ g \circ \sigma_{\varphi} = \hat{g} \circ g \circ \sigma_{\varphi} \\ &= g'(0) \circ \hat{g} \circ \sigma_{\varphi} = \psi'(0)(\hat{g} \circ \sigma_{\varphi}) \end{aligned}$$

since $\psi = \sigma_{\varphi}^{-1} g \sigma_{\varphi}$ near 0. If $(\hat{g} \circ \sigma_{\varphi}) \circ \psi = \phi'(0) (\hat{g} \circ \sigma_{\varphi})$ holds near 0, then it holds in B_3 since \hat{g} is defined on C^3 . This shows that $\hat{g} \circ \sigma_{\varphi}$ is a Schroeder map for ψ with derivative at 0 equal to I; it is also a Schroeder map for φ by Corollary 2.

To verify the claim we will show that coefficients $\hat{c}_1, \hat{c}_2, \ldots, \hat{c}_{k+2}$ may be determined so that \hat{g} given by

$$\hat{g}_1 = z_1, \hat{g}_2 = z_2 + \hat{c}_1 z_1^n$$

and

$$\hat{g}_3 = z_3 + \hat{c}_2 z_1^{m+nk} + \hat{c}_3 z_1^{r_1} z_2 + \hat{c}_4 z_1^{r_2} z_2^2 + \dots + \hat{c}_{k+2} z_1^{r_k} z_2^k$$

solves $\hat{g} \circ g = g'(0)\hat{g}$. Notice that $\hat{g}_1 \circ g = g_1 = b_1 z_1 = b_1 \hat{g}_1$ and that $\hat{g}_2 \circ g = b_2 \hat{g}_2$ provided $\hat{c}_1 = c_1/(b_2 - b_1^n)$; the hypothesis $b_2 \neq b_1^n$ being used here.

Finally, we turn to

$$\hat{g}_3 \circ g = b_3 \hat{g}_3.$$

Using the forms of \hat{g}_3 and g, we expand the left side of Equation (3) into a sum of monomials and observe that each of these monomials is a scalar multiple of a monomial which also appears in $b_3\hat{g}_3$, the right side of Equation (3). To see this, observe that when we expand $g_1^{r_j}g_2^j = (b_1z_1)^{r_j}(b_2z_2 + c_1z_1^n)^j$ we get terms which are scalar multiples of the monomials $z_1^{r_j}z_2^s(z_1^n)^{j-s} = z_1^{r_j+n(j-s)}z_2^s(0 \le s \le j)$. Since $r_j + n(j-s) = r_s$, this monomial, with some scalar coefficient, appears in $b_3\hat{g}_3$.

By equating in turn the coefficients of

$$z_1^{r_k} z_2^k, z_1^{r_{k-1}} z_2^{k-1}, \dots, z_1^{r_1} z_2, z_1^{m+nk},$$

we obtain equations for the unknown coefficients $\hat{c}_{k+2}, \hat{c}_{k+1}, \ldots, \hat{c}_2$. The equation obtained from the coefficients of $z_1^{r_k} z_2^k$ is

$$c_{k+2} + \hat{c}_{k+2}b_2^k b_1^{r_k} = b_3 \hat{c}_{k+2}$$

which may be solved for \hat{c}_{k+2} provided $b_3 \neq b_1^{r_k} b_2^k$; this is guaranteed by the hypothesis on the resonances of ψ . Continuing, suppose that by comparing the coefficients of $z_1^{r_k} z_2^k, z_1^{r_{k-1}} z_2^{k-1}, \ldots, z_1^{r_{j+1}} z_2^{j+1}$ the coefficients $\hat{c}_{k+2}, \hat{c}_{k+1}, \ldots, \hat{c}_{j+3}$ have been determined. Next we compare coefficients of $z_1^{r_j} z_2^j$ on both sides of Equation (3). None of the terms

$$\hat{c}_2 g_1^{m+nk}, \hat{c}_3 g_1^{r_1} g_2, \dots, \hat{c}_{j+1} g_1^{r_{j-1}} g_2^{j-1}$$

contribute any terms of the form $z_1^{r_j} z_2^j$. The expansion of $\hat{c}_{j+2} g_1^{r_j} g_2^j$ contributes a term $\hat{c}_{j+2} b_1^{r_j} b_2^j z_1^{r_j} z_2^j$. The expansions of

$$\hat{c}_{j+3}g_1^{r_{j+1}}g_2^{j+1},\ldots,\hat{c}_{k+2}g_1^{r_k}g_2^k$$

contribute terms $z_2^{r_j} z_2^j$ all of whose coefficients involve the previously determined coefficients $\hat{c}_{j+3}, \ldots, \hat{c}_{k+2}$ (and b_1, b_2). Thus equating the coefficients of $z_1^{r_j} z_2^j$ on both sides of Equation (3) leads to an equation of the form

$$c_{j+2} + \hat{c}_{j+2}b_1^{r_j}b_2^j + \text{ known terms } = b_3\hat{c}_{j+2}$$

where "known terms" refers to a sum involving the known values $\hat{c}_{j+3}, \ldots, \hat{c}_{k+2}$ and the b_i 's. This equation may be solved for \hat{c}_{j+2} provided $b_3 \neq b_1^{r_j} b_2^j$, which is part of our hypothesis. Continuing this process we determine all of the coefficients of the second and higher order terms of \hat{g}_j . Note that the only first order term in $\hat{g}_3 \circ g$ is $b_3 z_3$ and this is the only first order term on the right side of Equation (3). Thus we have found a choice of coefficients so that $\hat{g} \circ g = g'(0)\hat{g}$, verifying the claim.

We set some notation and terminology which will be useful in the main result. We now restrict attention to the case that the eigenvalues $\varphi'(0)$ are distinct, non-zero, and of modulus less than 1. There is no loss of generality in assuming that $\varphi'(0)$ is upper triangular, with diagonal entries $\lambda_1, \lambda_2, \ldots, \lambda_N$ satisfying $1 > |\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_N| > 0$, since there is a unitary map U so that $U^*\varphi'(0)U$ is upper triangular with the eigenvalues of $\varphi'(0)$ appearing in the prescribed order. Moreover, if φ and ψ commute, then so do $U^*\varphi U$ and $U^*\psi U$, and φ and ψ have a common locally univalent Schroeder map if and only if $U^*\varphi U$ and $U^*\psi U$ do. This ordering on the eigenvalues of $\varphi'(0)$ implies that λ_1 has no resonance relations, and in general a resonance for λ_i is of the form

$$\lambda_j = \lambda_1^{k_1} \lambda_2^{k_2} \cdots \lambda_{j-1}^{k_{j-1}}$$

where $k_i \ge 0$ and $\sum k_i \ge 2$.

For $j \geq 2$ we say that a monomial $cz_1^{k_1}z_2^{k_2}\cdots z_{j-1}^{k_{j-1}}(c$ any non-zero scalar) is *j*-permissible (for φ) if

$$\lambda_j = \lambda_1^{k_1} \lambda_2^{k_2} \cdots \lambda_{j-1}^{k_{j-1}};$$

call the corresponding multi-index $(k_1, k_2, \ldots, k_{j-1}, 0, \ldots, 0)$ j-permissible as well. There is a one-to-one correspondence between a resonance for λ_j and a j-permissible monomial with scalar coefficient 1 (or a j-permissible multi-index). For a given φ , let Γ_j denote the j-permissible multi-indices, so that $(k_1, k_2, \ldots, k_{j-1}, 0, \ldots, 0) \in \Gamma_j$ if and only if $\lambda_j = \lambda_1^{k_1} \lambda_2^{k_2} \cdots \lambda_{j-1}^{k_{j-1}}$ and Γ_j is empty if λ_j has no resonance relations. We order the multi-indices in Γ_j according to the following rule: A multi-index α in Γ_j precedes a multi-index β if either the k_{j-1} entry of α is greater than the k_{j-1} entry of β , or if the entries in the k_i through k_{j-1} positions agree for some i < j, then the k_{i-1} entry of α is greater than the k_{i-1} entry of β . This is not the "usual" ordering on multi-indices. For example, if φ has resonance relations $\lambda_2 = \lambda_1^2, \lambda_3 = \lambda_1^3 = \lambda_1 \lambda_2$ and

(4)
$$\lambda_4 = \lambda_3^2 \lambda_1 = \lambda_2^2 \lambda_3 = \lambda_1^2 \lambda_2 \lambda_3 = \lambda_2^3 \lambda_1 = \lambda_1^4 \lambda_3 = \lambda_2^2 \lambda_1^3 = \lambda_1^5 \lambda_2 = \lambda_1^7$$

then the ordering on Γ_4 is

(1, 0, 2, 0), (0, 2, 1, 0), (2, 1, 1, 0), (4, 0, 1, 0)

(1, 3, 0, 0), (3, 2, 0, 0), (5, 1, 0, 0), (7, 0, 0, 0).

Recall the notation \mathcal{G}_{φ} is used for the collection of all polynomial mappings $g = (g_1, g_2, \dots, g_N)$ where

$$g_j(z_1,\ldots,z_N) = b_j z_j + \sum_{\gamma \in \Gamma_j} c^j(\gamma) z^{\gamma}$$

where the coefficients b_i and $c^j(\gamma)$ are arbitrary.

Lemma 5. With φ as just described, suppose $g \in \mathcal{G}_{\varphi}$ and $\hat{g} \in \mathcal{G}_{\varphi}$ with $\hat{g}'(0) = I$. Then the monomials of order at least two in the expansion of $\hat{g}_j \circ g$ are all j-permissible, for $j \geq 2$.

Proof. The coordinate functions \hat{g}_i are of the form

$$\hat{g}_j = z_j + \sum \hat{c}^j(\gamma) z^\gamma$$

where the sum is over all multi-indices γ in Γ_i . Thus

$$\hat{g}_j \circ g = g_j + \sum_{\Gamma_j} \hat{c}^j(\gamma) g^{\gamma}$$

and it suffices to show that each monomial in the expansion of g^{γ} is jpermissible. Consider g^{γ} where $\gamma = (\gamma_1, \gamma_2, \ldots, \gamma_{j-1}, 0, \ldots, 0), \gamma_i \geq 0$, $\sum \gamma_i \geq 2$. Computing a term of $g^{\gamma} = g_1^{\gamma_1} g_2^{\gamma_2} \cdots g_{j-1}^{\gamma_{j-1}}$ involves making a choice of γ_1 terms from g_1 (necessarily each of these will be b_1z_1), γ_2 terms from g_2 , γ_3 terms from g_3 , etc. Since $\lambda_j = \lambda_1^{\gamma_1} \lambda_2^{\gamma_2} \cdots \lambda_{j-1}^{\gamma_{j-1}}$, making these successive choices produces a j-permissible monomial.

As an example, again suppose as above that φ has resonances $\lambda_2 = \lambda_1^2$, $\lambda_3 = \lambda_1^3 = \lambda_1 \lambda_2$ and λ_4 has the resonance relations in Equation (4). In the expansion of $\hat{g}_4 \circ g$ we obtain, for example, the terms from $g_2^2 g_3$ since $(0, 2, 1, 0) \in \Gamma_4$. The monomials obtained by choosing two terms from g_2 (either $b_2 z_2$ or a multiple of z_1^2) and one from g_3 (either $b_3 z_3$, a multiple of z_1^3 or a multiple of $z_1 z_2$) are all in Γ_4 .

Since Theorem 3 applies when φ has no resonances, in the next two results we consider the resonant case.

Theorem 6. Let φ be an analytic self-map of B_N fixing 0 and not unitary on any slice with $\varphi'(0)$ upper triangular with distinct diagonal entries λ_j satisfying

$$1 > |\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_N| > 0.$$

Suppose φ has at least one resonance relation. Let $g \in \mathcal{G}_{\varphi}$ with

$$g'(0) = \operatorname{diag}\{b_1, b_2, \dots, b_N\}$$

and assume that whenever a resonance relation

$$\lambda_j = \lambda_1^{k_1} \cdots \lambda_{j-1}^{k_{j-1}}$$

holds then

$$b_j \neq b_1^{k_1} \cdots b_{j-1}^{k_{j-1}}.$$

Then there exists $\hat{g} \in \mathcal{G}_{\varphi}$ with $\hat{g}'(0) = I$ and $\hat{g} \circ g = g'(0)\hat{g}$.

Proof. By hypotheses the coordinate functions of g are

$$g_j(z_1,\ldots,z_N) = b_j z_j + \sum_{\gamma \in \Gamma_j} c^j(\gamma) z^{\gamma}.$$

Set

$$\hat{g}_j(z_1,\ldots,z_N) = z_j + \sum_{\gamma \in \Gamma_j} \hat{c}^j(\gamma) z^\gamma$$

so that $\hat{g}'(0) = I$. We need only show that the coefficients $\hat{c}^j(\gamma)$ may be determined so that

(5)
$$\hat{g} \circ g = g'(0)\hat{g}$$

holds. We will determine these coefficients in the order of the multi-indices in Γ_j . For $\gamma = (\gamma_1, \ldots, \gamma_{j-1}, 0, \ldots, 0) \in \Gamma_j$, write b^{γ} for $b_1^{\gamma_1} b_2^{\gamma_2} \cdots b_{j-1}^{\gamma_{j-1}}$.

If $\Gamma_j = \emptyset$, then $\hat{g}_j \circ g = b_j \hat{g}_j$ holds automatically. If $\Gamma_j \neq \emptyset$, let τ_1 be the first multi-index in Γ_j , and compare the coefficients of z^{τ_1} on both sides of

$$\hat{g}_j \circ g = b_j \hat{g}_j$$

to obtain

$$c^{j}(\tau_{1}) + \hat{c}^{j}(\tau_{1})b^{\tau_{1}} = b_{j}\hat{c}^{j}(\tau_{1})$$

which can be solved for the unknown $\hat{c}^{j}(\tau_{1})$ since $b_{j} \neq b^{\tau_{1}}$.

Next compare the coefficients of z^{τ_2} in Equation (6), where τ_2 is the second multi-index of Γ_j . Only for $\gamma = \tau_1, \tau_2$ can g^{γ} contribute a z^{τ_2} term. Thus we are led to the equation

$$c^{j}(\tau_{2}) + b^{\tau_{2}}\hat{c}^{j}(\tau_{2}) + \dots = b_{j}\hat{c}^{j}(\tau_{2})$$

where \cdots indicates terms depending only on coefficients of g and/or the just determined value $\hat{c}^{j}(\tau_{1})$. This can be solved for $\hat{c}^{j}(\tau_{2})$ since $b^{\tau_{2}} \neq b_{j}$. Proceeding in this way through the multi-indices of Γ_{j} in the prescribed order we obtain equations

$$c^{j}(\tau_{k}) + b^{\tau_{k}}\hat{c}^{j}(\tau_{k}) + \dots = b_{j}\hat{c}^{j}(\tau_{k})$$

where the omitted terms on the left are known quantites, possibly involving the coefficients $\hat{c}^{j}(\tau_{i})$ where τ_{i} precedes τ_{k} .

At this point we have determined $\hat{c}^j(\gamma), \gamma \in \Gamma_j$ so that in Equation (6) the coefficients of any $z^{\tau}, \tau \in \Gamma_j$ agree on both sides. Recall that by Lemma 5 the monomials of order at least two which appear in the expansion of the left side of Equation (6) are all j-permissible, so in fact we have shown that the coefficients of z^{τ} for any multi-index τ of total order at least two on both sides of the equation agree. The only non-zero first order terms on either side of Equation (6) are $b_j z_j$. Hence with the determined values of $\hat{c}^j(\gamma)$, Equation (5) holds.

Theorem 7. Let $\varphi : B_N \to B_N$ be analytic such that $\varphi(0) = 0$, φ is not unitary on any slice, and $A = \varphi'(0)$ is upper triangular with distinct diagonal entries λ_j satisfying $1 > |\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_N| > 0$. Assume that φ has resonances so Γ_j is non-empty for at least one j. Suppose φ has a Schroeder map σ_{φ} with $\sigma'_{\varphi}(0) = I$. If $\varphi \circ \psi = \psi \circ \varphi$ for some analytic self-map ψ of B_N , and the resonances of φ are not also resonances of ψ , then φ and ψ have a common Schroeder map which is locally univalent near 0.

Before giving the proof, we clarify the meaning of the hypothesis "the resonances of φ are not also resonances of ψ ". Since φ and ψ commute, so do $\varphi'(0)$ and $\psi'(0)$. Since $\varphi'(0)$ is assumed to have distinct eigenvalues, this means that $\varphi'(0)$ and $\psi'(0)$ may be simultaneously diagonalized, and we may find an $N \times N$ invertible matrix S so that

$$S\varphi'(0)S^{-1} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_N)$$

and

$$S\psi'(0)S^{-1} = \text{diag}(\mu_1, \mu_2, \dots, \mu_N)$$

where the λ_j 's appear in non-increasing order, but there is no apriori ordering on the μ_j 's. To say that the resonances of φ are not also resonances of ψ means that if

$$\lambda_j = \lambda_1^{k_1} \cdots \lambda_{j-1}^{k_{j-1}}$$

then

$$\mu_j \neq \mu_1^{k_1} \cdots \mu_{j-1}^{k_{j-1}}$$

(with the given ordering on the μ_j 's).

Proof. If $\varphi \circ \psi = \psi \circ \varphi$ we have already observed that $\sigma_{\varphi} \circ \psi$ is a Schroeder map for φ . By Corollary 2, we must have

$$\sigma_{\varphi} \circ \psi = S^{-1} \circ g \circ S \circ \sigma_{\varphi}$$

where S diagonalizes $\varphi'(0)$ and $\psi'(0)$ as just described and $g \in \mathcal{G}_{\varphi}$ so that the coordinate functions of g are

$$g_j(z_1,\ldots,z_N) = b_j z_j + \sum_{\gamma \in \Gamma_j} c^j(\gamma) z^{\gamma}.$$

Upon differentiation of the relation $\sigma_{\varphi} \circ \psi = S^{-1}gS\sigma_{\varphi}$ we see that $\psi'(0) = S^{-1}g'(0)S$ so that

$$\operatorname{diag}(\mu_1, \dots, \mu_N) = S\psi'(0)S^{-1} = g'(0) = \operatorname{diag}(b_1, \dots, b_N)$$

and by hypothesis $\lambda_j = \lambda_1^{k_1} \cdots \lambda_{j-1}^{k_{j-1}} \Rightarrow b_j \neq b_1^{k_1} \cdots b_{j-1}^{k_{j-1}}$. By Theorem 6, there exists $\hat{g} \in \mathcal{G}_{\varphi}$ with $\hat{g}'(0) = I$ and $\hat{g} \circ g = g'(0)\hat{g}$. By Corollary 2, $S^{-1}\hat{g}S\sigma_{\varphi}$ is a Schroeder map for φ ; its derivative at 0 is *I*. The following calculation shows that it is also a Schroeder map for ψ :

$$(S^{-1}\hat{g}S\sigma_{\varphi})\psi = S^{-1}\hat{g}SS^{-1}gS\sigma_{\varphi} = S^{-1}\hat{g}gS\sigma_{\varphi}$$
$$= S^{-1}g'(0)\hat{g}S\sigma_{\varphi}$$
$$= (S^{-1}g'(0)S)S^{-1}\hat{g}S\sigma_{\varphi}$$
$$= \psi'(0)(S^{-1}\hat{g}S\sigma_{\varphi}).$$

In Example 1 we saw that Theorem 7 can fail if the resonances of φ are also resonances of ψ . Of course, if ψ is a natural iterate of φ , then φ and ψ will commute, have the same resonances, and have a common Schroeder map.

One application of Theorems 7 and 3 is to extract qualitative information about the maps which commute with a given map. Our next theorem is a result in this direction. It depends on the following result from [2].

Proposition 8 ([2]). Let φ be an analytic map of B_N into itself with $\varphi(0) = 0$ and $A = \varphi'(0)$ invertible and suppose φ is not unitary on any slice of B_N . If σ_{φ} is an analytic map of B_N into \mathbb{C}^N that solves Schroeder's functional equation $\sigma_{\varphi} \circ \varphi = Af$ and $\sigma'_{\varphi}(0)$ is invertible, then σ_{φ} is univalent on B_N if and only if φ is univalent on B_N .

Corollary 9. Suppose φ and ψ are commuting analytic self-maps of B_N , both fixing 0, not unitary on any slice, and having invertible derivative at 0. Suppose further that they satisfy the hypotheses of either Theorem 3 or Theorem 7. Then if φ is univalent in B_N so is ψ .

Proof. There is a common locally univalent Schroeder map for φ and ψ which by the "if" direction of Proposition 8 is univalent in B_N . Now apply the "only if" direction of the proposition for ψ to conclude that ψ is univalent in B_N .

The invertibility of $\varphi'(0)$ and $\psi'(0)$ is necessary in this corollary, as the maps $\varphi(z_1, z_2) = (1/2z_1, 1/3z_2)$ and $\psi(z_1, z_2) = (1/2z_1, 0)$ which share the Schroeder map $\sigma(z_1, z_2) = (z_1, z_2)$ show.

Finally, we observe that our proof of Theorem 7 depends on the hypothesis that the eigenvalues of $\varphi'(0)$ are distinct. This hypothesis plays a significant role in Theorem 6 as it means each coordinate function g_j has at most one non-zero linear term. We leave consideration of the repeated eigenvalue case for a later time.

References

- C.C. Cowen, Commuting analytic functions, Trans. Amer. Math. Soc., 283 (1984), 685-695.
- [2] C.C. Cowen and B.D. MacCluer, Schroeder's equation in several variables, preprint, 1998.
- [3] G. Koenigs, Recherches sur les integrales de certaines equations fonctionnelles, Ann. Sci. Ecole Norm. Sup., Ser. 3, 1 (1884), 3-41.
- W. Pranger, Iteration of functions analytic on a disk, Acquationes Math., 4(1) (1970), 201-204.

 [5] W. Rudin, Function Theory in the Unit Ball of Cⁿ, Grundlehren der math. Wiss., 241, Springer-Verlag, New York, 1980.

Received August 11, 1998 and revised July 6, 1999.

UNIVERSITY OF VIRGINIA CHARLOTTESVILLE, VA 22903-4137 *E-mail address*: maccluer@virginia.edu