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It is shown that if a capillary surface satisfies conditions
relating to the eigenvalues of a certain differential operator,
then the surface is a constrained strict local minimum for the
relevant energy functional. The space of perturbations of the
surface is first defined in terms of graphs of functions in curvi-
linear coordinates and then related to perturbations of cap-
illary surfaces which are uniformly small and have uniformly
small derivatives.

1. Introduction.

If a drop of liquid is put into contact with some fixed solid region G with
boundary Λ and allowed to reach an equilibrium, the surface of the resulting
drop is an example of a capillary surface. (A standard introduction to the
study of capillary surfaces is [5].) Let Ω be the region in space occupied by
the drop and Σ be the free surface of Ω. In the absence of gravity or any
other external potential, the shape of the drop results from minimizing the
energy functional

E(Ω) = |Σ| − c|Σ1|(1.1)

where |Σ| is the area of the free surface, |Σ1| is the area of the wetted region
on Λ (i.e., ∂Ω ∩ Λ), and c ∈ [−1, 1] is a physical constant depending on
the materials involved. The minimization is under the constraint that the
volume is fixed. The first order necessary conditions for a drop to minimize
the energy in (1.1) are that the mean curvature of Σ is a constant H and the
angle between the normals to Σ and Λ is constantly γ = arccos(c) (see [5]).
In this paper, we will call a surface which satisfies these conditions a capillary
surface. It should be noted, however, that this is the special case of zero
gravity. Another point to note is that we are not restricting ourselves to
the commonly studied special case of Σ being a graph (the non-parametric
case). In view of uniqueness results (see [5], [15]), stability questions in the
non-parametric case are unlikely to be interesting.

Since capillary surfaces arise from the minimization of an energy func-
tional, it’s natural to wonder whether a given configuration which satisfies
the first order necessary conditions is actually a constrained minimum for the
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energy functional in some sense. In unconstrained problems, the question
of whether appropriate positivity properties of the second variation yield
sufficient conditions for a local minimum is well studied. For isoperimetric
problems, such as the one considered in this paper, less is known. This
paper is one of a series of papers ([17], [18], [19]) which use spectral meth-
ods to give sufficient conditions for a stationary point in an isoperimetric
problem to be a strong local minimum. The genesis of this line of research
was [6], in which Finn pointed out that the second order conditions used
in [14], [16], [21] were insufficient to show that a given liquid bridge was an
energy minimum, in spite of my erroneous assertion in [14] to the contrary.

A distinction must be made between two concepts: stability of a capillary
surface and a capillary surface being a constrained strict local minimum for
energy. (The latter concept was called “non-linear stability” in [19].) Sta-
bility has typically been defined as the second variation being either positive
or non-negative for all volume-preserving perturbations (e.g., [2], [8], [11]).
The relationship between stability and local minimality is more tenuous than
one might expect from the terminology. A necessary condition for a surface
to be a local minimum is that the second variation be non-negative for all
volume preserving perturbations (assuming enough smoothness). However,
the condition that the second variation be positive is not a priori sufficient
to imply that the surface is an energy minimum. This is a standard fact
from the calculus of variations, and certainly is not restricted to capillary
surfaces. It does not depend on the existence of a constraint: see [1], p. 157,
for an example of a function defined on l2 whose second differential is pos-
itive definite at a critical point, but which does not have a local minimum
there. Finn gives an example with similar properties in [6].

Stability and local minimality are not completely unrelated, of course.
In [8] it is shown that a strictly stable constant mean curvature surface is a
local energy minimizer, assuming that the boundary is fixed. Strict stability,
as defined in [8], is related to the idea of strong positivity in Section 2.
The methods used in [8] differ from those in the present paper, and the
assumption that we will make that the contact curve is free to move adds
significant complications.

The result of Theorem 2.2 is that certain eigenvalue conditions are in fact
enough to imply strong positivity. The eigenvalue conditions are similar to
conditions which have been used for quite a while to imply that the second
variation is positive (see, e.g., [10]), and which were shown in [17] to imply
strict constrained local minimality. We cannot apply the results of [17]
directly, however, since surface area is not a differentiable operator in the
natural Hilbert space. A more delicate argument is required: it is necessary
to deal with two spaces, both H1(Σ) and C1(Σ). Spectral theory in H1(Σ)
will be used in Section 2 to derive sufficient conditions for a given capillary
surface to be a constrained strict local minimum in C1(Σ).
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In Theorem 3.2, possibly the most important result of the paper, we will
derive sufficient conditions for a capillary surface to be a strict local mini-
mum for (1.1), subject to the volume constraint. Of course, to make such a
statement, we will have to make precise the set of allowable surfaces and the
sense in which two surfaces are close. Essentially, we consider perturbations
of the original surface which are obtained by adding a small vector-valued
function to the original parameterization of the surface, and also requiring
the derivatives of this vector-valued function to be small. Of course, this
means that the nearby surfaces that we compare with are fairly smooth, if
the original surface is smooth. It’s natural to make this assumption, since
local minimizers must be smooth, assuming that the fixed solid is smooth.
More precisely, interior regularity of a capillary surface must be the same
as that of a minimal surface (from a blowing-up argument), so that a cap-
illary surface in R3 will be analytic (see [13]). Boundary regularity is also
addressed by Taylor in [13]. If Λ is at least Hölder continuously differen-
tiable, Taylor shows that ∂Σ consists of a finite number of curves which are
also Hölder continuously differentiable. If Λ is C∞, higher regularity of the
contact curve ∂Σ follows by the routine argument of straightening Λ with a
C∞ diffeomorphism and using elliptic theory (see, e.g., [7]).

Before getting to this point, we introduce a generalization of normal vari-
ations of surfaces. If ~x(u, v) is a surface with normal ~N(u, v), and if ϕ(u, v)
is a scalar function, then a a new surface may be obtained by moving in the
normal direction a distance ϕ, resulting in the surface ~x+ ϕ ~N . This classic
idea must be altered in dealing with capillary surfaces, since a normal vari-
ation of a capillary surface will generally not result in a physically possible
surface. The problem is that the boundary of the perturbed surface need not
lie on the fixed surface Λ. In Section 2 we will use curvilinear coordinates
to overcome this difficulty. For a different approach to generalizing normal
variations, see Section 1.5 of [5].

2. Energy minimality in curvilinear coordinates.

In [19], normal variations were generalized as follows. We set up a specific
curvilinear coordinate system ~x(u, v, w) with the property that ~x(u, v, 0) was
the unperturbed surface Σ (which in [19] was a cylinder), and if ~x(u, v, 0)
was on the boundary of Σ, then ~x(u, v, w) ∈ Λ for all w sufficiently small.
Then, for any sufficiently small continuous function ϕ(u, v), ~x (u, v, ϕ(u, v))
represents the surface of a physically possible drop.

The approach we will follow will be similar to the one used in [19], however
we will not restrict ourselves to a specific curvilinear coordinate system. We
are given a fixed set G in R3, with the boundary of G being a surface Λ. We
will assume that Λ is smooth, although not necessarily connected. (It seems
clear that the smoothness assumption can be weakened to consider capillary
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surfaces in wedges, although we will not do so in this paper. See [5] for
discussion of several questions involving capillary surfaces in wedges.) The
set G corresponds to a fixed solid, to which a mass of liquid will attach.
We seek to characterize surfaces Σ surrounding regions Ω contained in the
complement of G so that the functional E of (1.1) has Ω as a strict local
minimum under perturbations which preserve the volume of Ω.

The general idea is the following. We set up a curvilinear coordinate
system in a subset of (G0)′ which contains Σ. Here G0 is the interior of G,
and the prime denotes the complement of that set. This coordinate system
~x : Σ × [−ε, ε] → (G0)′ will be such that if p ∈ Σ then ~x(p, 0) = p and if
p ∈ ∂Σ, ~x(p, w) ∈ Λ. We will assume that the parameterization of Σ and the
curvilinear coordinate system is such that for (u, v) in a coordinate patch,
~x (p(u, v), w) is a smooth function of u, v, and w which is a locally invertible
map from R3 to R3. We also assume that the curvilinear coordinate system
does not break down at the boundary of Σ, i.e., that ~xw is not orthogonal
to the normal to Σ in the limit as we approach ∂Σ. (The existence of such
a coordinate system is discussed in Section 3.) For any ϕ ∈ C1(Σ) with
|ϕ| bounded uniformly by ε, {~x (p, ϕ(p)) : p ∈ Σ} describes an embedded
surface in the exterior of G. Moreover, the boundary of this surface is
automatically in Λ, so that this is the free surface of a physically realizable
drop. It is important to note that the above assumptions on the curvilinear
coordinate system exclude consideration of the cases of contact angle 0 or
π.

To illustrate, here is a two dimensional example. Suppose that G is
{(x, y) : y < x2}, and Σ is an arc of a circle which begins and ends on
the parabola Λ = {(x, y) : y = x2}. Let ~x(p, w) be a curvilinear coordinate
system as discussed above. In Figure 1 we illustrate such a coordinate system
by giving curves along which the coordinates are constant. The curve w = 0
is simply Σ, and we have chosen the coordinate system so that the curves
along which w is constant are also circles. As an example, we take ϕ(p),
p ∈ Σ, to be a multiple of half of a cycle of cosine. The perturbation of Σ
given by ~x(p, ϕ(p)) will look like Σ1 in Figure 1.

Returning to the general theory, to simplify some formulas, we will also
impose the condition that

~xw(p, 0) · ~N = 1

for all p ∈ Σ. Indeed, if ~y(p, w) is a curvilinear coordinate system as de-
scribed above, we may rescale the w coordinate:

~x(p, w) = ~y

(
p,

1

~yw(p, 0) · ~N
w

)
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to obtain the additional condition that ~xw(p, 0) · ~N = 1. (Local invertibility
will imply that ~yw(p, 0) · ~N 6= 0.) This will enable us to drop otherwise
annoying factors of ~xw · ~N .

Λ

Gw=–1

w=1

1Σ
Σ

Figure 1. Example of curvilinear coordinates.

We thus have a convenient way of defining surface area and volume of
drops corresponding to functions in C1(Σ) which are uniformly less than
ε. Specifically, for ϕ ∈ C1(Σ), A(ϕ) will be the area of the free surface
~x(p, ϕ(p)), V (ϕ) will be the volume contained by the drop with free surface
~x(p, ϕ(p)) and W (ϕ) will be the area of the region on Λ wetted by this drop.
Thus, the energy corresponding to a given ϕ is

E(ϕ) = A(ϕ)− cW (ϕ).(2.1)

Since a function ϕ corresponds to a perturbation of Σ, Σ will have strictly
less energy than nearby surfaces which are smooth graphs in curvilinear
coordinates if the function which is identically 0 is a strict local minimum
of (2.1). To avoid confusion with the number zero, we will label the function
which is identically zero as o. Clearly, not all nearby surfaces can be obtained
using a curvilinear coordinate system in the above fashion, if the coordinate
system is fixed. However, I believe that the set of surfaces considered is
large enough to be of interest. This point is discussed further in Section 3.

To use the general approach of [17] and [18], we must deal with Fréchet
derivatives (in C1(Σ)) of energy and volume as defined above. In addition,
however, we must bound the higher order terms of these functionals by
certain integrals, to obtain information in C1(Σ) from spectral theory in
H1(Σ). The bounds obtained are based on a Taylor expansion. The point
of the next few lemmas is to give the remainder of various expansions in a
form that we can easily bound for functions which are small in C1(Σ).
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Lemma 2.1. Let S be a surface in R3 parameterized by p(u, v), (u, v) in
some parameter domain D ⊆ R2. For ϕ in C1(Σ), define ϕ̃(u, v) to be
ϕ(p(u, v)). Suppose that F : C1(Σ) → R is defined by

F (ϕ) =
∫∫

D
f(u, v, ϕ̃(u, v),∇ϕ̃) du dv(2.2)

for some function f(u, v, w, ~α) which is three times differentiable in w and
~α, with bounded third derivatives. Then we may expand F (ϕ) as

F (ϕ) = F (o) +
∫∫

S
L(ϕ,∇ϕ) dΣ +

∫∫
S
Q(ϕ,∇ϕ) dΣ + η

where L is a linear operator, Q is a quadratic form, (the coefficients of L
and Q depend continuously on p ∈ S), and η may be bounded by

|η| ≤ C

∫∫
S
(|ϕ|+ |∇ϕ|)3 dΣ

for some constant C. Here ∇ϕ is the gradient on the surface.

Proof. Holding u and v fixed, we may expand f(u, v, ϕ̃,∇ϕ̃) in the last two
variables as

f(u, v, ϕ̃,∇ϕ̃) = f(u, v, 0,~0) + L̃(ϕ̃,∇ϕ̃) + Q̃(ϕ̃,∇ϕ̃) + η1(2.3)

where L̃ is linear, Q̃ is quadratic, and the error term η1 involves third order
terms in ϕ̃ and∇ϕ̃ with coefficients consisting of third derivatives of f . Since
the third derivatives are bounded, we may estimate |η1| by C(|ϕ̃| + |∇ϕ̃|)3
for some constant C.

We now integrate (2.3) over D. The integrals over D may be converted
to integrals over S by introducing a factor of ‖pu × pv‖. To relate ∇ϕ̃ and
∇ϕ, note that for a given (u, v), ∇ϕ(p(u, v)) may be obtained by applying
a non-singular linear transformation to ∇ϕ̃(u, v) (see [12], volume 4). �

We will need a lemma for curves which is analogous to Lemma 2.1.

Lemma 2.2. Suppose that G is a smooth curve parameterized by γ(s), s ∈
[0, 1]. For ϕ defined on G, let T (ϕ) be defined as

∫ 1
0 f(s, ϕ(γ(s))) ds, where

f has continuous third derivatives. Then

T (ϕ) = T (o) +
∫

G
L(ϕ) dσ +

∫
G
Q(ϕ) dσ + η(2.4)

where L is linear in ϕ, Q is quadratic, and η satisfies the bound

|η| ≤ C

∫
G
|ϕ|3 dσ.

Proof. This is essentially the same as Lemma 2.1 and is omitted. �
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Lemma 2.3. Suppose that Σ is a smooth, orientable surface with constant
mean curvature H with respect to the normal ~N , that the contact angle
between Σ and Λ is constantly γ = arccos(c) ∈ (0, π), and that ~x : Σ ×
[−ε, ε] → R3 is a curvilinear coordinate system satisfying ~x(p, 0) = p and
~x(p, w) ∈ Λ for p ∈ ∂Σ as described above. Then for |ϕ| and |∇ϕ| sufficiently
(uniformly) small,

E(ϕ) = E(o)− 2
∫∫

Σ
HϕdΣ +

∫∫
Σ
Q1(ϕ,∇ϕ) dΣ +

∮
∂Σ
Q2(ϕ) + η1

(2.5)

where Q1 and Q2 are quadratic forms and η1 satisfies the bound

|η1| ≤ C

(∫∫
Σ
(|ϕ|+ |∇ϕ|)3 dΣ +

∮
∂Σ
|ϕ|3 dσ

)
.(2.6)

Proof. The first order term is essentially derived in [11]: a boundary term
will disappear since the contact angle condition is assumed to be met. (The
assumption that ~xw · ~N = 1 is used.) We wish to apply Lemma 2.1 (to
A(ϕ)) and Lemma 2.2 (to W (ϕ)) to bound the remainder term as above.
The first problem is that Σ might not be parameterized by a single domain
D. However, we may certainly cut Σ into pieces Σi which are disjoint except
for their boundaries, each of which may be parameterized by a domain Di.
We then sum over i, so that this is not a real difficulty.

We next must verify that A(ϕ) may be written in the form of Equation
(2.2) on each Di. For ease of notation, we shall deal with a single Di,
and will simply call it D, and its image Σ. Also, for ease of notation, let
~z(u, v, w) = ~x(p(u, v), w). Then the surface ~x(p, ϕ(p)) may be written as
~z(u, v, ϕ̃(u, v)), (u, v) ∈ D. Its area will be

(2.7)
∫∫

D

∥∥∥[~zu(u, v, ϕ̃(u, v)) + ~zw(u, v, ϕ̃(u, v))ϕ̃u

]
×
[
~zv(u, v, ϕ̃(u, v)) + ~zw(u, v, ϕ̃(u, v))ϕ̃v

]∥∥∥ du dv.
The differentiability assumptions on ~z(u, v, w) will cause the integrand of
(2.7) to be a differentiable function of the variables u, v, ϕ, ϕu and ϕv as
long as the length of the vector

∂

∂u
~z(u, v, ϕ(u, v))× ∂

∂v
~z(u, v, ϕ(u, v))

is non-zero. However, ~z(u, v, 0) simply parameterizes Σ. For this to be a
good parameterization, ~zu(u, v, 0) × ~zv(u, v, 0) 6= ~0. This implies that the
integrand of (2.7) is differentiable for ϕ and ∇ϕ sufficiently small.

We must also show that W (ϕ) (the area of the region on Λ wetted by
~x(p, ϕ(p))) may be expanded as in Equation (2.4). If we perturb Σ to the
surface ~x(p, ϕ(p)), then the part of the wetted region on Λ within ε of the
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original surface may be parameterized as ~x(p, w), p ∈ ∂Σ, −ε < w < ϕ(p).
We may neglect any part of Λ farther than ε from Σ, since any point on Λ
farther than ε from Σ will be wetted by either both the original drop and
the perturbed drop or by neither. Thus, we must show that the area of the
surface parameterized by ~x(p, w), p ∈ ∂Σ, −ε < w < ϕ(p) may be written
in a form to which Lemma 2.2 applies.

Since Σ intersects Λ transversely, ∂Σ consists of smooth curves. Let p(s),
s ∈ [0, 1] be a parameterization of one such curve. Then one piece of the
wetted surface is ~x(p(s), w), s ∈ [0, 1], w ∈ [−ε, ϕ(p(s))]. Its area is∫ 1

0

∫ ϕ(p(s))

0

∥∥∥∥ ∂∂s~x(p(s), w)× ∂

∂w
~x(p(s), w)

∥∥∥∥ dw ds.(2.8)

For the inner integrand to be a differentiable function of s and ϕ(p(s)),
we must have the length of the vector

∂

∂s
~x(p(s), w)× ∂

∂w
~x(p(s), w)

bounded from zero. The first vector is a non-trivial linear combination of
~xu and ~xv, and, by the assumption that ~x(u, v, w) is smooth and invertible,
cannot be parallel to ~xw. Therefore the integrand in Equation (2.8) is a
differentiable function of s and w. From this, we have that∫ ϕ(p(s))

0

∥∥∥∥ ∂∂s~x(p(s), w)× ∂

∂w
~x(p(s), w)

∥∥∥∥ dw
satisfies the assumption of Lemma 2.2. Summing over the smooth pieces of
∂Σ concludes the proof. �

Lemma 2.4. V (ϕ) may be expanded as

V (ϕ) = V (o) +
∫∫

Σ
ϕdΣ +

∫∫
Σ
Q3(ϕ,∇ϕ) dΣ + η2(2.9)

where η2 satisfies the bound

|η2| ≤ C

(∫∫
Σ
(|ϕ|+ |∇ϕ|)3 dΣ +

∮
∂Σ
|ϕ|3 dσ

)
,

and Q3 is a quadratic form.

Proof. If Ω is the region occupied by the liquid, its volume is

V =
1
3

∫∫
∂Ω
~x · ~N dΣ(2.10)

by the divergence theorem. The part of (2.10) over the perturbed free surface
~x(p, ϕ(p)), p ∈ Σ may be handled as in Lemma 2.1. The part of (2.10) which
is contained in the fixed surface Λ is handled as in Lemma 2.3. As this is
routine, the details are omitted. The exact form of the first order term is
well known. �
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Lemma 2.5. Suppose that Σ is a capillary surface with contact angle γ ∈
(0, π). If ϕ ∈ C1(Σ) is such that V (ϕ) = V (o), then

E(ϕ) = E(o) +
1
2
M(ϕ,ϕ) + η,(2.11)

where η is bounded as in (2.6). M(ϕ,ϕ) is a quadratic form whose associated
bilinear form is given by

M(ϕ,ψ) =
∫∫

Σ
∇ϕ · ∇ψ − |S|2ϕψ dΣ +

∮
∂Σ
ρϕψ dσ(2.12)

where ∇ is the gradient on Σ and |S|2 is the square of the norm of the second
fundamental form of Σ. (In terms of H and the Gaussian curvature K, |S|2
may be written as 2(2H2 − K), and in terms of the principal curvatures,
|S|2 may be written as k2

1 + k2
2.) The coefficient ρ is given by

ρ = κΣ cot γ − κΛ csc γ,

where κΣ is the curvature of the curve Σ ∩ Π and κΛ is the curvature of
Λ ∩Π, if Π is a plane normal to the contact curve ∂Σ.

Proof. Since V (ϕ) is assumed to equal V (o), we may apply Lemma 2.4 to
find that ∫∫

Σ
ϕdΣ = −

∫∫
Σ
Q3(ϕ,∇ϕ) dΣ− η2.

Substituting this into (2.5), we obtain (2.11), where M(ϕ,ϕ) must equal
the integral of a quadratic form in ϕ and ∇ϕ over Σ plus the integral of a
quadratic form in ϕ over ∂Σ.

Having this expansion, we may apply the derivation of [11] or [20] to de-
termine M explicitly. Indeed, both of these references consider a continuum
of constant volume surfaces, parameterized by t, so that the unperturbed
surface occurs for t = 0. The quadratic form they obtain is then the second
derivative of energy at o. Since we have seen that E may be written as in
(2.11), η will disappear in taking the second derivative. Thus, M will be
the same as the standard quadratic form found in [11] and [20], and may
be written as (2.12). �

A quadratic form M(u, u) defined on a Banach space is said to be strongly
positive if there is a constant c > 0 so that M(u, u) ≥ c‖u‖2 for all u
in the space. We will next see that strong positivity of M on a certain
subspace of H1(Σ) implies that Σ is a local energy minimum under the
volume constraint.

Theorem 2.1. Suppose that Σ is a capillary surface, with contact angle γ ∈
(0, π). If M(ϕ,ϕ) is strongly positive on the subspace of H1(Σ) consisting of
all ϕ for which

∫∫
Σ ϕdΣ = 0, then o is a strict local minimum (in C1(Σ)) for

E, subject to the volume constraint V (ϕ) = V (o), hence Σ is a constrained
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local energy minimum (comparing with nearby surfaces that are of the form
~x(p, ϕ(p))).

Proof. Suppose that ϕ satisfies V (ϕ) = V (o). We cannot apply the assump-
tion of strong positivity of M directly to this ϕ, since there is no reason
to expect that

∫∫
Σ ϕdΣ = 0. However, we may write ϕ as ϕ∗ + α, where∫∫

Σ ϕ
∗ dΣ = 0 and α is the constant

α =

∫∫
Σ ϕdΣ
|Σ|

= − 1
|Σ|

∫∫
Σ
Q3 dΣ− η2

|Σ|
,(2.13)

where the second equality comes from Lemma 2.4.
We need to relate the H1 norm of ϕ with the H1 norm of ϕ∗. There holds∫∫

Σ
ϕ2 dΣ =

∫∫
Σ
(ϕ∗)2 dΣ + α2|Σ|

and therefore (since ∇ϕ = ∇ϕ∗)
‖ϕ‖2

1 = ‖ϕ∗‖2
1 + α2|Σ|

where ‖ϕ‖1 =
√∫∫

Σ ϕ
2 +

∫∫
Σ |∇ϕ|2 is the norm of ϕ in the space H1(Σ).

From (2.13) one sees that, for a non-trivial ϕ with ‖ϕ‖1 small enough,
|α| < C‖ϕ‖2

1 holds for some constant C. Thus, if ‖ϕ‖1 is sufficiently small,

α2|Σ| < 1
2
‖ϕ‖2

1

and therefore for ‖ϕ‖1 sufficiently small,
1
2
‖ϕ‖2

1 < ‖ϕ∗‖2
1 < ‖ϕ‖2

1(2.14)

holds as long as ϕ is non-trivial.
For a non-trivial function ϕ satisfying V (ϕ) = V (o), we may use Lemma

2.5 to conclude that

E(ϕ) = E(o) +
1
2
M(ϕ∗ + α, ϕ∗ + α) + η(ϕ)(2.15)

= E(o) +
1
2
M(ϕ∗, ϕ∗) +M(ϕ∗, α) +

1
2
M(α, α) + η(ϕ)

> E(o) +
c

2
‖ϕ∗‖2

1 +M(ϕ∗, α) +
1
2
M(α, α) + η(ϕ),

where the constant c > 0 is from the definition of M being strongly positive.
(For the rest of the proof we will assume that ϕ is not trivial.) We will show
that the term containing ‖ϕ∗‖2

1 dominates the terms involving M on the
right hand side of (2.15). In other words, we will show that there is a β(ϕ∗)
so that ∣∣∣∣M(ϕ∗, α) +

1
2
M(α, α)

∣∣∣∣ < β(ϕ∗)‖ϕ∗‖2
1(2.16)
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with β(ϕ∗) tending to 0 as ‖ϕ∗‖1 goes to zero.
For the term M(ϕ∗, α), we have

M(ϕ∗, α) = α

(∫∫
Σ
−|S|2ϕ∗ dΣ +

∮
∂Σ
ρϕ∗ dσ

)
.

Since |α| < C‖ϕ‖2
1 < 2C‖ϕ∗‖2

1, to obtain the bound for M(ϕ∗, α) necessary
for (2.16) we will show that

∫∫
Σ |S|

2ϕ∗ dΣ and
∮
∂Σ ρϕ

∗ dσ are bounded by
a constant times ‖ϕ∗‖1. The argument for the first integral is obvious, and
the argument for the second integral uses the fact that the trace map from
H1(Σ) to H1/2(∂Σ) is continuous. The term M(α, α) is clearly bounded by
a constant times ‖ϕ∗‖4

1, so that we obtain that

E(ϕ) > E(o) + ‖ϕ∗‖2
1

( c
2

+ β(ϕ∗)
)

+ η(ϕ)

> E(o) + c1‖ϕ∗‖2
1 + η(ϕ)

(2.17)

for ‖ϕ‖1 sufficiently small, and for a constant c1 > 0 less than c
2 .

In general, η(ϕ) will not be small even if ϕ is small in H1(Σ). However,
if we require that ϕ be small in C1(Σ), then we can dominate η(ϕ) by ‖ϕ‖2

1.
Indeed, if we take an ε > 0, then for a ϕ with |ϕ| < ε and |∇ϕ| < ε we have

|η(ϕ)| < Cε

(
‖ϕ‖2

1 +
∮

∂Σ
ϕ2 dσ

)
.(2.18)

Since the trace map is continuous from H1(Σ) to H1/2(∂Σ), we conclude
from (2.18) that there is a C > 0 so that if |ϕ| < ε and |∇ϕ| < ε in Σ, then

|η(ϕ)| < Cε‖ϕ‖2
1 < C ′ε‖ϕ∗‖2

1.(2.19)

From (2.19) and (2.17), we conclude that if the C1(Σ) norm of ϕ is suffi-
ciently small, and if V (ϕ) = V (o), then we have

E(ϕ) > E(o) + c2‖ϕ∗‖2
1

holding for non-trivial ϕ. (We have again taken a smaller constant times
‖ϕ∗‖2

1 to enable us to drop terms which are dominated by ‖ϕ∗‖2
1.) To con-

clude the proof, we must show that if ϕ is not identically zero, then ϕ∗ is
not identically zero. This follows from (2.14). Therefore, for any non-trivial
ϕ with V (ϕ) = V (o) and of small enough C1(Σ) norm, we have

E(ϕ) > E(o)

as desired. �

We are also able to show instability in certain cases.

Lemma 2.6. If Σ is capillary, and if there exists a function ϕ in H1(Σ) for
which

∫∫
Σ ϕdΣ = 0 and M(ϕ,ϕ) < 0, then o is not a constrained minimum

for energy in any neighborhood of the origin. In other words, there will be
functions, arbitrarily close to zero in the C1(Σ) norm, satisfying the volume
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constraint, and with smaller energy than E(o). This implies that there are
surfaces, arbitrarily close to Σ, with smaller energy than Σ.

Proof. Inspired by the proof of Lemma 2.4 of [2], we consider the function

f(t, u) = V (tϕ+ u)

and the set {(t, u) : f(t, u) = V (o)} in the tu plane. From Lemma 2.4,
ft(0, 0) =

∫∫
Σ ϕdΣ = 0 and fu(0, 0) =

∫∫
Σ 1 dΣ 6= 0. Using the Implicit

Function Theorem, we may solve f(t, u) = V (o) for u as a function of t in
some neighborhood of the origin. For this function, we must have u′(0) = 0
and

V (tϕ+ u(t)) = V (o)

for all t sufficiently small. Then, using Lemma 2.5,

E(tϕ+ u(t)) = E(o)

+
1
2

(∫∫
Σ
t2|∇ϕ|2 − |S|2(t2ϕ2 + 2tu(t)ϕ+ u2(t)) dΣ

+
∮

∂Σ
ρ(t2ϕ2 + 2tu(t)ϕ+ u2(t)) dσ

)
+ η,

where |η| ≤ Ct3. Thus,

E(tϕ+ u(t)) = E(o) + t2M(ϕ,ϕ) +O(t3)

and for all t 6= 0 sufficiently small, E(tϕ + u(t)) < E(o). Therefore o is not
a constrained local minimum for energy. �

The remainder of this section is devoted to finding conditions under which
the hypotheses of Theorem 2.1 will be satisfied. The bilinear form M(ϕ,ψ)
is bounded on the Hilbert space H1(Σ). Therefore (see [9]) there is a unique
bounded linear operator A : H1(Σ) → H1(Σ) which satisfies

〈ϕ,Aψ〉 = M(ϕ,ψ),(2.20)

where 〈ϕ,ψ〉 =
∫∫

Σ ϕψ +
∫∫

Σ∇ϕ · ∇ψ is the inner product of H1(Σ). We
introduce the operator A since the sign of the quadratic term in (2.6) and
the spectrum of the operator A will be shown to be related.

Lemma 2.7. The operator A determined by equation (2.20) may be written
as I + T , where I is the identity and T is a compact operator.

Proof. If T = A− I, then T satisfies

〈ϕ, Tψ〉 =
∫∫

Σ

(
−|S|2 − 1

)
ϕψ dΣ +

∮
∂Σ
ρϕψ dσ.

The result then follows quickly from the fact the natural inclusion of a
Sobolev space into a lower order Sobolev space is compact. �
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We may apply the well-known spectral theory of compact operators (see,
e.g., [9]) to conclude that the spectrum of A consists of countably many
eigenvalues, which we will call µ0, µ1, . . ., whose corresponding eigenspaces
have finite dimension, plus possibly the point 1. The only possible accumu-
lation point of the eigenvalues of A is 1. The operator A is a bit unusual,
and a major point of this paper is that we may learn about the spectrum of
A by dealing with a related eigenvalue problem for a differential operator.
Let L : H1(Σ) → H−1(Σ) be given by

L(ψ) = −∆ψ − |S|2ψ(2.21)

where ∆ is the Laplace-Beltrami operator on Σ. We consider the eigenvalue
problem given by

L(ψ) = λψ(2.22)

on Σ, with

b(ψ) ≡ ψ1 + ρψ = 0(2.23)

on ∂Σ, where ψ1 is the outward normal derivative of ψ. The reason that L
is related to A is that applying Green’s formula ([3]) to (2.20) yields

〈ϕ,Aψ〉 =
∫∫

Σ
ϕL(ψ) dΣ +

∮
∂Σ
ϕb(ψ) dσ.(2.24)

The point of working with (2.22), (2.23) is that eigenvalue problems for par-
tial differential equations are well studied (see e.g., [4]). The spectrum for
this problem is discrete, with λ0 < λ1 ≤ λ2 ≤ · · ·, λn → ∞ as n → ∞,
and the eigenfunctions {ϕi} of (2.22), (2.23) may be normalized to form an
orthonormal basis of L2(Σ). As in [17], we are interested in the relation-
ship between the negative eigenvalues of the problem (2.22), (2.23) and the
negative eigenvalues of A.

Lemma 2.8. The eigenvalue problem (2.22), (2.23) and the operator A
have the same number of negative and non-positive eigenvalues (counting
multiplicity).

Proof. The proof is the same as Lemma 2.5 of [19]. �
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Because of the relationship between the spectrum of the operator A (i.e.,
µ0, µ1, . . .) and that of the eigenvalue problem (2.22), (2.23) (i.e., λ0, λ1,
. . .), we may attempt to determine if a capillary surface is a strict local
minimum for energy by studying the latter problem.

Theorem 2.2. Suppose that Σ is a (zero gravity) capillary surface (i.e.,
that the mean curvature of Σ is constant, and that the contact angle with a
given fixed surface Λ is constant). Suppose that the contact angle γ is strictly
between 0 and π. Let λ0 < λ1 ≤ λ2 ≤ · · · be the spectrum of the eigenvalue
problem (2.22), (2.23) on Σ. There are several cases.

1) If 0 < λ0 then o is a constrained strict local minimum for energy in
C1(Σ), so that Σ has strictly less energy than nearby surfaces which
are graphs of smooth functions in curvilinear coordinates.

2) If λ1 < 0 then o is a saddle point for energy and Σ is not a local
minimum for energy.

3) If λ0 < 0 < λ1, let ζ solve Aζ = 1. (This equation has a solution,
since A is invertible.) Then
a) if

∫∫
Σ ζ < 0 then o is a constrained strict local minimum for energy

in C1(Σ) and Σ is an energy minimum in the same sense as case
1.

b) if
∫∫

Σ ζ > 0 then o is a saddle point for energy and Σ is not a local
minimum for energy.

4) If 0 = λ0 and if
∫∫

Σ ϕ0 6= 0 (where ϕ0 is the eigenfunction (for (2.22),
(2.23) corresponding to λ0)) then o is a strict local minimum for en-
ergy, and Σ is an energy minimum as in case 1.

Proof.

1) It follows from Lemma 2.8 that σ(A) (the spectrum of A) is contained
in (0,∞). Since the only cluster point of σ(A) is 1, this implies that
σ(A) ⊆ [µ0,∞) ⊆ (0,∞), where µ0 > 0 is the smallest eigenvalue of
A. From this we have that

µ0‖ϕ‖2
1 ≤M(ϕ,ϕ)

for all ϕ ∈ H1(Σ) which is more than enough for Theorem 2.1 to imply
the desired result.

2) It is easy to verify that some non-trivial linear combination of ϕ0 and
ϕ1 will satisfy ∫∫

Σ
c0ϕ0 + c1ϕ1 dΣ = 0.
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Then

M(c0ϕ0 + c1ϕ1, c0ϕ0 + c1ϕ1) = 〈c0ϕ0 + c1ϕ1, A(c0ϕ0 + c1ϕ1)〉

=
∫∫

Σ
(c0ϕ0 + c1ϕ1)L(c0ϕ0 + c1ϕ1) dΣ

+
∮

∂Σ
(c0ϕ0 + c1ϕ1)b(c0ϕ0 + c1ϕ1) dσ

= λ0c
2
0 + λ1c

2
1 < 0

and the result follows from Lemma 2.6.
3) a) (Note that

∫∫
Σ ζ dΣ = 〈ζ, Aζ〉.) The proof is essentially the same

as Theorem 2 of [17], although I will outline it since the notation
is different. For more details, please refer to [17].
Take any ϕ which satisfies

∫∫
Σ ϕdΣ = 0. There is an α so that

ϕ = v + αζ

where 〈v, ψ0〉 = 0. (To show that such an α exists, it suffices to
show that 〈ζ, ψ0〉 6= 0. But if this inner product were zero, it would
follow that 〈ζ, Aζ〉 =

∫∫
Σ ζ dΣ > 0, contrary to the assumption of

this case.)
Then, as in [17],

0 =
∫∫

Σ
ϕdΣ = 〈ϕ,Aζ〉 = 〈v,Aζ〉+ α 〈ζ, Aζ〉

implies that

〈ϕ,Aϕ〉 = 〈v,Av〉 − α2 〈ζ, Aζ〉 ≥ 〈v,Av〉 ≥ µ1‖v‖2
1.

One can verify that ‖v‖1 ≥ k‖ϕ‖1 for some positive constant k.
Thus the hypothesis of Theorem 2.1 is met, and o is a strict local
minimum.

b) In this case, if

c =
−
∫∫

Σ ψ0 dΣ∫∫
Σ ζ dΣ

then
∫∫

Σ ψ0+cζ dΣ = 0. We will show thatM(ψ0+cζ, ψ0+cζ) < 0.
Note first that

∫∫
Σ ψ0 + cζ dΣ = 0 is the same as

〈ψ0 + cζ,Aζ〉 = 0

so that

〈ψ0, Aζ〉 = −c 〈ζ, Aζ〉 = −c
∫∫

Σ
ζ dΣ.(2.25)
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Using (2.25),

〈ψ0 + cζ,A(ψ0 + cζ)〉 = 〈ψ0, Aψ0〉 − c2
∫∫

Σ
ζ dΣ

= µ0‖ψ0‖2
1 − c2

∫∫
Σ
ζ dΣ < 0

which implies that the origin is not a local energy minimum, by
Lemma 2.6.

4) Note that if L(ϕ0) = 0 on Σ, b(ϕ0) = 0 on ∂Σ, then Aϕ0 = 0, so that
in the special case of λ0 = 0, ϕ0 is an eigenfunction for both eigenvalue
problems.

We need to verify the hypothesis of Theorem 2.1. Take a function
ϕ ∈ H1(Σ) with

∫∫
Σ ϕdΣ = 0. Projecting onto ϕ0, we may write ϕ

as cϕ0 + y, where 〈ϕ0, y〉 = 0. Then

〈ϕ,Aϕ〉 = 〈cϕ0 + y,Ay〉 = 〈y,Ay〉 ≥ µ1‖y‖2
1,

the last inequality following since y is orthogonal to ϕ0. We now have
to compare ‖ϕ‖1 and ‖y‖1. Applying Lemma 2.3 of [18], there is a
positive δ, independent of ϕ, so that ‖y‖ > δ‖ϕ‖. Therefore,

〈ϕ,Aϕ〉 ≥ µ1δ
2‖ϕ‖2

for all ϕ with
∫∫

Σ ϕdΣ = 0, so that the result follows from Theo-
rem 2.1.

�

The following observation may make finding the function ζ in the previous
theorem a bit easier.

Note 2.1. For ζ ∈ H1(Σ), the following two conditions are equivalent:
1) Aζ = 1.
2) L(ζ) = 1 in Σ and b(ζ) = 0 on ∂Σ.

Proof. This follows from Equation (2.24). �

3. Curvilinear coordinates: existence and interpretation.

The hypotheses of Theorem 2.2 do not refer explicitly to the curvilinear
coordinate system ~x(p, w), and I don’t anticipate that such a coordinate
system will be constructed when this theorem is applied. There are two
questions which naturally arise, however. The first is whether such a co-
ordinate system will exist in a given capillary problem, and the second is
to understand the stability promised by Theorem 2.2 in the absence of a
specific coordinate system.

Starting with the first question, we will outline two situations in which
a curvilinear coordinate system of the type required for Theorem 2.2 will
exist.
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Proposition 3.1. Suppose that Σ and Λ are smooth surfaces, that Σ is
compactly contained in a slightly larger smooth surface, and that the angle
of contact γ is strictly between 0 and π. Then a curvilinear coordinate system
as described in Section 2 exists.

Proof. Since Σ and Λ intersect transversely, ∂Σ will be a smooth curve. Let
~T be a smooth vector field defined on the closure of Σ which is tangent to Σ,
normal to ∂Σ, of unit length on ∂Σ, and vanishing outside of a neighborhood
of ∂Σ. For p ∈ ∂Σ and each w sufficiently small, there is a smooth function
t(p, w) so that p+w ~N + t(p, w)~T lies on Λ. We have that t(p, 0) = 0 for all
p ∈ ∂Σ. We may extend t smoothly to all of Σ× (−ε, ε) so that t(p, 0) = 0
for all p ∈ Σ.

Define ~x(p, w) by

~x = p+ w ~N(p) + t(p, w)~T (p),

where ~N is the unit normal to Σ. It is not hard to show that this is a
curvilinear coordinate system of the desired form. �

There is a somewhat less explicit way of finding a curvilinear coordinate
system which will apply in more generality than Proposition 3.1. It depends
on the existence of a vector field ~F (x, y, z) which is transverse to Σ and
tangent to Λ. This will apply to some capillary problems in which the fixed
surface Λ is piecewise smooth.

Lemma 3.1. Suppose that Λ is the union of Λ1, · · ·, Λm, where each Λj is
smooth and smoothly extendible (as Σ is in Proposition 3.1). Suppose that
if Λi ∩ Λj 6= ∅ then Λi intersects Λj transversely, and if the curve Λi ∩ Λj

intersects Σ then that intersection is also transverse. Then there exists a
smooth vector field ~F (x, y, z) defined in a neighborhood of Σ which is tangent
to Λ and transverse to Σ.

Proof. Let ~N and ~Ni be normal vector fields to Σ and the Λi’s respectively.
These extend smoothly into R3. In a neighborhood of Λi ∩Λj , ~Ni × ~Nj will
be transverse to Σ. Put such neighborhoods around all intersection curves
in Λ. Looking at the part of each Λi outside of these neighborhoods, it is
easy to construct a vector field tangent to Λi and transverse to Σ (in fact
( ~N × ~Ni)× ~Ni will work). Finally, away from Λ, we can take ~N itself as the
transverse vector field. These may now be pieced together using a partition
of unity. As this is routine, details are omitted. �

When such a vector field ~F exists, we may use it to construct a curvilinear
coordinate system as needed in the previous section.

Proposition 3.2. Suppose that a smooth vector field ~F exists which is
transverse to Σ and tangent to Λ. Then there exists a curvilinear coordinate
system as described in Section 2.
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Proof. For each p ∈ Σ, define ~x(p, w) to be the function of w which solves
the ordinary differential equation

d

dw
~x(p, w) = ~F (~x(p, w))

with initial condition

~x(p, 0) = p.

Here we are considering p as a parameter in the ODE. Since solutions to
ODE’s depend smoothly on their parameters, it is not difficult to verify
that this will be a curvilinear coordinate system in a neighborhood of Σ, as
desired. �

If we do not have an explicit curvilinear coordinate system, it’s natural
to wonder what the result of Theorem 2.2 means if o is an energy minimum.
Clearly there are surfaces which are arbitrarily close to Σ which can’t be
written as ~x(p, ϕ(p)) for any function ϕ defined on Σ. In other words, there
are functions ~ξ(p) defined on Σ which are uniformly small, but for which
the perturbed surface p+ ~ξ(p) can’t be written as ~x(p, ϕ(p)). However, if we
restrict ∇~ξ as well, it turns out that we will be able to write the perturbed
surface as ~x(p, ϕ(p)), where ϕ and ∇ϕ are uniformly small. Of course, this
statement needs some proof.

Lemma 3.2. There exists an ε > 0 so that if |~ξ| < ε and |∇~ξ| < ε uniformly
on Σ, then ~Nξ · ~xw 6= 0. Here ~Nξ is the normal to the perturbed surface
p+ ~ξ(p).

Proof. Consider a coordinate patch on Σ, p(u, v). This induces the natural
coordinate patch on Σξ given by p(u, v)+~ξ(p(u, v)). The result follows from
writing out the normal explicitly. �

Lemma 3.3. If ~ξ satisfies the conditions of Lemma 3.2, then Σξ is locally a
smooth graph in curvilinear coordinates. In other words, given any p∗ ∈ Σξ,
there is a neighborhood of p∗ in which Σξ is the set of points ~x(p, ϕ(p)) for
some differentiable function ϕ defined on Σ. Moreover, |ϕ| and |∇ϕ| may
be bounded in terms of |~ξ| and |∇~ξ|, with the first two quantities going to
zero as the latter two quantities go to zero.

Proof. If we have a smooth surface in the region of curvilinear coordinates
given by ~s(a, b) with a and b as parameters, the condition that the equation
~s(a, b) = ~x(p(u, v), w) determines w implicitly as a differentiable function of
u and v is precisely that ~sa, ~sb and ~xw are linearly independent, i.e., that
~xw is not in the tangent space to the surface. (This statement uses the
assumption that ~x(p(u, v), w) is a smooth invertible map from R3 to R3.)
The linear independence holds if ~xw is not orthogonal to the normal to the
surface. The first part of the result now follows from the previous lemma.
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The bound for |ϕ| can be obtained by continuity, since if ~ξ is identically
zero, so is ϕ. A bound for |∇ϕ| may be obtained by writing this gradient
out explicitly using the implicit function theorem, although we will omit the
details. �

The above lemma is not quite what we want, however, since the implicit
function theorem is a local result. We need to show that there is a single
function ϕ so that Σξ may be written as ~x(p, ϕ(p)), i.e., we need to extend
the local statement of Lemma 3.3 to a global statement. To this end, we
define a function n(p) on Σ to be the number of points p∗ so that there exists
a w with ~x(p, w) = p∗ + ~ξ(p∗). Σξ is a graph in curvilinear coordinates if
and only if n(p) is identically 1 on Σ.

Lemma 3.4. If ~ξ satisfies the hypotheses of Lemma 3.2 then n(p) is con-
tinuous on Σ, and therefore constant on connected components of Σ.

Proof. Suppose n(p) = k, and let q∗1, · · ·, q∗k be the corresponding k points
on Σ. From Lemma 3.3, there are k neighborhoods Ωk on Σξ of the points
q∗j + ~ξ(q∗j ) in which Σξ is a graph over a neighborhood of p. Take the
intersection of the preimages of these neighborhoods to see that n(p) is at
least k in a neighborhood of p. Thus n(p) is lower-semicontinuous on Σ.
Now suppose (by way of contradiction) that there is a sequence pi of points
of Σ approaching p so that n(pi) > k for all i. For each point pi there is a
point p∗i in none of the neighborhoods Ωk for which

p∗i + ~ξ(p∗i ) = ~x(pi, wi)(3.1)

for some wi. By a compactness argument, we may take subsequences so that
p∗i → p∗ ∈ Σ and wi → w ∈ [−ε, ε]. Taking the limit in (3.1) we find that
p∗ + ~ξ(p∗) = ~x(p, w). This is a contradiction, since p∗ cannot equal any of
the points q∗1, · · ·, q∗k. Thus n(p) is continuous. �

Theorem 3.1. There exists an ε > 0 so that for any ~ξ defined on Σ with
|~ξ| < ε and |∇~ξ| < ε, the surface Σξ may be written as the graph of a
differentiable function in curvilinear coordinates. (By “the surface Σξ”, we
mean the set of points p+ ~ξ(p), where p ranges over all of Σ.)

Proof. This will follow if it can be shown that for ε sufficiently small, |~ξ| < ε

and |∇~ξ| < ε imply that n(p) = 1 everywhere on Σ. If this is not the case,
then there is a sequence ~ξk with |~ξk| → 0, |∇~ξk| → 0, but nk(p) is not
identically 1 for all k. An area argument shows that this cannot happen.
Since ~ξk and ∇~ξk go uniformly to zero, the area of Σξk

must approach the
area of Σ, since the integrand in the area integrals will converge uniformly.
On the other hand, if nk(p) is not identically 1, the areas of the Σξk

’s cannot
approach any number smaller that the area of Σ plus the area of the smallest
connected component of Σ. This contradiction proves the theorem. �
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To conclude, we will now interpret Theorem 2.2 in light of the above
result, thus yielding a result which does not refer to a specific curvilinear
coordinate system.

Theorem 3.2. If a capillary surface Σ satisfies the criteria in Theorem 2.2
for being a strict local energy minimum in curvilinear coordinates, then Σ
is a strict local minimum for energy subject to the volume constraint in the
following sense. There is an ε > 0 so that for any ~ξ defined on Σ with
|~ξ| < ε, |∇~ξ| < ε, and Σξ surrounding the same volume as Σ, we must have
either that Σξ has a strictly larger energy than Σ or that Σ and Σξ are the
same set of points in R3.

Acknowledgment. I am grateful to the referees for a number of helpful
and insightful comments.
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