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THE Qp CORONA THEOREM
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For p ∈ (0, 1), let Qp be the subspace consisting of Möbius
bounded functions in the Dirichlet-type space. Based on the
study of the multipliers in Qp, we establish the corona theo-
rem for Qp.

Introduction.

Let 4 and ∂4 be the unit disk and circle in the finite complex plane,
respectively. Also let dm and dθ be the Lebesgue measures on 4 and ∂4,
separately. Denote by g(z, w) = log |(1 − wz)/(w − z)| the Green function
of 4. Also denote by A or H∞ the set of analytic or bounded analytic
functions on 4. For p ∈ (−1,∞) suppose that Dp is the Dirichlet-type
space of functions f ∈ A with

‖f‖Dp = |f(0)|+
[∫∫

4
|f ′(z)|2(1− |z|)pdm(z)

] 1
2

< ∞.

We are interested in the space of Möbius bounded functions in Dp. For
our purpose, we write Qp as this space. Indeed, Qp is a Banach space of
functions f ∈ Dp with the norm

‖f‖Qp = |f(0)|+ sup
w∈4

‖f ◦ φw − f(w)‖Dp < ∞,

where φw(z) = (w − z)/(1 − wz). From [AuLaXiZh], [AuStXi] and
[AuXiZh] it follows that Qp is equal to the space of functions f ∈ Dp

satisfying

sup
w∈4

∫∫
4
|f ′(z)|2[g(z, w)]pdm(z) < ∞.

To better understand Qp, we would like to remind the reader of some
known facts.

a) p ∈ (1,∞). Dp is the Bergman space B2
p−2 with weight (1 − |z|)p−2

[Steg2]. Qp is the Bloch space B. Here B is actually composed by functions
f ∈ A obeying

sup
z∈4

(1− |z|)|f ′(z)| < ∞.

See [AuLa] for p > 1 and in particular [Xi] for p = 2.
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b) p = 1. Dp is the classical Hardy space H2 and

Qp = BMOA = BMO(∂4) ∩H2.

BMO(∂4) is the usual space of functions f ∈ L2
loc(∂4) with bounded mean

oscillation on ∂4, namely,

sup
I⊂∂4

|I|−1

∫
I
|f(eiθ)− fI |2dθ < ∞,

where the supremum is taken over all subarcs I ⊂ ∂4 of the arc length |I|
and

fI = |I|−1

∫
I
f(eiθ)dθ.

See either [Ba] or [Ga, Chapter VI].
c) p ∈ (0, 1). Dp is the fractional Dirichlet space and Qp = Qp(∂4)∩H2.

Hereafter, Qp(∂4) is the class of functions f ∈ L2
loc(∂4) with

‖f‖Qp(∂4) =
∣∣∣∣∫

∂4
f(eiθ)dθ

∣∣∣∣+ sup
I⊂∂4

[
|I|−p

∫
I

∫
I

|f(eiθ)− f(eiϕ)|2

|eiθ − eiϕ|2−p
dθdϕ

] 1
2

< ∞,

where the supremum, as in b), ranges over all subarcs I ⊂ ∂4 of the arc
length |I|. See [EsXi]. It is not hard to see that Qp(∂4) strictly increases
(in p) to BMO(∂4), and so does Qp at most up to BMOA [AuXiZh].

d) p = 0. Dp becomes the classical Dirichlet space D. In this case, Qp is
defined as D.

e) p ∈ (−1, 0). Dp is the fractional Dirichlet space (with negative expo-
nent), certainly a subspace of D ∩H∞, but Qp contains complex constants
only [NiXi].

From the above examples it is seen that the space Qp, 0 < p < 1 is of
independent interest. In this paper, we concentrate on the corona problem
for Qp, 0 < p < 1. Generally speaking, as to Qp, 0 ≤ p < ∞, the corona
problem can be formulated as following:

The Qp, p ∈ [0,∞) Corona Problem. Given functions f1, f2, . . . , fn ∈
Qp. What are necessary and sufficient conditions on these functions such
that for any function g ∈ Qp there exist functions g1, g2, . . . , gn ∈ Qp to
ensure the identity f1g1 + f2g2 + · · ·+ fngn = g?

To the best of our knowledge, this problem has been answered respectively
by J.M. Ortega and J. Fàbrega [OrFa1] in the case p > 1, V.A. Tolokonnikov
[To] in the case p = 1 (for another proof, see [OrFa2]) and A. Nicolau [Ni] in
the case p = 0. So, a natural question comes up: How is the case 0 < p < 1?
Here we say that this problem has also a complete answer in the last case.
More precisely, we have:
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The Qp, p∈(0, 1) Corona Theorem. Let p∈(0, 1) and let f1, f2, . . . , fn∈
Qp. Then the corona problem is solvable in Qp if and only if f1, f2, . . . , fn

are multipliers of Qp and satisfy the condition infz∈4
∑n

k=1 |fk(z)| > 0.

The major tool used in arguing this theorem is a modified (p-) Carleson
measure used in the study of the Qp spaces combined with T. Wolff’s proof
(cf. [Ga, pp. 325-327]) of L. Carleson’s corona theorem [Ca]. In Sections 1
and 2, we develop a full discussion on the multipliers of Qp which is necessary
for the corona problem. In Section 3, based on our results of the previous
two sections, we reformulate and show the Qp corona theorem by considering
the surjective property of multiplication operator acting on n-copies of Qp.
There ∂-estimates will be adapted sufficiently.

Throughout this paper, the letters C,Cp, C1, C2, . . . and so on, stand for
positive different constants which are independent of all points z, w, ζ ∈ 4
and all subarcs I ⊂ ∂4 without a particular remark.

1. Multipliers of Qp, p ∈ (0,∞).

This section focuses our attention on determining the multipliers of Qp,
p ∈ (0,∞).

In what is going on, for a given Banach space X, denote by M(X) the
set of multipliers of X, i.e.,

M(X) = {f ∈ X : Mfg = fg ∈ X whenever g ∈ X}.

For Dp, p ∈ (0, 1), D. Stegenga used the strong capacity inequality due to
V.G. Mazya and D.R. Adams to generalize the classical Carleson measure
from H2 to Dp and hence to characterize M(Dp) [Steg2]. Unfortunately,
we are at least now unable to give a similar description of the Carleson-type
measure on Qp (cf. [ArFiPe]) and so unable to directly follow Stegenga’s
method in order to describe M(Qp). But, observing that Qp behaves like
BMOA and B, so we may borrow some ideas from [Steg1], [OrFa1] and
[BrSh] to reveal what M(Qp) is for each p ∈ (0, 1) and even for each
p ∈ [1,∞). To this end, we here introduce a modified Carleson measure in
terms of the geometric concept.

For p ∈ (0,∞) we say that a complex Borel measure µ given on 4 is a
p-Carleson measure provided

(1.1) ‖µ‖p = sup
I⊂∂4

|µ|(S(I))
|I|p

< ∞,

where the supremum is taken over all subarcs I ⊂ ∂4. From now on,
suppose that |I| stands for the normalized arc length of I, i.e., |I| ≤ 1, and
that S(I) means the Carleson square based on I. When p = 1, we get the
standard definition of the original Carleson measure. As in [Ga, p. 239],
any positive p-Carleson measure has an integral representation.
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Lemma 1.1 (ASX). Let p ∈ (0,∞) and let µ be a positive Borel measure
on 4. Then µ is a p-Carleson measure if and only if

sup
w∈4

∫∫
4

(
1− |w|
|1− wz|2

)p

dµ(z) < ∞.

Proof. See Lemma 2.1 in [AuStXi]. �

This lemma supplies a geometric way to characterize Qp-functions.

Theorem 1.2 (ASX). Let p ∈ (0,∞) and f ∈ A with

dµf,p(z) = |f ′(z)|2(1− |z|)pdm(z).

Then f ∈ Qp if and only if µf,p is a p-Carleson measure.

Proof. See Theorem 1.1 in [AuStXi]. �

Regarding the multipliers of Qp we have:

Theorem 1.3. Let p ∈ (0,∞). Then:
(i) f ∈M(Qp) implies that f ∈ H∞ and

(1.2)
∫∫

S(I)
|f ′(z)|2(1− |z|)pdm(z) ≤ C|I|p

log2 2
|I|

for all Carleson squares S(I).
(ii) f ∈ M(Qp) if f ∈ H∞ and |f ′(z)|2(1 − |z|)p log2(1 − |z|)dm(z) is a

p-Carleson measure.

Proof. Step 1: (i). Assume that f ∈ M(Qp) holds. Since Qp is a subspace
of B, any function g ∈ Qp has the following growth

(1.3) |g(z)| ≤ C log
2

1− |z|
, z ∈ 4.

Observe that for a fixed w ∈ 4, the function gw(z) = log 2
1−w̄z belongs to

Qp with supw∈4 ‖gw‖Qp ≤ Cp (owing to both Theorem 5.4 in [EsXi] and
Corollary 2.2 in [AuStXi]). By (1.3) we have

|f(z)gw(z)| ≤ C log
2

1− |z|
, z ∈ 4,

which shows f ∈ H∞.
Concerning (1.2), we argue as follows. Because f ∈ M(Qp), it follows

from Theorem 1.2 (ASX) that for any Carleson square S(I),∫∫
S(I)

|(fgw)′(z)|2(1− |z|)pdm(z) ≤ C|I|p,

and so that by f ∈ H∞,∫∫
S(I)

|f ′(z)|2|gw(z)|2(1− |z|)pdm(z) ≤ C|I|p.
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Note that if w = (1− |I|)eiθ and eiθ is taken as the center of I then for all
z ∈ S(I),

1
C

log
2
|I|

≤ |gw(z)| ≤ C log
2
|I|

.

Whence (1.2) is forced to come out.
Step 2: (ii). Assume that f meets the hypotheses of (ii). Since all g ∈ Qp

always obey (1.3), with the help of Theorem 1.2 (ASX) we read that for any
subarc I ⊂ ∂4,∫∫

S(I)
|(fg)′(z)|2(1− |z|)pdm(z)

≤ C

∫∫
S(I)

|f ′(z)|2(1− |z|)p log2(1− |z|)dm(z)

+ C

∫∫
S(I)

|g′(z)|2(1− |z|)pdm(z)

≤ C|I|p.

In other words, fg ∈ Qp, i.e., f ∈M(Qp). The proof is complete. �

Denote by Mb(Qp) the set of functions f ∈ H∞ satisfying (1.2). Then
M(Qp) ⊂Mb(Qp). Moreover, we have:

Corollary 1.4. Let p ∈ [1,∞). Then M(Qp) = Mb(Qp).

Proof. This corollary says that f ∈M(Qp) if and only if f ∈ H∞ and (1.2)
holds for any Carleson square S(I). Since the case p = 1 is essentially known
[OrFa1], we only need to check the case p > 1. In fact, from Theorem 1.3
(ii) it yields that we suffice to show a proposition: If f ∈ M(Qp) then
|f ′(z)|2(1− |z|)p log2(1− |z|)dm(z) is a p-Carleson measure. To the end, for
a given subarc I of ∂4 let Dn(I) represent the set of 2n subarcs of length
2−n|I| obtained by n successive bipartition of I. For each J ∈ Dn(I) write
T (J) for the top half Carleson box of S(J), i.e.,

T (J) =
{

z ∈ S(J) :
z

|z|
∈ J, 1− |J | < |z| < 1− |J |

2

}
.

Then

S(I) =
∞⋃

n=0

⋃
J∈Dn(I)

T (J).



496 JIE XIAO

Thus, by Theorem 1.3 (i),∫∫
S(I)

|f ′(z)|2(1− |z|)p log2(1− |z|)dm(z)

=
∞∑

n=0

∑
J∈Dn(I)

∫∫
T (J)

|f ′(z)|2(1− |z|)p log2(1− |z|)dm(z)

≤
∞∑

n=0

∑
J∈Dn(I)

log2 2
|J |

∫∫
T (J)

|f ′(z)|2(1− |z|)pdm(z)

≤ C
∞∑

n=0

∑
J∈Dn(I)

(
log2 2

|J |

)(
|J |p

log2 2
|J |

)

≤ C
∞∑

n=0

|I|p2(1−p)n

≤ C|I|p.
This just reaches our aim. �

This corollary actually provides a new characterization for the multiplier
space of the Bloch space (cf. [BrSh, Zhu1]). Its proof is partially inspired
by [Ja]. Observe that the above demonstration does not work for the case
p ∈ (0, 1). However, we hope the similar result is true. Therefore we pose:

Conjecture 1.5. Let p ∈ (0, 1). Then M(Qp) = Mb(Qp).

Remark 1.6. In the same method as arguing Lemma 1.1 (ASX) (cf. Lem-
ma 2.1 in [AuStXi]), we can prove that for a positive Borel measure µ on
4 and p ∈ (0,∞), µ(S(I)) = O(|I|p log−2 2

|I|) if and only if

sup
w∈4

log2(1− |w|)
∫∫

4

(
1− |w|
|1− wz|2

)p

dµ(z) < ∞.

Consequently, (1.2) is equivalent to

sup
w∈4

log2(1− |w|)
∫∫

4
|f ′(z)|2[1− |φw(z)|]pdm(z) < ∞.

2. Boundary behaviour of M(Qp), p ∈ (0, 1).

From a viewpoint of the boundary behaviour, this section continues the
discussion about the space M(Qp), p ∈ (0, 1).

D. Stegenga’s characterization on M(BMO(∂4)) was first made
by a logarithmic BMO-function on ∂4. Later his result was extended
to M(BMOA). In contrast with M(BMOA), some basic properties of
M(Qp), p ∈ (0, 1) have been worked out in advance. So it is hoped that
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Stegenga’s description on M(BMO(∂4)) can be carried to M(Qp(∂4))
and even to M(Qp), p ∈ (0, 1) because Qp possesses its own boundary be-
haviour, but also because the proof of the Qp corona theorem wants the
boundary behaviour. To this end, we quote a theorem from [NiXi].

Theorem 2.1 (NX). Let p ∈ (0, 1) and f ∈ L2
loc(∂4) with

dµf̂ ,p(z) = |∇f̂(z)|2(1− |z|)pdm(z).

Then f ∈ Qp(∂4) if and only if µf̂ ,p is a p-Carleson measure. Hereafter ∇
means the gradient operator and f̂ Poisson’s extension of f .

Proof. See Theorem 2.1 in [NiXi]. �

In addition, we cite a lemma of D. Stegenga which played an important
role in capturing a boundary behaviour of multipliers from the Hardy space
to the Bergman space [Steg2].

Lemma 2.2 (S). Let I and J be arcs on ∂4 centered at eis0 with |J | ≥ 3|I|
and let f ∈ L1

loc(∂4). For p ∈ (−1, 1), there is a constant Cp independent
of f, I and J such that∫∫

S(I)
|∇f̂ |2(1− |z|2)pdm(z)(2.1)

≤ Cp

{∫
J

∫
J

|f(eis)− f(eit)|2

|eis − eit|2−p
dsdt

+ |I|2+p

(∫
|t|≥|J |/3

|f(ei(t+s0))− fJ |dt/t2

)2}
.

Proof. It follows from taking α = 1−p
2 in Lemma 3.2 of [Steg2]. �

After holding the previous propositions, we can state the main result of
this section.

Theorem 2.3. Let p ∈ (0, 1). Then:
(i) f ∈M(Qp(∂4)) implies that f ∈ L∞(∂4) and

(2.2)
∫∫

S(I)
|∇f̂(z)|2(1− |z|)pdm(z) ≤ C|I|p

log2 2
|I|

for all Carleson squares S(I), equivalently,

(2.3)
∫

I

∫
I

|f(eiθ)− f(eiϕ)|2

|eiθ − eiϕ|2−p
dθdϕ ≤ C|I|p

log2 2
|I|

for all subarcs I ⊂ ∂4.
(ii) f ∈ M(Qp(∂4)) if f ∈ L∞(∂4) and |∇f̂(z)|2(1 − |z|)p log2(1 −

|z|)dm(z) is a p-Carleson measure.
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Proof. A careful reading at the argument of Theorem 1.3 indicates that it
is enough to verify the equivalence between (2.2) and (2.3). Note that the
details of proving f ∈ L∞(∂4) in (i) can be easily given by means of [Zhu1].
First, let (2.2) be true. In this case, we will handle (2.3) using A. Nicolau’s
approach [Ni].

From now on, for m = 1, 2, . . . , denote by mI the subarc of ∂4 with the
same center as I and with the length m|I|. Clearly, there is a constant Cp

depending on p only such that∫
I

∫
I

|f(eis)− f(eit)|2

|eis − eit|2−p
dsdt ≤ Cp

∫ |I|

0

1
t2−p

[∫
2I
|f(ei(θ+t))− f(eiθ)|2dθ

]
dt

for any subarc I with |I| < 1
2 . So, without loss of generality, assume that

I = [0, |I|] with |I| ≤ 1
4 . Then by the Minkowski inequality for integrals,[∫

2I
|f(ei(θ+t))− f(eiθ)|2dθ

] 1
2

≤ 2
∫ 1

1−t

[∫
3I

∣∣∣∂f̂

∂n
(ueis)

∣∣∣2ds

] 1
2

du

+ 2
∫ t

0

[∫
3I

∣∣∣∂f̂

∂θ
((1− t)eis)

∣∣∣2ds

] 1
2

du

= Int1 + Int2,

where ∂f
∂n resp. ∂f

∂θ is the directional derivative of f relative to the radius
resp. the argument.

Making use of Hardy’s inequality [Stei, p. 272], we obtain∫ |I|

0

(Int1)2

t2−p
dt ≤ Cp

∫ |I|

0
tp

[∫
3I

∣∣∣∂f̂

∂n
((1− t)eis)

∣∣∣2ds

]
dt

≤ Cp

∫∫
S(3I)

|∇f̂(z)|2(1− |z|)pdm(z).

Meanwhile, Int2 obeys∫ |I|

0

(Int2)2

t2−p
dt ≤ Cp

∫ |I|

0
tp

[∫
3I

∣∣∣∂f̂

∂θ
(reis)

∣∣∣2ds

]
dt

≤ Cp

∫∫
S(3I)

|∇f̂(z)|2(1− |z|)pdm(z).

Putting these inequalities in order, we see that (2.3) is valid.
Second, (2.3) ⇒ (2.2). Since |eiθ − eiϕ| ≤ |I| for eiθ, eiϕ ∈ I, (2.3) induces∫

I

∫
I
|f(eiθ)− f(eiϕ)|2dθdϕ ≤ C|I|2

log2 2
|I|

,
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consequently,

(2.4)
1
|I|

∫
I
|f(eiθ)− fI |dθ ≤ C

log 2
|I|

.

For the sake of simplicity, let J = 3I and s0 = 0 in Lemma 2.2 (S). Then
we have ∫

|t|≥|J |/3
|f(t)− fJ |dt/t2

≤
∞∑

k=0

∫
3k−1|J |≤|t|≤3k|J |

|f(t)− fJ |dt/t2

≤ C

∞∑
k=0

(3k|J |)−2

∫
|t|≤3k|J |

|f(t)− f3k+1I |dt

+ C

∞∑
k=0

(3k|J |)−1|f3k+1I − fJ |

= Int1 + Int2.

To control Int1 and Int2 we may suppose that 3−(N+1) ≤ |I| < 3−N for
some positive integer N . At the moment, |I| log 3

|I| ≈ N3−N . Hereafter
a ≈ b means that there are two absolute constants C1 and C2 to insure
C1a ≤ b ≤ C2a. As a consequence of (2.4), we get

Int1 ≤ C
∞∑

k=0

1
(3k|I|) log 3

3(k+1)|I|

≤ C

∞∑
k=0

1
(3k−N )(N + 1− k)

≤ C3N

N

≤ C

|I| log 3
|I|

,

which results from

N + 1
N + 1− k

≤ 31+ 3k
4 , k = 0, 1, 2, . . . N.
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As to Int2, we use the preceding idea of bounding Int1 as well as an
elementary estimate involved in Lemma 1.1 of [Ga, Chapter VI] to obtain

Int2 ≤ C
∞∑

k=0

k + 1
(3k|I|) log 3

3(k+1)|I|

≤ C

|I| log 3
|I|

.

Combining those inequalities above, we immediately see∫
|t|≥|J |/3

|f(t)− fJ |dt/t2 ≤ C

|I| log 3
|I|

.

Finally, (2.1) and (2.3) imply (2.2). Now, the proof is complete. �

As a matter of fact, a boundary behaviour of M(Qp), p ∈ (0, 1) is built
up.

Corollary 2.4. Let p ∈ (0, 1) Then f ∈ M(Qp) only if f ∈ H∞ and (2.3)
holds for any subarc I ⊂ ∂4.

Proof. In this case, Qp = Qp(∂4)∩H2, so this corollary yields from Theorem
2.3 (i). �

Upon definingMb(Qp(∂4)) as the set of functions f ∈ L∞(∂4) satisfying
(2.3), we have M(Qp(∂4)) ⊂Mb(Qp(∂4)), and hence we raise:

Conjecture 2.5. Let p ∈ (0, 1). Then M(Qp(∂4)) = Mb(Qp(∂4)).

Remark 2.6. Modifying the proof of Theorem 2.1 in [NiXi] will show that
under the restriction p ∈ (0, 1), (2.3) is equivalent to

sup
w∈4

log2(1− |w|)
∫

∂4

∫
∂4

|f(eiθ)− f(eiϕ)|2

|eiθ − eiϕ|2−p

(
1− |w|

|eiθ − w||eiϕ − w|

)p

dθdϕ

< ∞.

It is worth comparing this result with Theorem 2.9 in [OrFa2].

3. Proof of the Qp, p ∈ (0, 1) corona theorem.

In this section, we present a proof of the Qp, p ∈ (0, 1) corona theorem.
Moreover, we assert that Carleson’s H∞ corona theorem can be extended
to Mb(Qp), p ∈ (0, 1).

We start with introducing some auxiliary notation. For a natural number
n let (f1, f2, . . . , fn) ∈ A×A×· · ·×A. Define a linear operator on A×A×
· · · ×A via
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M(f1,f2,... ,fn)(g1, g2, . . . , gn) =
n∑

k=1

fkgk, (g1, g2, . . . , gn) ∈ A×A×· · ·×A.

Also, for z = x + iy define

∂̄ =
1
2

(
∂

∂x
+ i

∂

∂y

)
; ∂ =

1
2

(
∂

∂x
− i

∂

∂y

)
.

Let g be C1 and bounded on 4. Then the inhomogeneous Cauchy-Riemann
equation, i.e., ∂̄-equation

(3.1) ∂̄f = g

has a standard solution

(3.2) f(z) =
1
π

∫∫
4

g(w)
z − w

dm(w)

on4. It is easy to verify that the convolution f defined by (3.2) is continuous
on the finite complex plane and that f is C2 on4. Furthermore, this solution
is employed to verify the Qp, p ∈ (0, 1) corona theorem. In order to be self-
complete, we reformulate the theorem in terms of operator theory.

Theorem 3.1. Let p ∈ (0, 1) and (f1, f2, . . . , fn) ∈ A×A× · · · ×A. Then
the following are equivalent:

(i) M(f1,f2,... ,fn) maps Qp ×Qp × · · · ×Qp onto Qp.
(ii) (f1, f2, . . . , fn) ∈M(Qp)×M(Qp)× · · · ×M(Qp) with

(3.3) σ = inf
z∈4

n∑
k=1

|fk(z)| > 0.

Proof. Step 1. (i) ⇒ (ii). Suppose (i) is true. Evidently, it is enough
to check (3.3). For this, we use the open map theorem to get a uniform
constant C0 such that to g ∈ Qp there correspond g1, g2, . . . , gn ∈ Qp with
‖gk‖Qp ≤ C0‖g‖Qp and

g =
n∑

k=1

fkgk.

Further, by (1.3) and g(z) = log 1−ze−iθ

2 we obtain another uniform constant
C1 to ensure ∣∣∣∣log

1− ze−iθ

2

∣∣∣∣ ≤ C1 log
2

1− |z|

n∑
k=1

|fk(z)|,

which implies (3.3).
Step 2. (ii) ⇒ (i). This direction is more difficult. Let now (ii) hold. We

need only to show that if g ∈ Qp then g ∈M(f1,f2,... ,fn)(Qp×Qp×· · ·×Qp)



502 JIE XIAO

whenever (f1, f2, . . . , fn) ∈M(Qp)×M(Qp)× · · · ×M(Qp) satisfies (3.3).
It is well known that

hk =
f̄k∑n

k=1 |fk|2

is a group of nonanalytic solutions of the equation:
∑n

k=1 fkhk = 1. How-
ever, if we can find functions bj,k (j, k = 1, 2, . . . , n) defined on 4 ∪ ∂4 to
guarantee bj,k ∈ Qp(∂4) and

(3.4) ∂̄bj,k = ghj ∂̄hk

on 4, then

gj = ghj +
n∑

k=1

(bj,k − bk,j)fk

just meet the requirements:
∑n

k=1 fkgk = g and gj ∈ Qp. Note that
ghj ∈ Qp(∂4) can be figured out from the following argument (cf. (3.6)).
Obviously, we require only to prove that ∂̄b = gh (where b = bj,k and
h = hj ∂̄hk) admits Qp(∂4)-solution. After making an elementary calcula-
tion related to (3.3) (cf. [Ga, p. 326]), we reach

(3.5) |h(z)|2 ≤ Cσ

n∑
k=1

|f ′k(z)|2, z ∈ 4,

where Cσ is a constant depending only on σ. Notice that the constants
appeared in this section may rely on n, but not the functions involved in the
argument. It is normal to take (3.2) (in which b and gh substitute for f and
g, respectively) as the desired solution. Certainly, we cannot help checking
whether or not such a function defined by (3.2) belongs to Qp(∂4).

From (3.4), (3.5), g ∈ Qp, fk ∈M(Qp), Theorem 1.2 (ASX) and Theorem
1.3 (i) it yields readily that for any Carleson square S(I),∫∫

S(I)
|∂̄b(z)|2(1− |z|)pdm(z)(3.6)

=
∫∫

S(I)
|g(z)h(z)|2(1− |z|)pdm(z)

≤ Cσ

n∑
k=1

∫∫
S(I)

|g′(z)fk(z)|2(1− |z|)pdm(z)

+ Cσ

n∑
k=1

∫∫
S(I)

|(gfk)′(z)|2(1− |z|)pdm(z)

≤ C|I|p.
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For convenience, write B(f) for the Beurling transform of a function f .
So ∂b = B(gh) and∫∫

S(I)
|∂b(z)|2(1− |z|)pdm(z)

≤ 2
∫∫

S(I)
|B(ghχS(2I))(z)|2(1− |z|)pdm(z)

+ 2
∫∫

S(I)
|B((1− χS(2I))gh)(z)|2(1− |z|)pdm(z)

≤ 4
∫∫

4
|B(ghχS(2I))(z)|2(1− |z|)pdm(z)

+ 4
∫∫

S(I)

[∫∫
4\S(2I)

|g(w)h(w)|
|w − z|2

dm(w)

]2

(1− |z|)pdm(z)

= Int1 + Int2,

where χS(2I) is the characteristic function of S(2I).
Since (1 − |z|)p is an A2-weight for p ∈ (0, 1) (see [CuFr, p. 411]), it

follows from (3.5) and (3.6) that

Int1 ≤ C

∫∫
4
|B(ghχS(2I))(z)|2(1− |z|)pdm(z)

≤ C

∫∫
4
|(ghχS(2I))(z)|2(1− |z|)pdm(z)

≤ C

∫∫
S(2I)

|g(z)h(z)|2(1− |z|)pdm(z)

≤ C|I|p.

Due to fk ∈M(Qp) once again, Theorem 1.3 (i) implies∫∫
S(I)

|f ′k(z)|2(1− |z|)pdm(z) ≤ C|I|p

log2 2
|I|

.

Accordingly, by (3.5), (3.6) and Hölder’s inequality,∫∫
S(I)

|g(z)h(z)|dm(z)

≤ C
n∑

k=1

∫∫
S(I)

|g′(z)fk(z)|dm(z)

+ C
n∑

k=1

∫∫
S(I)

|(gfk)′(z)|dm(z)

≤ C|I|,
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that is to say, |g(z)h(z)|dm(z) is a 1-Carleson measure. This fact is applied
to deduce

Int2

≤ C

∫∫
S(I)

[ ∞∑
k=1

∫∫
S(2k+1I)\S(2kI)

|g(w)h(w)|
|w − z|2

dm(w)

]2

(1− |z|)pdm(z)

≤ C

∫∫
S(I)

[ ∞∑
k=1

1
22k|I|2

∫∫
S(2k+1I)

|g(w)h(w)|dm(w)

]2

(1− |z|)pdm(z)

≤ C|I|p.
The above estimates on Intk, k = 1, 2 tell us that∫∫

S(I)
|∂b(z)|2(1− |z|)pdm(z) ≤ C|I|p,

and so that ∫∫
S(I)

|∇b(z)|2(1− |z|)pdm(z) ≤ C|I|p.

The last inequality gives easily that b lies in Qp(∂4) (refer to the implication
(2.2) ⇒ (2.3)). This completes the proof. �

We close this section with a version of the corona theorem on Mb(Qp).
To do so, we ought to explore Mb(Qp(∂4))-estimates for ∂̄-equation. P.
Jones’ solution [Jo] of the ∂̄-equation is suitable for our purpose.

Lemma 3.2 (J). Let dµ(z) = g(z)dm(z) be a 1-Carleson measure on 4
with ‖µ‖1 = 1. If for z ∈ 4 ∪ ∂4 and ζ ∈ 4,

K(µ, z, ζ)

=
2i

π
· 1− |ζ|2

(1− ζ̄z)(z − ζ)
exp

[∫∫
|w|≥|ζ|

(
1 + wζ

1− wζ
− 1 + wz

1− wz

)
d|µ|(w)

]
then

(3.7) S(µ)(z) =
∫∫

4
K(µ, z, ζ)dµ(ζ)

satisfies S(µ) ∈ L1
loc(4) and ∂̄S(µ) = g. Moreover, if z ∈ ∂4 then the above

integral converges absolutely and obeys∫∫
4
|K(µ, z, ζ)|d|µ|(ζ) ≤ C,

and hence S(µ) ∈ L∞(∂4), where C is a universal constant.

Proof. This lemma follows immediately from Theorem 1 in [Jo] and Caylay’s
transformation of 4 onto the half plane. �
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It is known that Carleson’s corona theorem is available for Mb(Q1) (cf.
[To]). Next assertion illustrates that for p ∈ (0, 1), Mb(Qp) has such a
theorem, too.

Theorem 3.3. Let p ∈ (0, 1) and (f1, f2, . . . , fn) ∈ A×A× · · · ×A. Then
the following are equivalent:

(i) M(f1,f2,... ,fn) maps Mb(Qp)×Mb(Qp)× · · · ×Mb(Qp) onto Mb(Qp).
(ii) (f1, f2, . . . , fn) ∈Mb(Qp)×Mb(Qp)× · · · ×Mb(Qp) with (3.3).

Proof. The implication (i)⇒ (ii) is evident. In fact, replacing Qp byMb(Qp)
and log(1 − e−iθz) by 1 in the argument for (i) ⇒ (ii) in Theorem 3.1 just
arrives at our key point. As to the opposite implication (ii) ⇒ (i), we may
repeat almost whole proof of (ii)⇒ (i) in Theorem 3.1. The unique difference
between two situations is the constructive solution of (3.4). Unlike there,
our present solution should belong to Mb(Qp(∂4)). To this end, we prepare
to take advantage of Lemma 3.2 (J). At the moment, it suffices to show a
fact: If b is given by (3.7) where dµ = hdm(z) = hj ∂̄hkdm(z) and ‖µ‖1 = 1,
then b ∈Mb(Qp(∂4)). It will be done if we can prove that

(3.8)
∫∫

S(I)
|∇b̃(z)|2(1− |z|)pdm(z) ≤ C|I|p

log2 2
|I|

for all Carleson squares S(I), where

b̃(z)

=
2i

π

∫∫
4

1− |ζ|2

|1− ζ̄z|2
exp

[∫∫
|w|≥|ζ|

(
1 + wζ

1− wζ
− 1 + wz

1− wz

)
d|µ|(w)

]
d|µ|(ζ).

This is because zb(z) and b̃(z) possess the same boundary values on ∂4,
but also (3.8) ensures (2.3) to be valid for b̃(z) and so for b(z). Note that
the function

fζ(w) =
(1− |ζ|2)

1
2

1− ζ̄w

is in H2 and its H2-norm is independent of ζ ∈ 4. Since µ is a classical
Carleson measure,

Re

(∫∫
|w|≥|ζ|

1 + wζ

1− wζ
d|µ|(w)

)
≤ 2

∫∫
4

1− |ζ|2

|1− wζ|2
d|µ|(w) ≤ C.

Further, the argument for Lemma 2.1 in [Jo] gives

∫∫
4

1− |zζ|2

|1− ζ̄z|2
exp

[
−
∫∫

|w|≥|ζ|

1− |zw|2

|1− zw|2
d|µ|(w)

]
d|µ|(ζ) ≤ 1.
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Hence ∫∫
S(I)

|∇b̃(z)|2(1− |z|)pdm(z)

≤ C

∫∫
S(I)

[∫∫
4

(1− |z|)
p
2

|1− wz|2
d|µ|(w)

]2

dm(z)

≤ C

∫∫
S(I)

(1− |z|)p

[∫∫
S(2I)

d|µ|(w)
|1− wz|2

]2

dm(z)

+ C

∫∫
S(I)

(1− |z|)p

[∫∫
4\S(2I)

d|µ|(w)
|1− wz|2

]2

dm(z)

= Int1 + Int2.

Define an integral operator by

(Tf)(z) =
∫∫

4
f(w)k(z, w)dm(z),

where

k(z, w) =
(1− |z|)1−p/2(1− |w|)−p/2

|1− wz|2
.

Using Shur’s lemma (see also [Zhu2, p. 42]), we conclude that the op-
erator T is bounded on L2(4, dm). Accordingly, selecting f(z) = (1 −
|z|)

p
2 |h(z)|χS(2I)(z) in Tf implies

Int1 ≤ C

∫∫
4
|Tf(z)|2dm(z)

≤ C

∫∫
S(2I)

|h(z)|2(1− |z|)pdm(z)

≤ C|I|p

log2 2
|I|

.

In the sequel, we will directly estimate Int2 in a standard manner. Ac-
tually, one may assume that |I| ≤ 1

3 and z ∈ S(I). Hölder’s inequality is
employed to establish∫∫

S(Ik+1)\S(Ik)

d|µ|(w)
|1− wz|2

≤ 1
22k|I|2

∫∫
S(2k+1I)

|h(w)|dm(w)

≤ C

2k|I| · log 2
2k|I|

.
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Also, suppose 2−(N+1) ≤ |I| < 2−N for some positive integer N , so
|I| log 2

|I| ≈ N2−N and

Int2 ≤ C

∫∫
S(I)

(1− |z|)p

(
N+1∑
k=1

1
2k|I| · log 2

2k|I|

)2

dm(z)

≤ C|I|2+p

(
N+1∑
k=1

1
2k|I| · log 2

2k|I|

)2

≤ C|I|2+p

[
N+1∑
k=1

1
2k−N (2 + N − k)

]2

≤ C|I|2+p

(
2N

N

)2

≤ C|I|p

log2 2
|I|

.

Here we have used an elementary inequality below
N

N − k
≤ 22+ k

2 , k = 0, 1, 2, . . . , N − 1.

Summing, we just arrive at (3.8). Therefore, the proof is complete. �

Remark 3.4. (i) When p ∈ (0, 1), the difference between Qp-setting and
BMOA-setting is obvious. Concerning the corona theorem, Qp is more
flexible than BMOA. However, as to the multipliers, M(Qp) is harder and
more complicated than M(BMOA) (cf. Sections 1 and 2). Very recently,
our principal result has been generalized to the Qp spaces on strictly pseudo-
convex domains in Cn [AnCa].

(ii) It is still open whether the corona theorem is valid for M(B) =
M(Qp), p ∈ (1,∞).

(iii) It was pointed out in [Ni] and [NiXi] that the corona theorem re-
mains true for the algebra Qp ∩H∞, p ∈ [0, 1).
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spaces, J. Funct. Anal., 150 (1997), 383-425.

[OrFa1] J.M. Ortega and J. Fabrega, The corona type decomposition in some Besov
spaces, Math. Scand., 78 (1996), 93-111.

[OrFa2] , Pointwise multipliers and corona type decompositions in BMOA,
Ann. Inst. Fourier, Grenoble, 46 (1995), 111-137.

[Steg1] D. Stegenga, Bounded Toeplitz operators on H1 and applications of the du-
ality between H1 and the functions of bounded mean oscillation, Amer. J.
Math., 98 (1973), 573-589.

[Steg2] , Multipliers of the Dirichlet space, Ill. J. Math., 24 (1980), 113-138.

[Stei] E. Stein, Singular Integrals and Differentiability Properties of Functions,
Princeton Univ. Press, 1970.

[To] V.A. Tolokonnikov, The corona theorem in algebras of bounded analytic func-
tions, Amer. Math. Soc. Trans., 149 (1991), 61-93.



THE Qp CORONA THEOREM 509

[Xi] J. Xiao, Carleson measure, atomic decomposition and free interpolation from
Bloch space, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 19 (1994), 35-46.

[Zhu1] K. Zhu, Multipliers of BMO in the Bergman metric with applications to
Toeplitz operators, J. Funct. Anal., 87 (1989), 31-50.

[Zhu2] , Operator Theory in Function Spaces, Pure and Applied Math., Mar-
cel Dekker, New York, 1990.

Peking University
Beijing 100871
China
E-mail address: jxiao@sxx0.math.pku.edu.cn

TU-Braunschweig
D-38 106, Braunschweig
Germany

mailto:jxiao@sxx0.math.pku.edu.cn

