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We consider difference equations y(s+1) = A(s)y(s), where
A(s) is an n × n-matrix meromorphic in a neighborhood of
∞ with det A(s) 6≡ 0. In general, the formal fundamental so-
lutions of this equation involve gamma-functions which give
rise to the critical variable s log s and a level 1+. We show
that, under a mild condition, formal fundamental matrices of
the equation can be summed uniquely to analytic fundamental
matrices represented asymptotically by the formal fundamen-
tal solution in appropriate domains.

The method of proof is analogous to a method used to
prove multi-summability of formal solutions of ODE’s. Start-
ing from analytic lifts of the formal fundamental matrix in
half planes, we construct a sequence of increasingly precise
quasi-functions, each of which is determined uniquely by its
predecessor.

1. Introduction.

This paper is concerned with summability of formal solutions of linear ho-
mogeneous difference equations. We consider the system

y(s+ 1) = A(s)y(s),(1.1)

where s is a complex variable, y(s) ∈ Cn, and A(s) an n× n-matrix, mero-
morphic at infinity, detA(s) 6≡ 0. For some p ∈ N Equation (1.1) has a
formal fundamental matrix solution of the form

Ŷ(s) = Ĥ(s)sΛseG(s)sL,(1.2)

with Ĥ(s) ∈ End(n,C[[s−1/p]]), det Ĥ(s) 6≡ 0, Λ =
⊕m

j=1 λj Ij where λj ∈ 1
pZ

and Ij is the nj × nj-identity matrix, G(s) =
⊕m

j=1 gj(s)Ij where gj(s) ≡ 0
or gj(s) is a polynomial in s1/p of degree at most p with gj(0) = 0, and
L =

⊕m
j=1 Lj , Lj = cj Ij + Nj with cj ∈ C and Nj an nj × nj-nilpotent

matrix, and with n1 + n2 + · · ·+ nm = n.
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The purpose of this paper is to sum the entries of Ĥ(s) on certain un-
bounded domains D in order to obtain uniquely characterizable analytic
fundamental matrix solutions

Y(s) = H(s)sΛseG(s)sL, with
H(s) ∼ Ĥ(s), s→∞ on D.

(1.3)

Any solution of (1.1) on D can be written as Y(s)P (s) where P (s) is a
1-periodic Cn-valued function.

If the factor sΛs does not appear in the formal fundamental matrix, i.e.,
if all λj ’s vanish, the formal fundamental matrix resembles that of a homo-
geneous linear differential system. Formal power series solutions of mero-
morphic differential equations can be summed by means of a method known
as multisummation. With such an equation one can associate so-called ‘lev-
els’, positive rational numbers k1, . . . ,kr, and corresponding ‘critical vari-
ables’ sk1 , . . . ,skr , which play a crucial part in the summation process.
Multi-summation is a particular case of accelero-summation (see [Eca87]),
involving only elementary accelerations. There exist various equivalent defi-
nitions of multisummability (see Definition 2). It can be formulated in terms
of Borel and Laplace transforms (cf. [MR91]), or in a more abstract way
(cf. [MR92]). In [Bal94] Balser presented yet another definition. Multi-
summability of solutions of both linear and nonlinear meromorphic differen-
tial equations has been proved both by using Borel-Laplace techniques (see
[Bra91] and [Bra92]) and in a way based on the definition of Malgrange
and Ramis (see [BBRS91], [RS94], [Bal94], [Tov96], and [BIS]).

Two of the most important features that distinguish linear difference
equations from linear differential equations are:

(i) The solution space of a homogeneous linear difference equation is lin-
ear over the 1-periodic functions instead of C-linear as in the case of
homogeneous linear differential equations.

(ii) The occurrence of the factor sΛs, that does not appear in formal solu-
tions of differential equations.

If the factor sΛs does not appear in the formal fundamental matrix, or,
more generally, if all λj ’s are equal, then all entries of Ĥ(s) are multi-
summable in all but at most a countably infinite number of directions. This
was shown in [BF96] by means of Borel-Laplace techniques in the spirit of
the work of Ecalle [Eca85]. With the same techniques multisummability
of formal solutions of a class of non-linear difference equations was proved
there.

If not all λj ’s are equal, some of the entries of Ĥ(s) may not be multi-
summable in any direction. This is due to the fact that, in this case, one of
the critical variables is s log s, which is not a rational power of s.

Following Ecalle (cf. [Eca85]), one might set out to sum the formal so-
lutions by accelero-summation, using Borel and Laplace transforms. For a
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particular class of linear difference equations, accelero-summability of the
formal solutions was established in [Imm]. Ecalle’s method involves the
study of a convolution equation, obtained from the equation satisfied by Ĥ
by means of a formal Borel transformation in the variable s log s, which does
not look very inviting. In the present paper we take a different approach,
similar to the method employed in [BIS] to sum formal solutions of lin-
ear differential equations (cf. Theorem 13). Our starting point is the ‘main
asymptotic existence theorem’ for difference equations (Theorem 6), which
says that Ĥ(s) can be lifted on half planes in C∞, bounded by the real or
imaginary axis, to an analytic matrix H(s) such that (1.3) defines an analytic
fundamental matrix Y(s) of the difference equation. With the equation we
associate certain levels 0 < k1 < · · · < kr = 1, that can be extracted from
the formal fundamental solution, as well as a level 1+ if not all λj ’s are equal
(see Definitions 3 and 5). We choose a covering of a neighbourhood of ∞ in
C∞ by appropriate half planes and, on each half plane a fundamental sys-
tem of (1.1) represented asymptotically by the formal fundamental system
(1.2). In several steps, modifying the solutions by exponentially small func-
tions of increasing order at each subsequent step, we construct a sequence
of so-called kj-precise quasi-functions, j = 1, . . . , r. If the equation does not
possess a level 1+, this procedure yields the multi-sum, or (k1, . . . , kr)-sum
of the formal solution (Theorem 13).

If the equation does possess level 1+, the final step is more delicate than
the preceding ones. This is due to the relative ‘closeness’ of the levels 1 and
1+ and the transcendental nature of the critical variable s log s. In order to
end up with a unique sum, we need to consider domains that are strictly
smaller than half planes, but sufficiently large to exclude the existence of flat
solutions of the difference equation satisfied by Ĥ, with a dominant factor
of the form s(λi−λj)s, with λi 6= λj . Here we shall consider domains of the
type {s ∈ C∞| arg s ∈ ((h − 1)π, (h + 1)π), (−1)h<{s(log s + iθ)} > 1},
with θ ∈ R, h ∈ Z (cf. Figures 2-5). On the union of two such domains with
the same h we can define a sum H(s) of Ĥ(s) if a certain generic condition
is satisfied (cf. Section 7). By means of (1.3) we obtain a unique analytic
fundamental matrix of the difference equation (Theorem 18).

In order to illustrate the particular properties of difference equations with
level 1+, we end this introduction with a simple example.

Example 1. Consider the equation

h(s+ 1)− as−1h(s) = s−1 with a ∈ R, a > 0(1.4)

which can be transformed into the matrix equation(
y1

y2

)
(s+ 1) =

(
a/s 1/s
0 1

) (
y1

y2

)
(s).
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(1.4) belongs to a class of equations that was discussed in [BH75] and in
great detail by Ecalle in [Eca85, §3.6] and later by Immink in [Imm]. It
has a unique formal solution ĥ =

∑
n≥1 hns

−n. Let û(t) :=
∑

n≥1
hn

(n−1)! t
n−1,

the formal Borel transform of ĥ. The power series û formally satisfies the
convolution equation

e−tu(t)− a(1 ∗ u)(t) = 1.

This equation has the unique analytic solution

u(t) = et−aeaet
.

Thus û(t) coincides with the Taylor series at t = 0 of this function and is
actually a convergent power series which extends to a holomorphic function
on C. The convergence of û implies that ĥ is 1-Gevrey. By using Cauchy’s
formula for the coefficients in a convergent Taylor series, one may derive the
more precise estimate

|hn| ≤ K

(
n

log n

)n

An, ∀n ≥ 2, for some K,A > 0.

This type of estimate is typical of difference equations possessing a level 1+

(cf. [Imm88]).
The function u(t) = et−aeaet

is bounded in the left half plane and, conse-
quently, ĥ(s) is 1-summable in all directions in (π

2 ,
3π
2 ). The 1-sum hl(s) is

analytic on the sector 0 < arg s < 2π and is a solution of (1.4).
In the right half plane u(t) grows faster than exponentially of any order

on the horizontal strips {t ∈ C | <t > 0,=t ∈ (−π/2, π/2) mod 2π}, but on
the strips

{t ∈ C | <t > 0,=t ∈ (π/2, 3π/2) mod 2π}
it decreases faster than exponentially of any order. Hence, the functions

hr,n(s) :=
∫

Cn

e−stu(t)dt, n ∈ Z,(1.5)

with Cn a path from 0 to +∞+iθ, θ ∈ (π/2+2nπ, 3π/2+2nπ) (see Figure 1)
are well defined and satisfy (1.4).

O

π/2 + 2nπ

3π/2 + 2nπ

Cn

Figure 1. Contour Cn.
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The functions hr,n all have the asymptotic expansion ĥ as s→∞, −π
2 <

arg s < π
2 , uniformly on closed subsectors (cf. also [BH75]). However, it

can be shown that the hr,n are not 1-sums. See also [vdPS97, Chapter 11].
In order to characterize these solutions by means of their asymptotic

behaviour, we have to consider this asymptotic behaviour on regions other
than sectors, namely regions of the form

D(θ) := {s ∈ C | <{s(log s+ iθ)} > 1}, θ ∈ R,

see Figures 2-5.
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Figure 2. Region D(0).
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Figure 3. Region D(π
2 ).
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Figure 4. Region D(π).

-10 -7.5 -5 -2.5 2.5 5 7.5 10

-10

-7.5

-5

-2.5

2.5

5

7.5

10

Figure 5. The regions ‘rotate’
clockwise with increasing θ.
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Proposition. For any θ ∈ (2nπ, 2(n+ 1)π), there exist K,A > 0 such that∣∣∣∣∣hr,n(s)−
N−1∑
n=1

hns
−n

∣∣∣∣∣ ≤ KAN (N !)|s|−N ,∀s ∈ D(θ), ∀N ∈ N.(1.6)

This proposition has been proved by Borel-Laplace methods in [Fab97].
According to a theorem by Immink in [Imm96], hr,n is uniquely determined
by the above property.

2. Preliminaries.

By Argz we denote the principal argument of z ∈ C\{0}; we take Argz ∈
(−π, π]. The Riemann surface of the logarithm will be denoted by C∞.

For α, β ∈ R we denote by S(α, β) the open sector {s ∈ C∞ | α < arg s <
β}, and by S[α, β] the closed sector {s ∈ C∞ | α ≤ arg s ≤ β}. Similarly,
S[α, β) and S(α, β] denote half-open sectors. For µ ∈ Z we define

Hµ := S((µ− 1)π/2, (µ+ 1)π/2); Hµ := S[(µ− 1)π/2, (µ+ 1)π/2].

Throughout this paper, by an upper half plane, a fourth quadrant, etcetera,
we understand a lift of the upper half plane, the fourth quadrant, etcetera,
from the complex plane to the Riemann surface of the logarithm. A sector
will always be a sector of C∞ with vertex at the origin.

By definition, a neighbourhood of ∞ in a sector S (S not necessarily
open) is an open subset U of S, such that, for any closed subsector S′ of S
with aperture ≤ π, we can find s0 ∈ S such that s0 +S′ ⊂ U . In particular,
Reiµπ/2 + Hµ, µ ∈ Z, R > 0, is a neighbourhood of ∞ both in Hµ and in
Hµ.

If we write f(s) = O(g(s)) or f(s) = o(g(s)) as s→∞ on a sector S, we
mean that f and g are functions defined on a neighbourhood U of ∞ in S,
and that the O or o relation holds uniformly, as s→∞, on the intersection
of U and any closed subsector of S.

Similarly, if f̂(s) =
∑

j≥0 ajs
−j/p where p > 0, and if S is a sector, then

f(s) ∼ f̂(s), s→∞ on S, means the following: f is an analytic function on
a neighbourhood U of ∞ in S and for any closed subsector S′ ⊂ S and any
N ∈ N, we can find positive constants R and CS′,R,N , such that∣∣∣∣∣∣f(s)−

N−1∑
j=0

ajs
−j/p

∣∣∣∣∣∣ ≤ CS′,R,N |s|−N/p,∀s ∈ S′ ∩ U, |s| > R.(2.1)

The set of such functions f with an asymptotic expansion f̂ on S as above
will be denoted by A(S).
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In accordance with the above, when we write f(s) ∼ 0, s→∞ on S, we
mean that f(s) = o(s−N ), s→∞ on S, for any N ∈ N.

Suppose û(s) =
∑m

j=0 ĥj(s)(log s)j with ĥj ∈ C[[s−1/p]] for j = 0, . . . ,m.
If we write u(s) ∼ û(s), s → ∞ on S, we mean that there exist analytic
functions hj , j = 0, . . . ,m, on a neighborhood of ∞ in S such that u(s) =∑m

j=0 hj(s)(log s)j , with hj(s) ∼ ĥj(s), s→∞ on S.
If f ∈ A(S) such that (2.1) holds and if there exist k > 0, andKS′,R, AS′,R

> 0 such that, for each N ,

CS′,R,N ≤ KS′,RA
N
S′,RΓ

(
N
pk

)
,

then we call f a k-Gevrey function on S with respect to the family 1
pN0,

and we write f ∈ A(1/k)(S). Note that 1
pN0 is an example of a ‘convenient

family’, according to the terminology introduced by Malgrange in [Mal95].
Any f ∈ A(1/k)(S) has an asymptotic expansion f̂(s) =

∑∞
j=0 ajs

−j/p

with the aj satisfying

|aj | ≤ KAjΓ
(

j
pk

)
,∀j > 0,

for some positive K and A. Such a formal series f̂ will be called a Gevrey
series (in s−1) of order 1/k with respect to the family 1

pN0, and
C[[s−1/p]] 1

pk
denotes the set of such series.

In the sequel all Gevrey functions and Gevrey series will be with respect
to the family 1

pN0 with p as in (1.2), and we omit the references to this
family in our notations.

A function f defined on a neighbourhood of ∞ in a sector S is exponen-
tially small of order k > 0 on S if for any closed subsector S′ of S there
exists a positive constant c such that f(s) = O(e−c|s|k), s → ∞ on S′. If
this holds for all positive c then f is said to be supra-exponentially small of
order k on S. The set of all analytic functions on a neighbourhood of ∞ in
S which are exponentially or supra-exponentially small of order k on S will
be denoted by A≤−k(S) and A<−k(S) respectively. If S = S(α, β) then we
will also write these latter sets as A≤−k(α, β) and A<−k(α, β). Similarly if
S = S(α, β] etc. If f and g both are in A(1/k)(S), and f and g have the
same asymptotic expansion, then it can be shown that their difference f − g
is in A≤−k(S) (cf. [Mal95]).

Let l > 0 and S be an open sector. Let {Si}i∈I be a covering of S
consisting of open sectors and let f (i) ∈ A(Si), i ∈ I, such that f (i1)−f (i2) ∈
A≤−l(Si1 ∩ Si2) for any i1, i2 ∈ I with Si1 ∩ Si2 6= ∅. These data determine
an l-precise quasi-function on S. We identify two such sets of data
({f (i)}i∈I ; {Si}i∈I) and ({g(j)}j∈J ; {S̃j}j∈J) if f (i) − g(j) ∈ A≤−l(Si ∩ S̃j)
where i ∈ I, j ∈ J such that Si ∩ S̃j 6= ∅. They define the same l-precise
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quasi-function on S and we write (A/A≤−l)(S) for the set of these l-precise
quasi-functions on S. Indeed, if we identify the interval I = (a, b) in R
and the sector S(a, b), then A and A≤−k, k > 0, can be considered as
sheaves on R and then A/A≤−l is the quotient sheaf. Also elements of
(A/A≤−l)n(S)[log s] with n ∈ N will be called l-precise quasi-functions on
S.

All elements in a representative {f (i)}i∈I of f ∈ (A/A≤−l)n(S)[log s] have
the same asymptotic expansion f̂ and this expansion is independent of the
chosen representative. Therefore we may write f(s) ∼ f̂(s), s → ∞ on S,
without causing confusion.

Similarly if l > k > 0 we define (A(1/k)/A≤−l)(S) as the set of l-precise
quasi-functions f which have representatives fi on Si as above with fi ∈
A(1/k)(Si) for all i ∈ I.

If f̂ ∈ C[[s−1/p]] 1
pk

then there exists a unique f ∈ (A(1/k)/A≤−k)(Cp)

such that f ∼ f̂ , where Cp denotes the Riemann surface of s1/p. This f will
be denoted by T−1f̂ (cf. [MR92, Cor. (1.8)]).

Let f ∈ (A/A≤−l)n(S)[log s]. The ‘restriction’ of f to an open subsector
S′ of S, denoted by f |S′ , is defined as follows: Suppose {f (i)}i∈I is a rep-
resentative of f with respect to a covering {Si}i∈I of S. Then f |S′ is the
element of (A/A≤−l)n(S′)[log s] defined by {f (i)|Si∩S′}i∈I , where f (i)|Si∩S′

is the restriction of f (i) to a neighbourhood of ∞ in Si ∩ S′.

Definition 2. Let 0 < k1 < · · · < kr, and let f̂ ∈ C[[s−1/p]]1/(pk1). Fur-
thermore, let S1 ⊃ . . . ⊃ Sr be a nested sequence of open sectors, where
Si has aperture larger than π/ki, i = 1, . . . , r and S1 has aperture at most
2pπ. We say that f̂ is (k1, . . . , kr)-summable on (S1, . . . , Sr) if there exist
fi ∈ (A(1/k1)/A≤−ki+1)(Si), i = 1, . . . , r−1, and fr ∈ A(1/k1)(Sr), such that
fi|Si+1 ≡ fi+1 mod A≤−ki+1 , i = 0, . . . , r − 1 where f0 = T−1f̂ . We call fr

the (k1, . . . , kr)-sum of f̂ on (S1, . . . , Sr), and we have fr(s) ∼ f̂(s), s→∞
on Sr.

According to the ‘relative Watson lemma’ ([MR92, Prop. (2.1)]) fi+1

is completely determined by fi and Si+1, i = 0, . . . , r − 1. Hence the
(k1, . . . , kr)-sum of f̂ on (S1, . . . , Sr) is uniquely defined. We may
extend the definition of multisummability in an obvious way to the case
that f̂ is an n-vector or an n× n-matix with elements in C[[s−1/p]]1/(pk1).

Definition 3. Let f(s) = sdse2πisb+q(s)sγ , with d ∈ 1
pZ, b ∈ C, q(s) iden-

tically zero or a polynomial in s1/p without constant term and of degree at
most p−1, and γ ∈ C. We will say that f(s) is of level 1+ if d 6= 0, of level
1 if d = 0, b 6= 0, of level k with k ∈ {1

p , . . . ,
p−1

p } if d = b = 0, q(s) 6≡ 0 and
q(s) has degree pk in s1/p, and of level 0 if d = b = 0 and q(s) ≡ 0.
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Let f be of level k ∈ (0, 1], so d = 0, 2πisb + q(s) 6≡ 0. A closed interval
[σ−π/k, σ] will be called a Stokes interval of level k of f if f ∈ A≤−k(σ−
π/k, σ). So if k = 1 then σ ≡ π − Argb mod 2π whereas if 0 < k < 1 and
q(s) = ωsk + o(sk), s→∞, ω 6= 0, then kσ ≡ 3

2π −Argω mod 2π.

If f is of level 1+ we will, in Section 7, associate with it a certain Stokes
number. This number is connected with curves that separate regions of
growth from regions of decay. All these curves have the limiting directions
π
2 mod π.

If f is of level 1+, we have f(s) = exp(ds log s(1 + o(1))), s → +∞ with
d 6= 0, and so it grows or decays faster than exponentially of order 1 on R+,
but slower than any higher exponential order.

Definition 4. For any (i.e., not necessarily open) sector S we will write
f ∈ A≤−1+

(S) to express that f is analytic on a neighbourhood U of ∞ in
S, and that for any closed subsector S′ of S, there exists a positive constant
c (depending on S′) such that f(s) = O(e−c|s| log |s|), uniformly as s→∞ on
S′ ∩ U .

We define 1+-precise quasi-functions by replacing l by 1+ in the definition
of l-precise quasi-functions above.

So, for example, eds log s ∈ A≤−1+
(H0) if d<0. And if p(s)=

∑
j≥0 pje

2πisj

is an analytic 1-periodic function on {s ∈ C|=s > R} for some R > 0, then
p(s)eds log s ∈ A≤−1+

(H0 ∩H1) if d < 0.

With Equation (1.1) we associate levels, and with each level certain Stokes
intervals or numbers. For this purpose we rewrite the formal fundamental
matrix solution (1.2) as follows:

Ŷ(s) = Û(s)F(s),(2.2)

where Û(s) = Ĥ(s)sN, N =
⊕m

j=1 Nj and F(s) = sΛseG(s)sC, C =
⊕m

j=1 cj Ij .
The columns ŷl(s) (l = 1, . . . , n) of Ŷ(s) form a formal fundamental

system of solutions {ŷl}n
l=1 and we have

ŷl(s) = fl(s)ûl(s), fl(s) = sdlse2πisbl+ql(s)sγl ,(2.3)

where ûl(s) ∈ Cn[[s−1/p]][log s] is the l-th column of Û(s), and, furthermore,
if 0 < l− (n1 + . . .+ nj−1) ≤ nj , then dl = λj , bl ∈ C and ql(s) ≡ 0 or ql(s)
is a polynomial in s1/p without constant term and of degree at most p − 1
such that 2πisbl + ql(s) = gj(s) and γl = cj . Without loss of generality, we
may assume that <bl ∈ [0, 1), l = 1, . . . , n.

We use the following abbreviations (cf. (2.3)): fml := fmf
−1
l , dml :=

dm − dl, bml := bm − bl, qml := qm − ql, γml := γm − γl. We write κml for
the level of fml.
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Definition 5. The levels of Equation (1.1) are the levels of the functions
e2πisjfml(s), j ∈ Z, m, l ∈ {1, . . . , n}. Let k ∈ {1

p , . . . ,
p−1

p , 1}. The Stokes
intervals of level k of the equation are the Stokes intervals of level k of the
functions e2πisjfml(s), j ∈ Z, m, l ∈ {1, . . . , n}.

Taking j = 0 we see that all the κml are levels of the equation. Moreover,
0 and 1 always are levels of the equation (take m = l and then j = 0 and
j 6= 0, respectively). By 0 < k1 < · · · < kr = 1 we denote the increasing
sequence of levels of the equation in the interval (0, 1]. If =bml 6= 0 for some
m and l then there are infinitely many Stokes directions (endpoints of Stokes
intervals) −Arg(bml + j) mod π, j ∈ Z which cluster at 0 mod π.

The following theorem is the counter part in the theory of linear differ-
ence equations of the ‘main asymptotic existence’ theorem in the theory of
differential equations.

Theorem 6. Let l ∈ {1, . . . , n} and ŷl(s) = fl(s)ûl(s) be a formal solution
of (1.1) of the form (2.3) with ûl(s) ∈ Cn[[s−1/p]][log s].

Then for any µ ∈ Z there exists an analytic solution yl(s) = fl(s)ul(s) of
the equation such that ul(s) ∼ ûl(s), s→∞ on Hµ.

A proof of this theorem (for the case that no logarithmic terms appear
in û(s)) can be found in [vdPS97]. It is based on the so-called quadrant
theorem, already stated by Birkhoff and Trjitzinsky in [BT33], but made
rigorous by Immink in [Imm91].

3. Two auxiliary lemmas.

The following lemma gives information on the relation between two funda-
mental systems of solutions of Equation (1.1), which have the same asymp-
totic behaviour at ∞ on some sector.

Lemma 7. Suppose we have two fundamental matrix solutions of Equation
(1.1), Y = UF and Y1 = U1F, such that U(s) ∼ Û(s) and U1(s) ∼ Û(s) for
s→∞ on an open sector S, with F(s) and Û(s) as in (2.2). Let ul and ul,1

be the l-th column of U and U1, respectively.
Then there exist analytic 1-periodic functions plm, m = 1, . . . , n, on a

neighbourhood of ∞ in S, such that

ul − ul,1 =
n∑

m=1

plmfmlum.

Moreover,

plm(s)fml(s) ∼ 0, s→∞ on S,∀m ∈ {1, . . . , n}.
If

ul − ul,1 ∈ (A≤−k)n(S) for some k > 0 (including k = 1+),
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then

plmfml ∈ A≤−k(S), ∀m ∈ {1, . . . , n}.

Proof. Let Ũ := U− U1. Then ŨF = UFP, or, equivalently, FPF−1 = U−1Ũ,
for some 1-periodic analytic matrix function P = (Pml), on a neighbourhood
of ∞ in S. From the diagonal form of the matrix F it follows that if plm is
the element in the m-th row and l-th column of P, then

plmfml = (m-th row of U−1)(ul − ul,1).

As U(s) ∼ Û(s) we have U−1(s) ∼ Û−1(s) = s−NĤ−1(s). Hence any entry
of U−1 is of order O(sµ(log s)ν), s → ∞ for some µ, ν ∈ Z. Since ul(s) −
ul,1(s) ∼ 0 as s→∞ on S, we thus find that

plm(s)fml(s) ∼ 0, s→∞ on S,∀m ∈ {1, . . . , n}.
Similarly, we see that plmfml ∈ A≤−k(S), if ul−ul,1 ∈ (A≤−k)n(S) for some
k > 0, including k = 1+. �

The next lemma yields more information on the asymptotic behaviour of
the functions plmfml in the previous lemma.

Lemma 8. Let S := S(α1, α2) be an open sector with 0 < α2 − α1 ≤ π.
Let p(s) be an analytic, 1-periodic function on a neighbourhood of ∞ in
S, and let f be a function of level k ∈ {0, 1/p, . . . , 1, 1+} as in Section 2:
f(s) = sdse2πisb+q(s)sγ with <b ∈ [0, 1). Assume g(s) := p(s)f(s) ∼ 0,
s → ∞ on S. Let H be an upper or lower half plane in C∞ which has a
nonempty intersection with S.

Then g ∈ A≤−k(S) if k > 0 and g ∈ A≤−1(H) if k = 0. If ν denotes
some integer we have:

1) If k = 0: If α1 < νπ < α2 then p = g = 0.
2) If 0 < k < 1:

Then there exists c ∈ C such that g − cf ∈ A≤−1(H) and cf ∈
A≤−k(S). If α1 < νπ < α2 then p(s) = c. If g ∈ A<−k(S) then
g ∈ A≤−1(H).

3) If k = 1:
If p 6= 0 then with H corresponds an integer N such that p(s) ∼
pNe

2πiNs as |=s| → ∞ on H where pN 6= 0. If b ∈ R∗ then g ∈
A≤−1(H) and if moreover α1 < νπ < α2 then p = g = 0. If α1 ≤
νπ ≤ α2 and (−1)ν=b < 0 then p = g = 0.

Next suppose
(I) α1 ≤ νπ ≤ α2 and (−1)ν=b > 0.

(II) (α1, α2) ⊂ (β1, β2) where (β1, β2) does not contain a Stokes interval
of e2πisjf(s) of level 1 for any j ∈ Z.
Then there exist analytic 1-periodic functions p+ and p− such that

p = p+ + p− and p+f ∈ A≤−1(α1, β2) and p−f ∈ A≤−1(β1, α2). If
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α1 = νπ then p+f ∈ A≤−1[νπ, β2) and similarly if α2 = νπ then
p−f ∈ A≤−1(β1, νπ].

4) If k = 1+:
If α1 < (ν + 1

2)π < α2, then p = g = 0. If νπ ≤ α1 < α2 ≤
(ν + 1

2)π or (ν − 1
2)π ≤ α1 < α2 ≤ νπ then g ∈ A≤−1+

[νπ, α2) and
g ∈ A≤−1+

(α1, νπ] respectively. If f 6∈ A≤−1+
(S) then p = g = 0.

5) If k ≤ 1 and g ∈ A<−1(S) then g = 0.

Proof. We will give the proof for the cases (i) 2hπ < α1 < α2 < (2h + 1)π,
(ii) α1 = 2hπ and (iii) α1 < 2hπ < α2 for some h ∈ Z. The other cases can
be treated similarly.

We may choose H = H4h+1. So p(s) and g(s) are analytic on H for
=s > R for some R > 0. Put z = e2πis and P (z) := p(s). Then |z| = e−2π=s

and we have expansions

P (z) =
∞∑

j=−∞
pjz

j if 0 < |z| < e−2πR, p(s) =
∞∑

j=−∞
pje

2πisj if =s > R.

(3.1)

In case (iii) p is an entire function. So then (3.1) holds with pj = 0 if j < 0
and R may be replaced by −∞. We now treat separately the different cases
of the lemma.

Ad 1) We have f(s) = sγ . Hence p(s) = s−γg(s) ∼ 0 as s → ∞ on
S. The 1-periodicity of p(s) then implies that p(s) ∼ 0 as =s → ∞, so
P (z) → 0 as z → 0. Therefore pj = 0 if j ≤ 0 and p, g ∈ A≤−1(H). In case
(iii) also p(s) ∼ 0 as =s → −∞, so P (z) → 0 as z → ∞. Hence P = 0 and
so g = p = 0.

Ad 2) For any closed sector S1 ⊂ (S ∩H) and any ρ > R, there exist
positive constants K and a such that

|p(s)| = |g(s)f(s)−1| ≤ K exp(a|s|k), if s ∈ S1 and =s ≥ ρ.

From the 1-periodicity of p(s) and the fact that k ∈ (0, 1) it follows that
|p(s)| ≤ K exp(a′=s), ∀=s ≥ ρ, for some a′ ∈ (0, 2π), if we choose ρ suffi-
ciently large. This implies P (z) = o(z−1), z → 0. Hence pj = 0 if j < 0
in (3.1). With c := p0 we get p(s) − c ∈ A≤−1(H) and g − cf ∈ A≤−1(H).
If f 6∈ A≤−k(S ∩H) then c = 0 since otherwise g is unbounded in a neigh-
bourhood of ∞ in S. So in cases (i) and (ii) we have cf ∈ A≤−k(S). Also
c = 0 if g ∈ A<−k(S) and therefore g ∈ A≤−1(H). In case (iii) we have
moreover P (z) = o(z) as z → ∞ and so P (z) = p(s) ≡ c. If c 6= 0 then
g = cf ∈ A≤−k(S) as g ∼ 0 in S.

Ad 3) The fact that f is of level 1 implies that d = 0, b 6= 0.
We have p(s) = g(s)f(s)−1 = O(1) exp(−2πis(b + o(1))) as s → ∞ on

S ∩ H and therefore P (z) = O(zb+o(1)) as z → 0. So if p 6= 0 then there
exists N ∈ Z such that pj = 0 for all j < N and pN 6= 0 in (3.1). Then
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p(s) = pNe
2πiNs(1+o(1)) and g(s) = pNe

2πi(b+N+o(1))s(1+o(1)) as =s→∞.
As g(s) ∼ 0 as s→∞ in S it follows that g ∈ A≤−1(S∩H) where S∩H = S
in cases (i) and (ii). Moreover, if =b = 0 then b+N > 0 and so g ∈ A≤−1(H).
In cases (ii) and (iii) we see that if p 6= 0 and =b < 0 then g(s) → ∞ on
arg s = 2hπ + ε for ε sufficiently small positive. Hence p = g = 0 if =b < 0.

In case (iii) similar reasoning as above leads to pj = 0 for all j > M

with some M ∈ Z,M ≥ N , g(s) = e2πi(b+M+o(1))s(pM + o(1)) as =s→ −∞
and g ∈ A≤−1(α1, 2hπ). In particular, if =b = 0 and pN 6= 0 6= pM , then
the fact that g ∼ 0 in S(2hπ − ε, 2hπ + ε) for some ε > 0 implies that
N + b > 0 > M + b in contradiction with M ≥ N , and therefore p = g = 0.
So in case (iii) we have =b 6= 0 if p 6= 0 and so =b > 0. Consequently g is
exponentially small of order 1 in S(2hπ − ε, 2hπ + ε) for some ε > 0. Thus
g ∈ A≤−1(S).

Next consider the case that (I) and (II) are satisfied. Now ν = 2h and
only cases (ii) and (iii) with =b > 0 have to be considered. Let σj :=
(2h+ 1)π−Arg(b+ j) for all j ∈ Z. Then S(σj − π, σj) is a maximal sector
where e2πisjf(s) is exponentially small of order 1 and the behaviour of g on
S ∩H implies that σN − π ≤ 2hπ < α2 ≤ σN . If σN ≥ β2 then we see that
g ∈ A≤−1[2hπ, β2). Next suppose σN < β2. As σj increases monotonically
from 2hπ to (2h + 1)π as j increases from −∞ to +∞, there exists A ∈ Z
such that σA < β2 ≤ σA+1 and A ≥ N . The condition on Stokes intervals
now implies that σA − π ≤ β1.

Let p−(s) :=
∑A

j=N pje
2πisj . Then p−(s) = O(e2πisA) on the lower

half plane and p−(s) = O(e2πisN ) on the upper half plane. So p−f is
exponentially small of order 1 for arg s ∈ (σA − π, 2hπ] and for arg s ∈
[2hπ, σN ). Hence p−f ∈ A≤−1(β1, α2). Furthermore, p+ := p − p− =∑∞

j=A+1 pje
2πisj = O(e2πis(A+1)) on the upper half plane and as σA+1 ≥ β2

we see that p+f ∈ A≤−1[2hπ, β2). Moreover, p+f = g−p−f ∈ A≤−1(α1, α2)
and we conclude that p+f ∈ A≤−1(α1, β2).

Ad 4) Now f(s) = exp{ds(log s + O(1))}, s → ∞ with d 6= 0.
Since <(s log s) = <s log |s| − =s arg s, we have p(s) = g(s)f(s)−1 =
O(exp{−d<s log |s| + O(s)}), as s → ∞ on S. As <s/=s is a nonzero
constant on any ray arg s = ψ 6∈ π

2Z we see that if S contains such a ray on
which d<s > 0 then p(s) = O(1) exp(−N |=s|) for any N ∈ N and therefore
p = g = 0. In particular, if f 6∈ A≤−1+

(S) then there exists a ray where
d<s > 0, so p = g = 0.

It is now sufficient to consider the case that S belongs to a right half
plane and d < 0. Choose ε with 0 < ε < (α2 − α1)/2 and ε < α2/2 − hπ.
Let ψ ∈ (2hπ, α2 − 2ε). For any s with arg s = ψ there exists s− ∈ H with
s− s− ∈ N and arg s− ∈ (α2 − ε, α2 − ε/2) if =s is sufficiently large. Then
<s− < =s cot(α2 − ε). Thus

p(s) = p(s−) = O(1) exp[−d cot(α2 − ε)=s log=s+O(s)].
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From this and =s log=s = |s| sinψ log(|s| sinψ) = |s|(sinψ log |s|+O(1)) we
conclude that |p(s)| ≤ K1 exp{−d cot(α2 − ε) sinψ|s| log |s| + K2|s|} if =s
is sufficiently large where K1 and K2 are some positive constants. Using
g(s) = O(1)p(s) exp[−|ds|(cosψ) log |s|+O(s)] and cosψ − (sinψ) cot(α2 −
ε) = sin(α2 − ε− ψ)/ sin(α2 − ε) > sin ε/ sin(α2 − ε) =: cε > 0 we see that

g(s) = O(1) exp(−cε|ds| log |s|)
if =s is sufficiently large and arg s ∈ (2hπ, α2 − 2ε). Thus we see that
g ∈ A≤−1+

[2hπ, α2). In case (iii) we get similarly g ∈ A≤−1+
(α1, 2hπ].

Furthermore, the 1-periodic function p is bounded on any bounded strip
parallel to the real axis intersected with S. Thus we obtain g ∈ A≤−1+

(S)
in case (iii).

Ad 5) If g(s) ∈ A<−1(S) and k ≤ 1 we deduce p(s) = g(s)/f(s) ∈
A<−1(S). Therefore p(s) = O(1)e−c|s| as s → ∞ for all c > 0. So P (z) =
O(zj) as z → 0 for all j. Hence P (z) ≡ 0 and so p = g = 0. �

4. A Gevrey property of solutions

Proposition 9. Let k1 be the lowest positive level of (1.1). Then the ele-
ments of Ĥ(s) are Gevrey series of order 1/k1. There exist fundamental
matrices Y(µ)(s) = H(µ)(s)sΛseG(s)sL of (1.1) such that H(µ)(s) is a matrix
of k1-Gevrey functions on Hµ with H(µ)(s) ∼ Ĥ(s) on Hµ for all µ ∈ Z.
For any µ0 ∈ Z a representative of T−1Ĥ (cf. definition of T−1 in Sec-
tion 2) on the covering {Hµ | µ = µ0, . . . , µ0 + 4p − 1} of Cp is given by
{H(µ) | µ = µ0, . . . , µ0 + 4p− 1}.

Let S be an open sector of aperture at most π and let ûl be given by (2.3)
for l = 1, . . . , n. Assume that flvl is a solution of (1.1) such that vl ∼ ûl on
S for l = 1, . . . , n. Then vl ∈ (A(1/k1))n(S)[log s]. Moreover, {flvl}n

l=1 is a
fundamental set of solutions of equation (1.1).

Proof. To prove the last statement, let V be the matrix with vl as l-th
column. Then V ∼ Û on S, where Û as in (2.2). As det Û 6≡ 0, we also
have detV 6≡ 0. Thus Y := VF is a matrix solution of Equation (1.1) and
det Y 6≡ 0, i.e., it is a fundamental matrix solution.

According to Theorem 6 and the last statement of the proposition under
consideration we have fundamental matrices Y(µ)(s) = H(µ)(s)sNF(s), µ =
µ0, . . . , µ0 + 4p − 1, with H(µ)(s) ∼ Ĥ(s), s → ∞ on Hµ, Ĥ(s) as in (1.2).
Since e2pπiHµ = Hµ+4p we define H(µ0+4p)(s) = H(µ0)(se−2pπi), s ∈ Hµ0+4p.
Then H(µ0+4p)(s) ∼ Ĥ(se−2pπi) = Ĥ(s), s → ∞ on Hµ0+4p. If s ∈ Hµ0+4p,
ζ := se−2pπi ∈ Hµ0 , then s+ 1 = (ζ + 1)e2pπi and

Y(µ0+4p)(s) := H(µ0+4p)(s)sNF(s)

= H(µ0)(ζ)(ζe2pπi)NF(ζe2pπi) = Y(µ0)(ζ)P(ζ),
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where P(ζ) = e2pπi(ζΛ+L), with Λ and L as in (1.2), is a 1-periodic matrix
function, and detP (ζ) 6= 0. Hence Y(µ0+4p)(s) is a fundamental matrix.

Next we prove that the entries of H(µ)(s) are in A(1/k1)(Hµ), µ = µ0, . . . ,
µ0+4p. As the half planesHµ, µ = µ0, . . . , µ0+4p−1, cover a neighbourhood
of ∞ on the Riemann surface of z1/p, it is, by [MR92, Theorem 1.6], suffi-
cient to prove that the entries of H(µ+1)(s)−H(µ)(s) are exponentially small
of order k1 on Hµ∩Hµ+1, µ = µ0, . . . , µ0+4p−1. If we denote by u(µ)

l (s) the
l-th column of H(µ)(s)sN, l = 1, . . . , n, µ = µ0, . . . , µ0+4p, this is equivalent
to proving that the differences u(µ+1)

l − u
(µ)
l are in (A≤−k1)n(Hµ ∩ Hµ+1).

We have

u
(µ+1)
l − u

(µ)
l =

n∑
m=1

plmfmlu
(µ)
m ,

for some 1-periodic functions plm on a neighbourhood of ∞ in Hµ ∩Hµ+1.
Since u(µ+1)

l (s)−u(µ)
l (s) ∼ 0, as s→∞ onHµ∩Hµ+1, we have plm(s)fml(s)∼

0, s→∞ on Hµ∩Hµ+1, for m = 1, . . . , n, according to Lemma 7. Lemma 8
now yields that plmfml ∈ A≤−k1(Hµ ∩Hµ+1), m = 1, . . . , n, so

u
(µ+1)
l − u

(µ)
l ∈ (A≤−k1)n(Hµ ∩Hµ+1).

Applying [MR92, Theorem 1.6], we conclude that

u
(µ)
l ∈ (A(1/k1))

n(Hµ)[log s], l = 1, . . . , n, µ = µ0, . . . , µ0 + 4p− 1,

H(µ) is a k1-Gevrey function onHµ and the elements of Ĥ(s) are Gevrey series
of order 1/k1. Moreover, it follows that {H(µ) | µ = µ0, . . . , µ0 + 4p− 1} is
a representative of T−1Ĥ.

Finally we prove the statement concerning the functions vl(s). It is suf-
ficient to consider the case that S ⊂ (Hµ0 ∪Hµ0+1). There exist 1-periodic
functions p̃lm analytic on a neighbourhood of ∞ in S ∩Hµ0 , such that

vl − u
(µ0)
l =

n∑
m=1

p̃lmfmlu
(µ0)
m .

Since vl(s) − u
(µ0)
l (s) ∼ 0, as s → ∞ on S ∩Hµ0 , Lemma 7 and Lemma 8

now tell us that p̃lmfml ∈ A≤−k1(S ∩Hµ0), hence

vl − u
(µ0)
l ∈ (A≤−k1)n(S ∩Hµ0).

The same holds with µ0 replaced by µ0 + 1. It follows that vl ∈
(A(1/k1))n(S)[log s], what had to be proven. �
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5. Refinement of chains of solutions.

Consider the fundamental matrix Y(µ)(s) of Proposition 9 for µ ∈ Z. Let
its columns be denoted by {flu

(µ)
l,0 } for l = 1, . . . , n as in (2.3). Then u(µ)

l,0 ∈
(A(1/k1))

n(Hµ)[log s], u(µ)
l,0 ∼ ûl on Hµ and {u(µ)

l,0 | µ = µ0, . . . , µ0 + 4p −
1} represents the k1-precise quasi-function corresponding to T−1ûl on the
covering {Hµ | µ = µ0, . . . , µ0 + 4p− 1} of Cp for any µ0 ∈ Z.

In this section we show how these k1-precise quasi-functions can be refined
to k2-precise quasi-functions with representatives {u(µ)

l,1 } on an open sector
S(α1, β1) with aperture > π/k1 such that (α1, β1) does not contain a Stokes
interval of level k1 of the equation and such that {flu

(µ)
l,1 }

n
l=1 again is a

fundamental system of (1.1) with the same asymptotic expansion as before.
This will be done by expressing the differences fl(u

(µ)
l,0 − u

(µ+1)
l,0 ) in terms of

suitable fundamental systems and distributing the terms that are fl times
an exponentially small factor of order k1, over u(µ)

l,0 and u
(µ+1)
l,0 . The same

method can be applied to proceed from kj-precise quasi-functions u(µ)
l,j−1

to kj+1-precise quasi-functions u(µ)
l,j corresponding to solutions flu

(µ)
l,j−1 and

flu
(µ)
l,j of (1.1).

Proposition 10. Let 0 < k1 < · · · < kr = 1 be the levels in (0, 1] of (1.1).
Let j ∈ {1, . . . , r}, and define k := kj. If j < r, then k′ := kj+1, otherwise
k′ := 1+. Let (α, β) be an open interval of length > π/k not containing a
Stokes interval of level k of (1.1). Let M and N be the integers, such that
(M − 1)π

2 ≤ α < M π
2 < N π

2 < β ≤ (N + 1)π
2 . Define Γµ := Hµ ∩ S(α, β)

for µ = M, . . . , N .
Suppose that we have fundamental systems of solutions {flu

(µ)
l }n

l=1 on Γµ

for µ = M, . . . , N which satisfy for l = 1, . . . , n:

(i) u(µ)
l ∈ (A(1/k1))n(Γµ)[log s], u(µ)

l (s) ∼ ûl(s), s→∞ on Γµ,

(ii) u(µ+1)
l − u

(µ)
l ∈ (A≤−k)n(Hµ ∩Hµ+1).

Then there exist fundamental systems of solutions {flũ
(µ)
l }n

l=1 for µ =
M, . . . , N such that for l = 1, . . . , n:

ũ
(µ)
l − u

(µ)
l ∈ (A≤−k)n(Γµ), if µ ∈ {M, . . . , N}(5.1)

and

ũ
(µ+1)
l − ũ

(µ)
l ∈ (A≤−k′)n(Hµ ∩Hµ+1), if µ ∈ {M, . . . , N − 1}.(5.2)

Moreover, for each l ∈ {1, . . . , n} the family of functions {ũ(µ)
l }N

µ=M defines
an element ũl in (A(1/k1)/A≤−k′)n(α, β)[log s], which is uniquely determined

by the properties of the ũ(µ)
l mentioned above.
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We prove the proposition subsequently for the cases k ∈ (0, 1) and k = 1.

Proof for k ∈ (0, 1).

We introduce the following sets:
St−(µ, l) = {m | κml = k, fml ∈ A≤−k(α, (µ+1)π/2)} if µ ∈ {M−1, . . . , N−
1};
St+(µ, l) = {m | κml = k, fml ∈ A≤−k(µπ/2, β)} if µ ∈ {M, . . . , N}. Obvi-
ously

St−(µ+ 1, l) ⊂ St−(µ, l), and St+(µ− 1, l) ⊂ St+(µ, l).(5.3)

Because of the assumption that β − α > π/k the two sets St−(µ, l) and
St+(µ, l) are disjoint. Since fjl = fjmfml the following transitivity relation
holds:

j ∈ St−(µ,m) ∧m ∈ St−(µ, l) ⇒ j ∈ St−(µ, l).(5.4)

Finally, let St(µ, l) := St−(µ, l) ∪ St+(µ, l), µ = M, . . . , N − 1. If µ ∈
{M, . . . , N − 1} then

κml = k and fml ∈ A≤−k(Hµ ∩Hµ+1) ⇐⇒ m ∈ St(µ, l).(5.5)

We only give the proof that the left statement implies the right one since the
converse is trivial. The left-hand side implies that fml has a Stokes interval
[σ − π/k, σ] containing (µπ/2, (µ + 1)π/2). Because of the assumptions of
the proposition we have either α < σ−π/k < β ≤ σ or σ−π/k ≤ α < σ < β
and therefore m ∈ St(µ, l).

For k < 1 the first statement of Proposition 10 is an easy consequence of
the following two lemmas.

Lemma 11. Under the assumptions of Proposition 10 with k < 1 there exist
fundamental systems {flu

(µ)
l,1 }

n
l=1, µ = M, . . . , N , satisfying:

(i) u(µ)
l,1 − u

(µ)
l ∈ (A≤−k)n(Γµ);

(ii) u(µ+1)
l,1 − u

(µ)
l,1 =

∑
m∈St−(µ,l)

c
(µ)
m fmlu

(µ)
m,1 + ψ

(µ)
l,1 , where c(µ)

m ∈ C and

ψ
(µ)
l,1 ∈ (A≤−k′)n(Hµ ∩Hµ+1).

Proof. The proof goes by induction on µ. Define u
(M)
m,1 := u

(M)
m , m =

1, . . . , n. Next assume u(M)
m,1 , . . . , u

(µ)
m,1 have been defined for all m = 1, . . . , n

and some µ ∈ {M, . . . , N − 1}. In the remaining part of this section m will
always be understood to be in {1, . . . , n}. Fix l ∈ {1, . . . , n}.

From condition (i) of the proposition it follows that u(µ)
m,1 ∼ ûm on Γµ.

Thus the functions fmu
(µ)
m,1, m ∈ St−(µ, l), together with the functions

fmu
(µ+1)
m , m 6∈ St−(µ, l), form a fundamental system of solutions according
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to Proposition 9. Hence, there exist 1-periodic analytic functions p(µ)
m , p

(µ+1)
m ,

1 ≤ m ≤ n, such that

(5.6) u
(µ+1)
l − u

(µ)
l,1 =

∑
m∈St−(µ,l)

p(µ)
m fmlu

(µ)
m,1 +

∑
m∈St+

(µ,l)

p(µ+1)
m fmlu

(µ+1)
m

+
∑

m6∈St(µ,l)

p(µ+1)
m fmlu

(µ+1)
m .

We have u(µ+1)
l − u(µ)

l,1 = u
(µ+1)
l − u(µ)

l + u
(µ)
l − u(µ)

l,1 ∈ (A≤−k)n(Hµ ∩Hµ+1),
and thus (by Lemma 7) we may conclude that each term in the sums on
the right-hand side of (5.6) belongs to this set. Next we apply Lemma 8 to
these terms, and find:

• If m ∈ St−(µ, l) (resp. m ∈ St+(µ, l)): Then fml is of level k < 1,
and it is an element of A≤−k(Hµ ∩ Hµ+1). So there exist complex
constants c(µ)

m (resp. d
(µ+1)
m ) such that (p(µ)

m (s) − c
(µ)
m )fml(s) (resp.

(p(µ+1)
m (s)− d

(µ+1)
m )fml(s)) belong to A≤−1(H), where H is the upper

or lower half plane containing Hµ ∩Hµ+1.
• If m 6∈ St(µ, l): Then κml < k or κml = k with fml 6∈ A≤−k(Hµ∩Hµ+1)

or κml > k with in all cases p(µ+1)
m fml ∈ A≤−k(Hµ ∩ Hµ+1). In the

last case Lemma 8 implies p(µ+1)
m fml ∈ A≤−k′(Hµ ∩Hµ+1). This also

follows in the first two cases from Lemma 8-2 with c = 0.
So we have

u
(µ+1)
l − u

(µ)
l,1 =

∑
m∈St−(µ,l)

c(µ)
m fmlu

(µ)
m,1 +

∑
m∈St+

(µ,l)

d(µ+1)
m fmlu

(µ+1)
m + ψ

(µ)
l,1 ,

with ψ(µ)
l,1 a function in (A≤−k′)n(Hµ ∩Hµ+1). Obviously, if we define

u
(µ+1)
l,1 := u

(µ+1)
l −

∑
m∈St+

(µ,l)

d(µ+1)
m fmlu

(µ+1)
m ,

then u(µ+1)
l,1 satisfies the requirements.

So, if we have constructed u
(λ)
m,1 for m ∈ {1, . . . , n} and λ ∈ {M,M +

1, . . . , µ} (µ ≤ N − 1), then we can construct u(µ+1)
l,1 for each l ∈ {1, . . . , n}

and the lemma follows by induction on µ. �

We next refine the solutions of the previous lemma to solutions which
satisfy (5.1) and (5.2) in Proposition 10.

Lemma 12. Let k < 1. Suppose the assumptions of Proposition 10 hold,
and furthermore, assume that u(µ+1)

l −u(µ)
l =

∑
m∈St−(µ,l)

c
(µ)
lm fmlu

(µ)
m +ψ(µ)

l ,

for some constants c(µ)
lm and a function ψ

(µ)
l ∈ (A≤−k′)n(Hµ ∩Hµ+1).
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Then there exist fundamental systems {flũ
(µ)
l }n

l=1, µ = M, . . . , N , such
that

(i) ũ(µ)
l − u

(µ)
l =

∑
m∈St−(µ,l)

c̃
(µ)
lm fmlu

(µ)
m for some constants c̃(µ)

lm ;

(ii) ũ(µ+1)
l − ũ

(µ)
l ∈ (A≤−k′)n(Hµ ∩Hµ+1).

Proof. This lemma can also be proven by induction, but this time we start
from the other end of the covering {Γµ}N

µ=M of S(α, β): define ũ(N)
m := u

(N)
m

for all m ∈ {1, . . . , n}. Next suppose ũ(N)
m , . . . , ũ

(µ+1)
m have been defined

and possess the properties of the lemma for all m ∈ {1, . . . , n} and some
µ ∈ {M, . . . , N − 1}. Let l ∈ {1, . . . , n}. We have

ũ
(µ+1)
l − u

(µ)
l

= ũ
(µ+1)
l − u

(µ+1)
l + u

(µ+1)
l − u

(µ)
l

=
∑

m∈St−(µ+1,l)

c̃
(µ+1)
lm fmlu

(µ+1)
m +

∑
m∈St−(µ,l)

c
(µ)
lm fmlu

(µ)
m + ψ

(µ)
l .

Furthermore,

u(µ+1)
m − u(µ)

m =
∑

j∈St−(µ,m)

c
(µ)
mjfjmu

(µ)
j + ψ(µ)

m .

From these two relations and properties (5.3) and (5.4) we obtain

ũ
(µ+1)
l − u

(µ)
l =

∑
m∈St−(µ,l)

c̃
(µ)
lm fmlu

(µ)
m + ψ̃

(µ)
l ,

where the c̃(µ)
lm are constants in C and ψ̃(µ)

l ∈ (A≤−k′)n(Hµ ∩Hµ+1).
If we define

ũ
(µ)
l := u

(µ)
l +

∑
m∈St−(µ,l)

c̃
(µ)
lm fmlu

(µ)
m ,

then ũ(µ)
l satisfies the requirements of the lemma. Again the lemma follows

by induction on µ. �

The first statement of Proposition 10 follows from the previous lemmas
and the last statement is a direct consequence of the relative Watson lemma
referred to after Definition 2. We could also prove the uniqueness directly,
without reference to this lemma, along the same lines as in [BIS]. �

Proof for k = 1.

Recall that the Stokes intervals of level 1 of Equation (1.1) with for-
mal solution (2.3) are, by definition, the Stokes intervals of the functions
e2πisjfml(s), j ∈ Z, l,m ∈ {1, . . . , n}, that are of level 1. Taking l = m and
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j 6= 0, we find that [(h−1)π, hπ] is a Stokes interval of level 1 of the equation
for any h ∈ Z. Hence, due to the assumption that (α, β) does not contain a
Stokes interval of level 1, the sector S(α, β) does not contain a lift of both the
positive and the negative real axis. From this and α < Mπ/2 < Nπ/2 < β
it follows that N −M ≤ 2 and at least one of the integers M and N has to
be odd.

We will prove the proposition for the cases M = −1 and N = 0 or N = 1,
that is α ∈ [−π,−π/2), β ∈ (0, π]. The other cases can be proven similarly.

Let l ∈ {1, . . . , n}. There exist 1-periodic analytic functions p(−1)
m (s),

m = 1, . . . , n, such that

u
(0)
l − u

(−1)
l =

n∑
m=1

p(−1)
m fmlu

(−1)
m .(5.7)

By assumption (ii) of Proposition 10, we have u(0)
l −u

(−1)
l ∈ (A≤−1)n(−π/2, 0).

So, by Lemma 7, p(−1)
m fml ∈ A≤−1(−π/2, 0), m ∈{1, . . . , n}. From Lemma 8

we conclude that

p(−1)
m fml ∈ A≤−1(−π, 0) if κml < 1,(5.8)

and

p(−1)
m fml ∈ A≤−1+

(−π/2, 0) if κml = 1+.(5.9)

If κml = 1 and p
(−1)
m 6= 0 then according to Lemma 8-3 we have =bml ≥ 0.

Moreover, this lemma tells us that

p(−1)
m fml ∈ A≤−1(−π, 0) if κml = 1,=bml = 0.(5.10)

Let t1, . . . , tν denote the numbers =bh, h ∈ {1, . . . , n} in decreasing order
of magnitude. We will use induction on τ ∈ {1, . . . , ν}.

If =bl = t1, then =bml ≤ 0 for all m ∈ {1, . . . , n}. So if κml = 1 and
p
(−1)
m 6= 0 then we know already that =bml ≥ 0 and so =bml = 0 and (5.10)

applies. Therefore if =bl = t1 we define

ũ
(−1)
l = u

(−1)
l +

∑
κml≤1

p(−1)
m fmlu

(−1)
m , ũ

(0)
l = u

(0)
l .

Then from (5.7), (5.8), (5.9) and (5.10) it follows that flũ
(µ)
l are solutions

of (1.1) with

ũ
(µ)
l − u

(µ)
l ∈ (A≤−1)n(Γµ) if µ ∈ {−1, 0};

ũ
(0)
l − ũ

(−1)
l ∈ (A≤−1+

)n(−π/2, 0).
(5.11)

Next let τ ∈ {2, . . . , ν}, =bl = tτ and suppose that for all m ∈ I(l) :=
{m ∈ {1, . . . , n}|κml = 1,=bml > 0} the functions ũ(−1)

m and ũ
(0)
m have
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already been defined such that (5.11) holds with l replaced by m. We have

u
(0)
l − u

(−1)
l =

∑
m6∈I(l)

p̃(−1)
m fmlũ

(−1)
m +

∑
m∈I(l)

p̃(−1)
m fmlũ

(−1)
m ,

for some 1-periodic functions p̃(−1)
m (s) analytic on a neighbourhood of ∞ in

H−1. As before we have

p̃(−1)
m fml ∈ A≤−1(−π/2, 0).(5.12)

Now we have analogues of (5.8), (5.9) and (5.10), and so the first sum can
be written as ϕ(−1)

l + ψ
(−1)
l such that ϕ(−1)

l ∈ (A≤−1)n(H−1) and ψ
(−1)
l ∈

(A≤−1+
)n(−π/2, 0) and flϕ

(−1)
l and flψ

(−1)
l are solutions of (1.1).

Next consider the case that m ∈ I(l) and p̃
(−1)
m 6= 0. Then according to

Lemma 8-3 there exist analytic 1-periodic functions p±m such that p̃(−1)
m =

p−m + p+
m and p−mfml ∈ A≤−1(α, 0) and p+

mfml ∈ A≤−1(−π/2, β). Now define

ũ
(−1)
l := u

(−1)
l + ϕ

(−1)
l +

∑
m∈I(l)

p−mfmlũ
(−1)
m ,

ũ
(0)
l := u

(0)
l −

∑
m∈I(l)

p+
mfmlũ

(0)
m .

Then ũ(0)
l −ũ(−1)

l = ψ
(−1)
l +

∑
m∈I(l) p

+
mfml(ũ

(−1)
m −ũ(0)

m ) ∈ (A≤−1+
)n(−π/2, 0)

and it follows that the functions ũ(µ)
l satisfy (5.11). By induction (5.11) fol-

lows for all l. So in case N = 0 the proposition has been proved.
Next suppose that N = 1, so β > π/2. If p(1)

m (s), m = 1, . . . , n, are the
1-periodic functions analytic on a neighbourhood of ∞ in the upper half
plane such that

u
(1)
l − ũ

(0)
l =

n∑
m=1

p(1)
m fmlu

(1)
m ,

then p(1)
m fml ∈ A≤−1(0, π/2). If κml < 1 then as before p(1)

m fml ∈ A≤−1(H1).
Next suppose κml = 1 and p

(1)
m 6= 0. Then by Lemma 8-3 there exists an

integer N such that p(1)
m (s) = pNe

2πisN (1 + o(1)) as =s → ∞ with pN 6= 0
and therefore e2πisNfml(s) ∈ A≤−1(0, π/2). So there exists a Stokes interval
[σm−π, σm] of e2πisNfml which contains (0, π/2). Now σm−π ≥ −π/2 > α

and therefore σm > β. Hence p(1)
m fml ∈ A≤−1(0, β). Moreover, if κml = 1+,

then p
(1)
m fml ∈ A≤−1+

(0, π/2) according to Lemma 8. Thus, if we define
ũ

(1)
l := u

(1)
l −

∑
κml≤1 p

(1)
m fmlu

(1)
m , then

ũ
(1)
l − u

(1)
l ∈ (A≤−1)n(0, β); ũ(1)

l − ũ
(0)
l ∈ (A≤−1+

)n(0, π/2).
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The fundamental systems {flũ
(µ)
l }n

l=1, µ = −1, 0, 1, thus obtained satisfy
(5.1) and (5.2).

The uniqueness property of Proposition 10 is an immediate consequence
of a more general form of the relative Watson lemma by Malgrange and
Ramis, that can be found in [BIS]. �

6. Equations without level 1+.

Theorem 13 has already been stated and proven in [BF96], but here we
present a new proof.

Theorem 13. Let 0 < k1 < · · · < kr = 1 be the levels in (0, 1] of Equation
(1.1), and suppose that this equation does not contain a level 1+ (i.e., dml =
0, ∀m, l ∈ {1, . . . , n}). Let Ĥ(s)sΛseG(s)sL be a formal fundamental matrix
as in (1.2).

Let Si = S(αi, βi), i = 1, . . . , r, be a sequence of open sectors such that
S1 ⊃ . . . ⊃ Sr, S1 has aperture less than 2pπ, Si has aperture larger than
π/ki and (αi, βi) does not contain a Stokes interval of level ki, i = 1, . . . , r.

Then Ĥ is (k1, . . . , kr)-summable on (S1, . . . , Sr) with sum Hr such that
Hr(s)sΛseG(s)sL is an analytic fundamental matrix of (1.1).

Proof. Define Mj , Nj , j = 1, . . . , r, to be the integers such that (Mj −
1)π/2 ≤ αj < Mjπ/2 < Njπ/2 < βj ≤ (Nj + 1)π/2 and let Γj,µ := Sj ∩Hµ,
µ = Mj , . . . , Nj , j = 1, . . . , r. Also, let S0 := Cp be the Riemann surface
of s1/p, Γ0,µ := Hµ, µ = M0, . . . , N0 where M0 := M1, N0 := M0 + 4p− 1.

By Proposition 9 we have a representative {H(µ)(s)}N0
µ=M0

of T−1Ĥ(s) on
the covering {Hµ}N0

µ=M0
of Cp such that H(µ)(s)sΛseG(s)sL is an analytic

fundamental matrix of (1.1). To show that the columns ĥl of Ĥ are multi-
summable we have to construct hl,j ∈ (A(1/k1)/A≤−kj+1)n(Sj), j = 0, . . . , r
such that hl,j |Sj+1 ≡ hl,j+1 mod A≤−kj+1 , j = 0, . . . , r if kr+1 = ∞.

Let U
(µ)
0 (s) := H(µ)(s)sN so that U

(µ)
0 (s)F(s) is a fundamental matrix of

(1.1) (cf. (2.2)) and let ũ(µ)
l,0 denote the lth column of U

(µ)
0 . The construction

mentioned above is equivalent to the construction of functions {ũ(µ)
l,j }

Nj

µ=Mj

for j = 1, . . . , r and l = 1, . . . , n such that:

(1) {flũ
(µ)
l,j }

n
l=1 is a fundamental system of Equation (1.1),

(2) {ũ(µ)
l,j }

Nj

µ=Mj
represents a kj+1-precise quasi-function

ũl,j ∈ (A(1/k1)/A≤−kj+1)n(Sj)[log s], j = 1, . . . , r,

(3) ũl,j−1|Sj ≡ ũl,j mod (A≤−kj )n, j = 1, . . . , r.
Suppose we have constructed ũl,i for i = 0, . . . , j − 1, for some j ∈

{1, . . . , r}. Then we can apply Proposition 10 with α = αj , β = βj , and
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with u(µ)
l = ũ

(µ)
l,j−1|Γj,µ , µ = Mj , . . . , Nj . Defining ũ(µ)

l,j := ũ
(µ)
l , l = 1, . . . , n,

µ = Mj , . . . , Nj we see that properties (1), (2) and (3) are satisfied for i = j
as well. So they are satisfied for all j ∈ {1, . . . , r}.

We have ũ(µ+1)
l,r − ũ

(µ)
l,r ∈ (A≤−1+

)n(Γr,µ ∩ Γr,µ+1). We also have ũ(µ+1)
l,r −

ũ
(µ)
l,r =

∑n
m=1 pmfmlũ

(µ)
m,r for some 1-periodic analytic functions pm. Lemma 7

now tells us that each pmfml ∈ A≤−1+
(Γµ,r ∩ Γµ+1,r), and then it follows

from Lemma 8 and the fact that the equation has no level 1+, that pm = 0,
for all m. Hence, the functions ũ(µ)

l,r , µ = Mr, . . . , Nr, are the restrictions of
an analytic function ũl,r ∈ (A(1/k1))n(Sr)[log s]. �

7. Equations with level 1+.

In this section we will consider Equation (1.1) under the assumption that
there does exist a pair (m, l) such that dm 6= dl in the notation of (2.3); that
is, the equation possesses the level 1+. We will show in this section that
we can still assign a uniquely characterizable fundamental system Y(s) with
asymptotic expansion Ŷ(s) in appropriate regions of the Riemann surface of
the logarithm, provided <bl 6= <bm if bl 6= bm (cf. notation in (2.3)).

Before we state the main result of this paper (Theorem 18), we need to
define the Stokes numbers of level 1+ of the equation. The Stokes number
of a function f of level 1+ of the form

f(s) = exp(ds log s+ 2πibs+ q(s) + γ log s), with d 6= 0,(7.1)

occurring in formal solutions of equations possessing a level 1+, is associated
with curves that separate regions of growth from regions of decay of f . We
have

<{ds log s+ 2πibs} = d<s log |s| − (d arg s+ 2π<b)=s− 2π=b<s,
and therefore the main contribution to |f(s)| comes from exp[<{s(d log s+
2πi<b)}]. Let h be an even integer if d < 0 and an odd integer if d > 0.
Then f ∈ A≤−1+

(H2h). Moreover, f behaves as an exponential function
of order 1 in vertical strips, f becomes exponentially large on any open
sector containing H2h and, if S+(h) := S((h− 1

2)π, (h+ 1
2)π] and S−(h) :=

S[(h− 1
2)π, (h+ 1

2)π) then it is easily verified that

f ∈ A≤−1(S±) iff ± (h+ 2<b/d) < −1/2,

where the upper (lower) signs belong together.
Let {fjuj}n

j=1 be a fundamental system of (1.1) such that uj ∼ ûj as
s→∞ on S±(h). Assume dml = dm−dl < 0 and h is even. Then there exists
N± ∈ Z such that ±{h + 2(<bml + N±)/dml} < −1/2. Then e2πisN±fml ∈
A≤−1(S±) and therefore the solutions flul and flul + e2πisN±fmum have the
same asymptotic behaviour on S±(h). So in this case it is not possible to
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characterize fundamental systems Y(s) by their asymptotic behaviour Ŷ(s)
on S±(h).

In order for a fundamental system to be in some way uniquely determined
by its asymptotic expansion in a sector of C∞, which contains an open right
or left half plane, this sector therefore should contain the closure of this
half plane. However, such fundamental systems do not exist in general (see
[vdPS97, Chapter 11]).

Hence we have to characterize fundamental systems by their asymptotic
behaviour in a more complicated type of region. This region should contain
a neighbourhood of ∞ in some half plane H2h but not a neighborhood of ∞
in H2h. In the case d = (−1)h+1 a suitable region is given by

Definition 14. For θ ∈ R, h ∈ Z, we define

D(h; θ) := {s ∈ C∞ | (h− 1)π < arg s < (h+ 1)π;

(−1)h<{s(log s+ iθ)} > 1}.

If h ∈ Z and θ1, θ2 ∈ R then D(h; θ1, θ2) := D(h; θ1) ∪D(h; θ2).

We denote the boundary of D(h; θ) by C(h; θ). We have D(h; θ) ⊂⋃1
j=−1H2h+j and seihπ ∈ D(h; θ) ⇔ s ∈ D(0; θ + hπ). Similarly with D

replaced by C. Details on C(0; θ) can be found in [Imm84] and [Imm91].
We have <s = O(=s/ log |s|) as s → ∞ on C(h; θ). This implies that
arg s→ ±π/2 mod 2π as =s→ ±∞, s ∈ C(h; θ).

If h ∈ Z and θ ∈ R, then the following properties are easily established.
• Let θ̃ < θ. As (−1)h<{s(log s + iθ̃)} = (−1)h<{s(log s + iθ)} −

(−1)h(θ̃ − θ)=s, it follows that:
i) D(h; θ̃) ∩H2h−1 ⊂ D(h; θ) ∩H2h−1, and that
ii) D(h; θ̃) ∩H2h+1 ⊃ D(h; θ) ∩H2h+1.

One could say that the regions D(h; θ) ‘rotate’ (modulo some de-
formation) clockwise with increasing θ.

• D(h; θ)∩H2h is a neighbourhood of ∞ in H2h. However, since for any
s0 ∈ H2h, s0 +H2h 6⊂ D(h; θ), the intersection D(h; θ) ∩H2h is not a
neighbourhood of ∞ in H2h.

Let D := D(h; θ1, θ2), for some h ∈ Z and θ1 < θ2. A set U ⊂ D is called
a neighbourhood of ∞ in D, if, for any θ ∈ (θ1, θ2), there exists s0 ∈ D
such that s0 +D(h; θ) ⊂ U .

Suppose g is an analytic function on a neighbourhood U of ∞ in D, and
suppose there exist a k > 0 and a series ĝ(s) =

∑
n≥0 gns

−n/p such that for
any θ ∈ (θ1, θ2) we have∣∣∣∣∣g(s)−

N−1∑
n=0

gns
−n/p

∣∣∣∣∣ ≤ KANΓ
(

N
pk

)
|s|−N/p,(7.2)
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∀s ∈ D(h; θ) ∩ U, ∀N ∈ N,

for some positive constants K and A, which only depend on θ. Then we call
g a k-Gevrey function on D (with respect to 1

pN0), and the set of these
functions is denoted by A(1/k)(D).

Concerning 1-Gevrey functions on D we have the following theorem by
Immink (cf. [Imm96]):

Theorem 15. Suppose θ1, θ2 ∈ R, θ1 < θ2, and h ∈ Z. Let D :=
D(h; θ1, θ2).

If g ∈ A(1)(D), then g is uniquely determined by its asymptotic expansion
ĝ.

In [Imm96] it is shown that g is already uniquely determined by its
asymptotic expansion if (7.2) with k = 1 holds onD(h; θ) for one θ ∈ (θ1, θ2).

Let f be a function of level 1+ given by (7.1) and θ1 < 2π<b/d < θ2.
Let h ∈ Z be odd if d > 0 and even if d < 0. Then there exist positive
constants K and c such that |f(s)| ≤ Ke−c|s| for s ∈ D(h; θ1)∩D(h; θ2) and
|s| sufficiently large. From this it follows that (7.2) holds on this set with
g := f, gn = 0, and k = 1. This is not true if 2π<b

d 6∈ [θ1, θ2]. Therefore we
introduce the following definition:

Definition 16. Let f(s) be the function of level 1+ given by (7.1). Then
we call 2π<b

d its Stokes number. The Stokes numbers of level 1+ of
the equation (1.1) are the Stokes numbers of the functions e2πijsfml(s),
l,m ∈ {1, . . . , n}, j ∈ Z, that are of level 1+. That is, they are given by the
expression

2π
dml

(<bml + j), j, l,m as above, dml 6= 0.

Suppose θ1 < θ2 and α < β. Let D := D(h; θ1, θ2) and S := S(α, β).
Assume D ∩ S 6= ∅. We define a neighbourhood of ∞ in D ∩ S to be an
open set U in D ∩ S, such that for any θ, γ, δ satisfying θ1 < θ < θ2 and
α < γ < δ < β, there exists s0 ∈ D ∩ S such that s0 + (D(h; θ) ∩ S(γ, δ)) ⊂
U . We write A≤−1(D ∩ S) for the set of functions that are analytic on a
neighbourhood of ∞ in D∩S, and exponentially small of order 1, as s→∞,
uniformly on D(h; θ) ∩ S(γ, δ), for any θ, γ, δ as above.

We extend Definition 2 of multisummability as follows:

Definition 17. Let 0 < k1 < · · · < kr−1 < kr = 1, and define kr+1 = 1+.
Let S1 ⊃ . . . ⊃ Sr be a nested sequence of sectors Si with aperture > π/ki,
i = 1, . . . , r, aperture of S1 at most 2pπ and assume Sr ⊃ S((h − 1

2)π −
ε, (h+ 1

2)π+ε), for some h ∈ Z and some ε > 0. Finally, let D := D(h; θ1, θ2)
for some θ1 < θ2.

A formal power series f̂ ∈ C[[s−1/p]]1/(pk1) is called (k1, . . . , kr, 1+)-
summable on (S1, . . . , Sr, D) with (k1, . . . , kr, 1+)-sum f ∈ A(1/k1)(D),
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if there exist quasi-functions fi ∈ (A(1/k1)/A≤−ki+1)(Si), i = 1, . . . , r, satis-
fying:

fi|Si+1 ≡ fi+1 mod A≤−ki+1 , i = 0, . . . , r − 1 with f0 = T−1f̂ ;

fr has a representative {fr,ω}ω∈Ω with respect

to a covering {Sr,ω}ω∈Ω of Sr with open sectors Sr,ω

such that fr,ω − f ∈ A≤−1(D ∩ Sr,ω),∀ω ∈ Ω.

Let g be another function such that fr,ω − g ∈ A≤−1(D ∩ Sr,ω), ∀ω ∈ Ω.
Then f − g ∈ A≤−1(D ∩ Sr,ω), ∀ω ∈ Ω, hence, f − g ∈ A≤−1(D ∩ Sr) =
A≤−1(D). Theorem 15 implies f = g and it follows that f is uniquely deter-
mined by fr and D. By the relative Watson lemma ([MR92, Prop. (2.1)])
fi is uniquely determined by fi−1 and Si, i = r, . . . , 1. Hence the sum f is
uniquely determined by f̂ and (S1, . . . , Sr, D).

Similarly to Definition 2 we extend this definition to the case that f̂ is an
n-vector or n× n-matrix with elements in C[[s−1/p]]1/(pk1).

The main result of this paper is the following theorem.

Theorem 18. Let k1 < · · · < kr = 1 be the sequence of positive levels ≤ 1
of (1.1). Suppose that 1+ is a level of (1.1) and that <bl 6= <bm if bl 6= bm
where bl is defined below (2.3). Let Ĥ(s)sΛseG(s)sL be a formal fundamental
matrix as in (1.2).

Let Si = S(αi, βi), i = 1, . . . , r, be a sequence of open sectors, such that
S1 ⊃ . . . ⊃ Sr and β1 − α1 ≤ 2pπ, βi − αi > π/ki and (αi, βi) does not
contain a Stokes interval of level ki, i = 1, . . . , r of (1.1). Moreover, suppose
that (h−1)π < αr < (h− 1

2)π and (h+ 1
2)π < βr < (h+1)π, for some h ∈ Z.

Let θ̃, θ ∈ R, θ̃ < θ, such that (θ̃, θ) does not contain a Stokes number of
level 1+ and define D = D(h; θ̃, θ).

Then Ĥ is (k1, . . . , kr, 1+)-summable on (S1, . . . , Sr, D) with (k1, . . . ,
kr, 1+)-sum H such that (1.3) defines an analytic fundamental matrix of
(1.1).

For the proof of this theorem we will use the following lemma which
extends the results of Lemma 8-4.

Lemma 19. Let h ∈ Z and Q± be the quadrant H2h ∩H2h±1. Here and in
the following the upper signs belong together and so do the lower signs. Let f
be given by (7.1). Define θj := 2π

d (<b+ j), j ∈ Z, and D := D(h; θN−1, θN ),
for some N ∈ Z.

Suppose that p(s) 6≡ 0 is a 1-periodic analytic function on a neighbourhood
of ∞ in H2h±1 such that p(s)f(s) ∈ A≤−1+

(Q±).
Then there exists a 1-periodic function p−(s), such that p−(s) is analytic

on a neighbourhood of ∞ in H2h±1, p+(s) := p(s) − p−(s) is an entire
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function, and

p−(s)f(s) ∈ A≤−1(D ∩H2h±1),

p+(s)f(s) ∈ A≤−1(D ∩H2h∓1) ∩ A≤−1+
(H2h).

Proof. We will give the details of the proof for the lower sign and h is even.
The other cases can be proven in a similar way.

Now Q− is a fourth quadrant and H := H2h−1 is a lower half plane.
According to Lemma 8-4 we have p(s)f(s) ∈ A≤−1+

((h − 1
2)π, hπ], and,

since p(s) 6≡ 0 also f(s) ∈ A≤−1+
((h − 1

2)π, hπ). Therefore d < 0, f(s) ∈
A≤−1+

((h− 1
2)π, (h+ 1

2)π) and θN < θN−1.
We have an expansion for p(s) as in (3.1) for =s < −ρ for some ρ > 0.

Let p−(s) :=
∑

j≤N−1 pje
2πisj . Then p−(s) is analytic for =s < −ρ and

p−(s) = e2πis(N−1)O(1), s→∞ on H. Moreover, p+(s) =
∑

j≥N pje
2πisj is

an entire function.
First consider p−(s)f(s). The properties of p− imply

p−(s)f(s) ∈ A≤−1+
((h− 1

2)π, hπ] ⊂ A≤−1+
(Q−).(7.3)

For ε > 0, let Sε := S((h − 1
2)π − ε, (h − 1

2)π + ε). In order to prove
that p−(s)f(s) ∈ A≤−1(D ∩ H) it is sufficient to show, that with any θ ∈
(θN , θN−1) we can find positive constants K, c and ε, such that

|p−(s)f(s)| ≤ Ke−c|s|, s ∈ D(h; θ) ∩ Sε, =s < −ρ.(7.4)

As p−(s)f(s) = O(1) exp(ds log s+ 2πis(b+N − 1) + o(s)), s→∞ on H, it
is sufficient to prove that

<{ds log s+ 2πis(b+N − 1)} ≤ −c|s|,∀s ∈ D(h; θ) ∩ Sε,(7.5)

for some c > 0.
So let θ ∈ (θN , θN−1). On D(h; θ) we have:

<{ds log s+ 2πis(b+N − 1)}
= d<{s(log s+ iθ) + is(2π

d (b+N − 1)− θ)}
< −d[=s(θN−1 − θ) + 2π

d <s=b]

= −d sin(arg s)(θN−1 − θ)|s|
(

1 +
2π=b

d(θN−1 − θ)
cot(arg s)

)
.

We have d sin(arg s)(θN−1−θ) > 0 on H. Furthermore, there exists an ε > 0
such that

∣∣∣ 4π=b
d(θN−1−θ) cot(arg s)

∣∣∣ < 1, ∀s ∈ Sε. Thus (7.5) and (7.4) follow.

Next consider p+(s)f(s). As p(s)f(s), p−(s)f(s) ∈ A≤−1+
((h − 1

2)π, hπ],
also p+(s)f(s) belongs to this set. Moreover, f(s) ∈ A≤−1+

(H2h) and
|p+(s)| ≤ Ke−2πN=s, =s ≥ −ρ for some K > 0, and therefore p+(s)f(s) ∈
A≤−1+

(H2h). To prove the lemma it now suffices to prove that p+f ∈
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A≤−1(D ∩ H2h+1), hence that for any θ ∈ (θN , θN−1) we can find positive
constants K, c and ε, such that

|p+(s)f(s)| ≤ Ke−c|s|,∀s ∈ D(h; θ) ∩ S((h+ 1
2)π − ε, (h+ 1

2)π + ε).

A proof of this inequality runs along the same lines as that of (7.4). �

The following proposition extends the results of Proposition 10.

Proposition 20. Let k1 < · · · < kr be the positive levels ≤ 1 of equation
(1.1) and assume that (1.1) has a level 1+.

Let M be odd. Assume α < Mπ/2, β > (M + 2)π/2 such that I =
(α, β) does not contain a Stokes interval of level 1 of (1.1). Define Γµ :=
Hµ ∩ S(α, β) for µ = M,M + 1,M + 2. Assume θ̃, θ ∈ R, θ̃ < θ, such
that (θ̃, θ) does not contain any Stokes number of level 1+ of (1.1). Define
D := D(1

2(M + 1); θ̃, θ).
Assume we have fundamental systems {flu

(µ)
l }n

l=1, µ = M,M + 1,M + 2
such that for all l ∈ {1, . . . , n}:

(i) u(µ)
l ∈ (A(1/k1))n(Γµ)[log s], u(µ)

l ∼ ûl on Γµ if µ = M,M + 1,M + 2,

(ii) u(µ+1)
l − u

(µ)
l ∈ (A≤−1+

)n(Γµ ∩ Γµ+1) if µ = M,M + 1.
Then there exists a fundamental system {flũl}n

l=1 of equation (1.1) such
that for all l ∈ {1, . . . , n}:

ũl − u
(µ)
l ∈ (A≤−1)n(D ∩Hµ) if µ = M,M + 2,(7.6)

ũl − u
(M+1)
l ∈ (A≤−1+

)n(HM+1).(7.7)

Moreover, for each l ∈ {1, . . . , n} the function ũl ∈ (A(1/k1))n(D)[log s]
is uniquely determined by these properties.

Remark. We can find α and β satisfying the above conditions if and only
if [νπ−π/2, νπ+π/2] is not a Stokes interval of level 1 for any ν ∈ Z. This
corresponds to the condition that <bl 6= <bm if bl 6= bm.

Proof. Throughout the proof l,m ∈ {1, . . . , n}. Let h := (M + 1)/2, so h is
an integer. We will write m ≺ l if fml ∈ A≤−1+

(H2h), and I(l) := {m | m ≺
l}. The relation ≺ gives a partial ordering on {1, . . . , n}. We will prove the
proposition by induction with respect to this partial ordering.

Let p(µ)
m , µ = M,M + 1, be the 1-periodic analytic functions such that

u
(µ+1)
l − u

(µ)
l =

n∑
m=1

p(µ)
m fmlu

(µ)
m , µ = M,M + 1.(7.8)

As u(µ+1)
l − u

(µ)
l ∈ (A≤−1+

)n(Γµ ∩ Γµ+1) by assumption, it follows from
Lemma 7 that each of the summands must belong to this set. If m 6∈ I(l)
then edmls log s is unbounded on H2h, so <dmls is positive on H2h. Therefore
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fml 6∈ A≤−1+
(Γµ ∩ Γµ+1) for µ = M,M + 1 and Lemma 8 tells us that

p
(µ)
m = 0. So in (7.8) we only need to sum over m ∈ I(l).
First let l be such that I(l) = ∅. Then u(µ)

l is independent of µ ∈ {M,M+
1,M + 2} and ũl = u

(µ)
l satisfies (7.6) and (7.7).

Now let l be such that ũm have been defined, and satisfy (7.6) and (7.7)
for all m ∈ I(l). The functions fmũm,m ∈ I(l), together with the functions
fmu

(M+1)
m ,m 6∈ I(l), form a fundamental system of solutions. With the aid

of Lemmas 7 and 8 we may conclude as above that

u
(M+1)
l − u

(M)
l =

∑
m∈I(l)

p̃(M)
m fmlũm,

for some 1-periodic analytic functions p̃(M)
m on a neighbourhood of ∞ in

Q := ΓM ∩ ΓM+1, and p̃
(M)
m fml ∈ A≤−1+

(Q). According to Lemma 19
the functions p̃(M)

m (s) can be written as p(M)
m− (s) + p

(M)
m+ (s) with p

(M)
m− fml ∈

A≤−1(D ∩ HM ) and p
(M)
m+ fml ∈ A≤−1(D ∩ HM+2) ∩ A≤−1+

(HM+1). We
define

ul,1 := u
(M)
l +

∑
m∈I(l)

p
(M)
m− fmlũm,

so that ul,1 − u
(M)
l ∈ (A≤−1)n(D ∩HM ) and

ul,1 − u
(M+1)
l

= −
∑

m∈I(l)

p
(M)
m+ fmlũm ∈

(
A≤−1

)n
(D ∩HM+2) ∩

(
A≤−1+

)n
(HM+1).

From these relations and assumption (ii) it follows that u(M+2)
l − ul,1 ∈

(A≤−1+
)n(ΓM+1 ∩ ΓM+2) and as above we find that there exist 1-periodic

functions p(M+1)
m− (s), p(M+1)

m+ (s), m ∈ I(l), such that

u
(M+2)
l − ul,1 =

∑
m∈I(l)

(
p
(M+1)
m− fmlũm + p

(M+1)
m+ fmlũm

)
,

where the first term of each summand belongs to (A≤−1)n(D∩HM+2), and
the second one to (A≤−1)n(D∩HM )∩(A≤−1+

)n(HM+1). Hence, if we define

ũl := u
(M+2)
l −

∑
m∈I(l)

p
(M+1)
m− fmlũm,

then

ũl = ul,1 +
∑

m∈I(l)

p
(M+1)
m+ fmlũm,
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and it is easy to verify that ũl satisfies (7.6) and (7.7). The uniqueness of
ũl follows from Theorem 15. �

Theorem 18 can be proved similarly to Theorem 13, with the aid of Propo-
sitions 9, 10 and 20.
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