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We show that Rubinstein–Scharlemann graphics for 3-mani-
folds can be regarded as the images of the singular sets
(: discriminant set) of stable maps from the 3-manifolds into
the plane. As applications of our understanding of the graphic,
we give a method for describing Heegaard surfaces in 3-mani-
folds by using arcs in the plane, and give an orbifold version
of Rubinstein–Scharlemann’s setting. Then by using this set-
ting, we show that every genus one 1-bridge position of a non-
trivial two bridge knot is obtained from a 2-bridge position in
a standard manner.

1. Introduction.

In this paper, we show that Rubinstein-Scharlemann graphics for 3-manifolds
can be regarded as the images of the singular sets (: discriminant set) of sta-
ble maps from the 3-manifolds into the plane, and as applications, we give
a method for describing Heegaard surfaces in 3-manifolds by using arcs in
the plane, and give an orbifold version of Rubinstein-Scharlemann’s setting.
Then by using this setting, we show that every genus one 1-bridge position
of a non-trivial two bridge knot is obtained from a 2-bridge position in a
standard manner.

In [18], Rubinstein-Scharlemann introduced a powerful machinery, which
is called a graphic, for studying Heegaard splittings of 3-manifolds, and suc-
ceeded to obtain deep results on the Reidemeister-Singer distance of two
strongly irreducible Heegaard splittings of a 3-manifold. We note that Ru-
binstein and Scharlemann derived a graphic from two Heegaard splittings of
a 3-manifold via Cerf theory [5]. Then the purpose of this paper is to intro-
duce another way for understanding the graphic. That is, we show that we
can regard a graphic as the image of the singular set of a “stable map”(for
definition, see Sect. 3) from the 3-manifold into the plane R2(Theorem 4.2).

An immediate consequence of this is that we can regard a Heegaard sur-
face as the preimage of an arc in R2, and as an application of our understand-
ing, we first give a method for instructing a procedure for deforming one
Heegaard surface to the other by using the arcs as above (Proposition 5.4),
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and describe how stabilization works in this setting (Proposition 5.6). In
[19], Rubinstein and Scharlemann give a generalization of results in [18]
for 3-manifolds with boundary. As the second application, we will give an-
other formulation for generalizing the idea in [18] for link spaces. In fact,
we will introduce an orbifold version of the Rubinstein-Scharlemann type
argument(Sect. 6), and, by using this, we show that any genus one 1-bridge
position of a 2-bridge knot is obtained from a 2-bridge position in a standard
manner (Theorem 8.2).

2. Rubinstein-Scharlemann graphic.

Throughout this paper, we work in the differential category, and for standard
terminology in 3-dimensional topology, we refer to [9], and [11].

In this section, we quickly review the setting of Rubinstein-Scharlemann’s
paper [18].

Let M be a closed orientable 3-manifold.

Definition 2.1. We say that a decomposition M = A ∪P B is a (genus g)
Heegaard splitting of M if A, B are 3-dimensional genus g handlebodies in
M such that M = A∪B, A∩B = ∂A = ∂B = P . Then P is called a (genus
g) Heegaard surface of M .

Definition 2.2. A disk D properly embedded in a handlebody H is called
a meridian disk of H if ∂D is an essential simple closed curve in ∂H.

Definition 2.3. A Heegaard splitting M = A ∪P B is stabilized, if there
are meridian disks DA, DB of A, B respectively such that ∂DA and ∂DB

intersects transversely in a single point.

Remark 2.4. We note that a genus g Heegaard splitting M = A ∪P B is
stabilized if and only if there exists a genus g−1 Heegaard splitting A′∪P ′B

′

such that A ∪P B is obtained from A′ ∪P ′ B
′ by adding a “trivial” handle.

Then we say that M = A∪P B is obtained from A′∪P ′ B
′ by a stabilization.

Definition 2.5. A Heegaard splitting M = A ∪P B is reducible, if there
exist meridian disks DA, DB of A, B respectively such that ∂DA = ∂DB.

Definition 2.6. A Heegaard splitting M = A ∪P B is weakly reducible, if
there exist meridian disks DA, DB of A, B respectively such that ∂DA ∩
∂DB = ∅.
Remark 2.7. It is easy to see that if a Heegaard splitting M = A ∪P B
is reducible then it is weakly reducible. And it is also easy to see that if
M = A ∪P B is stabilized and is not a genus one Heegaard splitting of the
3-sphere S3, then it is reducible.

Remark 2.8. It is known, by Haken [8], that if M is reducible (that is,
if M is a connected sum of two 3-manifolds which are not S3), then any
Heegaard splitting of M is reducible.
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Remark 2.9. It is known, by Casson-Gordon [4], that if a Heegaard split-
ting M = A ∪P B is weakly reducible, then either it is reducible, or M
contains an incompressible surface.

Setting of Rubinstein-Scharlemann graphic.
Let A∪P B, X∪QY be a pair of Heegaard splittings of a closed 3-manifold

M . Let ΘA, ΘB, ΘX , ΘY be spines of A, B, X, Y respectively such that
(except for genus 0, or 1 Heegaard splittings) each vertex of ΘA, ΘB, ΘX ,
ΘY has valency 3 (see Figure 2.1). Note that for a genus 0 handlebody (:the
3-ball) B3, we let the spine of B3 be a point in IntB3, and for a genus 1
handlebody (:solid torus), we let the spine be a core circle of the solid torus.
Then M−(ΘA∪ΘB) is homeomorphic to P×(0, 1), where P×{ε} is close to
ΘA, and P×{1−ε} is close to ΘB for a small ε > 0. We let Ps be the surface
in M corresponding to P ×{s}. Then, by regarding P0 = ΘA, and P1 = ΘB,
we obtain a continuous map H : P ×I → M such that H(P, s) = Ps, and we
call this a sweep-out associated to A∪P B. Similarly we obtain a sweep-out
G : Q× I → M associated to X ∪Q Y , and set G(Q, t) = Qt.

Here we may suppose that ΘA ∪ΘB and ΘX ∪ΘY , ΘA ∪ΘB and G, and
ΘX ∪ΘY and H are in general positions. This implies that “H(P × [0, ε])∪
H(P × [1− ε, 1]) and G”, “G(Q× [0, ε])∪G(Q× [1− ε, 1]) and H” are in a
“standard” position. That is:

Regard G(Q×(0, 1)) G−1

→ Q×(0, 1)
proj.→ (0, 1) as a height function.

Then except for a neighborhood of the maxima and minima (with
respect the height function) and vertices of ΘA, each component
of H(P × [0, ε]) ∩ Qt is a meridian disk intersecting ΘA in one
point (for a small ε > 0), and in the neighborhoods Qt looks as
in Figure 2.2. The same picture holds for the other pair.

Figure 2.1.
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Figure 2.2.

Then, by Cerf [5], we see that for “generic” sweep-outs H, G we obtain
a stratification of Int(I × I) which consists of four parts below.

Regions: Each region is a component of the subset of Int(I×I) consist-
ing of values (s, t) such that Ps and Qt intersect transversely, and this
is an open set.

Edges: Each edge is a component of the subset consisting of values
(s, t) such that Ps and Qt intersect transversely except for one non-
degenerate tangent point. The tangent point is either a “center” or
a “saddle”. Edge is a 1-dimensional subset of Int(I × I), which is
monotonously increasing or decreasing.

Figure 2.3.

Figure 2.4.

Crossing vertices: Each crossing vertex is a component of the subset
consisting of points (s, t) such that Ps and Qt intersect transversely
except for two non-degenerate tangent points. Crossing vertex is an
isolated point in Int(I × I). In a neighborhood of a crossing vertex,
four edges are coming in, where one can regard the crossing vertex as
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the intersection of two edges `1, `2 with the signs of the slopes of `1

and `2 are either different or the same.

Figure 2.5.

Figure 2.6.

Birth-death vertices: Each birth-death vertex is a component of the
subset consisting of points (s, t) such that Ps and Qt intersect trans-
versely except for a single degenerate tangent point. In particular,
there is a parametrization (λ, µ) of I × I such that Ps = {(x, y, z)|z =
0}, and Qt = {(x, y, z)|z = x2 + λ + µy + y3}. A birth-death vertex is
an isolated point in Int(I × I), and in a neighborhood of a birth-death
vertex, two edges `1, `2 are coming in, with one from center tangency,
the other from saddle tangency, and the signs of the slopes of `1 and
`2 the same.
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Figure 2.7.
Let Γ be the union of edges and vertices above. By the above, Γ is a

1-complex in Int(I × I). Since we have assumed that H, G are standard in
a regular neighborhood of ΘA ∪ΘB ∪ΘX ∪ΘY , we see that the 1-complex
Γ naturally extends to ∂(I × I). We abuse Γ to denote this 1-complex, and
we call Γ a graphic (obtained from the sweep-outs H, G).

Figure 2.8

Example 2.10. We show that there exist infinitely many 3-manifolds, and
a pair of Heegaard splittings, say A∪P B, X ∪Q Y , of each 3-manifold such
that the corresponding graphic is as in Figure 2.9.

Figure 2.9.

Note that the picture admits 4-fold (Z2⊕Z2) symmetry, and we will give
an explicit description of the Heegaard surfaces belonging to the lower-left
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quarter of I×I, which can be naturally extended to the whole picture under
the above symmetry.

We may regard the Heegaard surface P as P1/2, and Q as Q1/2. Then
A and A ∩ Qε (0 ≤ ε ≤ 1/2) look like as follows. (Here we suppose that
A admits a symmetry generated by ϕ1, ϕ2 in Figure 2.10, where ϕ1 is an
orientation preserving involution which changes the right side and the left
side of A with the fixed point set an arc properly embedded in A, and ϕ2 is
an orientation reversing involution which changes the right side and the left
side of A with the fixed point set a disk properly embedded in A.)

A ∩ Q0 (= A ∩ ΘX) is a 1-complex as in Figure 2.10. Then, when ε is
sufficiently small, A ∩Qε is the frontier of a regular neighborhood of the 1-
complex (the surface is homeomorphic to a torus with one hole). If we make
ε bigger, then we come to the point (1) of Figure 2.9 and simlutaneously
four points in the boundary of a torus Qε tend to four directions as in (1)
of Figure 2.10.

Figure 2.10.

Then, by making ε bigger further, we come to the point (2) and, then, (3)
(: ε = 1/2), where the corresponding figures of A∩Qε look as in Figure 2.11.

When we come to the point (2), the boundary component touches itself
simultaneously in two places. In the right side, a band is produced, and, in
the left side, the surface is boundary compressed when we pass the point (2).

Note that A ∩Q1/2 is a vertical surface (which is a disk with two holes),
which is located in the middle of A, that is, A ∩Q1/2 is invariant under ϕ1,
and ϕ1 exchanges the components of A−Q1/2.

Figure 2.11.
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Figures 2.12 describes the deformations (4) → (5). When we come to
(5) from (1) with passing the edge containing (4), a torus with one hole is
boundary compressed and becomes an annulus.

Figure 2.12.

Figure 2.13 describes the surface of (6). When we come to (6) from (5),
two points of a boundary component of an annulus tend to the right side
and touch and a band is produced, and simultaneously two points contained
in diferent boundary components of an annulus tend to the back of A and
the surface is boundary copressed.

Figure 2.13.

Figures 2.14 and 2.15 describe the surfaces of (7), (8), and (9). At (7)
Q∩A is an inessential disk properly embedded in A. When we come to (8)
from (7), two points of the boundary of a disk tend to the right side and
touch at a middle part of A, and simultaneously two points in the boundary
of a disk tend to the back of A and the surface is boundary comressed. As
a result, an inessential disk becomes a separating essential disk in A.

Figure 2.14.
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Figure 2.15.

Figure 2.16 describes (10). When we come to (10) from (7) with passing
an edge, an inessential disk is boundary compressed and becomes two non-
separating disks.

Figure 2.16.

Let A∩Q1−ε = ϕ1(A∩Qε) (0 ≤ ε ≤ 1/2), which gives the whole descrip-
tion of Qt (0 ≤ t ≤ 1) in A.

Let B be a copy of A, and f : A → B the homeomorphism induced by the
identification, and φ = f |∂A : ∂A → ∂B the corresponding homeomorphism.
Let F be the pattern on ∂A induced by Qt’s. Let M be the 3-manifold
obtained by attaching A to B by the homeomorphism φ ◦ ϕ′2, where ϕ′2 :
∂A → ∂A is isotopic to ϕ2 with ϕ′2(F) = F , and ϕ′2(`2) = `1, ϕ′2(`1) = `2.
(Note that M is actually the connected sum of two S2 × S1’s.) We note
that F is invariant under ϕ2, and, hence, the surfaces Qt (0 < t < 1) in A
are matched to the surfaces f ◦ ϕ2(Qt) (0 < t < 1) in B to make a system
of closed surfaces, say Qt again, in M . It is directly observed from the
pictures that Qt gives a sweep out G : Q × I → M , and, by construction,
we immediately see that the corresponding graphic is as in Figure 2.9.

Then let `1, `2 be the components of ∂(A ∩Q1/2) as in Figure 2.11, and
Di : ∂A → ∂A (i = 1, 2) the Dehn twist along `i. For a pair of integers
(p, q), we let M(p,q) be the manifold obtained by attaching B to A by the
homeomorphism φ ◦ Dp

1 ◦ Dq
2 ◦ ϕ2 : ∂A → ∂B. Since there is a regular

neighborhood N(`i, ∂A) such that F restricted to N(`i, ∂A) is a foliation
by circles parallel to `i, we can arrange so that the configuration of the
sweep-outs H and G are respected in M(p,q) (and, hence, the corresponding
graphic is the same as above). It is easy to see that M(p,q) is a connected
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sum of two lens spaces L(p, 1), and L(q, 1), which implies the existence of
infinitely many examples.

We note that it is easy to see from Figure 2.11, that the Heegaard surfaces
are isotopic in each of the examples.

Example 2.11. By using the arguments in Example 2.10, we show that
there exist infinitely many 3-manifolds, and a pair of Heegaard splittings,
say A∪P B, X∪Q Y , of each 3-manifold such that the corresponding graphic
is as in Figure 2.17.

Figure 2.17.

As in Figure 2.10, Qε is a torus with one hole which is the frontier of a
regular neighborhood of a 1-complex for a small ε > 0. Four points in the
boundary of the torus with one hole tend to four directions according as the
expansion of the regular neighborhood.

Figure 2.18.

When we come to (3a) from (1) with passing (2), a band which goes
around the right handle twice is produced, and a slit in the surface which
goes around the left handle twice occurs to produce a boundary compression.
As a result, a torus with one hole becomes a disk with two holes.
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Figure 2.19.

Figure 2.20a.

Note that in (3b), Q1/2 is invariant with respect to the involution ϕ1.

Figure 2.20b.

When we come to (6) from (3b) with passing (4), two boundary compres-
sions occur, and a disk with two holes becomes a separating essential disk
in A.

Figure 2.21.
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In the following, we show pictures with turning back to front for the
convenience of drawing.

When we come to (5) from (3b) with passing an edge, the right band is
boundary compressed and a disk with one hole becomes an annulus.

When we come to (6) from (5) with passing an edge, an annulus is bound-
ary compressed to become a separating essential disk.

Figure 2.22.

Figure 2.23.

When we come to (6) from (1) with passing (7), two bands, one of which
goes around the left handle once and the other goes around the left handle
twice are produced.

Figure 2.24.

When we come to (8) from (1) with passing an edge, a torus with one
hole is boundary compressed and the punctured torus become an annulus.
When we come to (8) from (6) with passing an edge, a band which goes
around the left handle once is attached and the disk becomes an annulus.
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Figure 2.25.

When we come to (6) from (10) with passing (9), two points of the bound-
ary of an inessential disk tend to the right side and touch at a middle part
of A, and simultaneously two points in the boundary of a disk tend to the
back of A and touch to produce a boundary compression. As a result, an
inessential disk becomes a separating essential disk in A.

Figure 2.26.

When we come to (11) from (10) with passing an edge, an inessential disk
is boundary compressed and becomes two non-separating disks.

Figure 2.27.

Note that, by using the arguments in the previous example, we can show
that such 3-manifolds are obtained from A and B by pasting their boundaries
applying the Dehn twists along ` in Figure 2.20b. Note that, as a result of
this construction, we obtain 3-manifolds each of which is a union of two
Seifert fibered spaces with orbit space a disk with two exceptional fibers
of index two, and the exterior of a (2, 2n)-torus link (see [13]). Note that
except in one case (case n = 0) they are Haken manifolds.
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3. Stable maps.

The purpose of this section is to show that any differentiable map from an n-
manifold into a surface can be deformed to an “excellent” (:stable) map, and
this assertion is an essential part of this paper. In the following, manifolds
have countable basis and all manifolds and maps are assumed to be C∞.

Let M be a connected n-dimensional manifold (possibly with boundary)
with n ≥ 2 and N a surface without boundary. For a smooth map f : M →
N , S(f) denotes the singular set of f ; i.e., S(f) is the set of the points in M
where the rank of the differential df is strictly less than 2. The discriminant
set is the image of the singular set, f(S(f)). We denote by C∞(M,N) the
space of the smooth maps of M into N endowed with the Whitney C∞

topology (fine topology) (see [7, 10]).

Definition 3.1. A smooth map f : M → N is stable if there exists a
neighborhood U of f in C∞(M,N) such that for each g ∈ U there exist
diffeomorphisms H : M → M and h : N → N which make the following
diagram commutative.

M
f−−−→ N

H

y yh

M −−−→
g

N

Definition 3.2. Let f : M → N be a proper smooth map of an n-dimensio-
nal manifold M (n ≥ 2) into a surface N without boundary. For an open
set U of N , we say that f is excellent on U , if f−1(U) ∩ ∂M = ∅ and
the following conditions are satisfied: For all p ∈ f−1(U), there exist local
coordinates (u, x, y1, · · · , yn−2) centered at p and (X, Y ) centered at f(p)
such that f has one of the following forms:

L0) X ◦ f = u, Y ◦ f = x (p : regular point)

L1) X ◦ f = u, Y ◦ f = ±x2 +
n−2∑
i=1

±y2
i (p : fold point)

L2) X ◦ f = u, Y ◦ f = ux− x3 +
n−2∑
i=1

±y2
i (p : cusp point);

and

G1) If p ∈ f−1(U) is a cusp point, then f−1(f(p)) ∩ S(f) = {p},
G2) f |(S(f)∩f−1(U)−{cusp points}) is an immersion with normal crossings.
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Note that it is well known that a proper smooth map f : M → N of a
manifold M with ∂M = ∅ is stable if and only if f is excellent on N (see
[7, 14]). The terminology “excellent”comes from [22, §2].

The main purpose of this section is to prove the following.

Theorem 3.3. Let f : M → N be a proper smooth map. Suppose that F
is a closed 2-dimensional submanifold (possibly with boundary) of N such
that f−1(IntF ) ⊃ ∂M . Furthermore we suppose that f is excellent on a
neighborhood of ∂F and that f is transverse to ∂F . Furthermore, let V
be an arbitrary open neighborhood of f in C∞(M,N). Then there exists a
smooth map g : M → N such that

(1) g ∈ V,
(2) g = f on f−1(F ) = g−1(F ),
(3) g is excellent on a neighborhood of N − IntF .

Remark 3.4. In Theorem 3.3 the condition (2) is essential. In fact, if we
drop the condition (2), it has already been well known.

In the following, we use the following notation. For manifolds X and Y ,
Jk(X, Y ) denotes the k-jet bundle over X×Y , i.e., Jk(X, Y ) = {(x, y, jk(x))|
x ∈ X, y ∈ Y ∃f : X → Y : C∞ s.t. f(x) = y}. For integers s ≥ 1 and k ≥ 0,
Jk

s (X, Y ) denotes the s-fold k-jet bundle ([7, p. 57]). We denote by X(s)

the subset of Xs = X × · · · ×X (the s-fold product space of X) consisting
of the elements (x1, · · · , xs) such that xi 6= xj for i 6= j. We denote by π :
Jk

s (X, Y ) → X(s)×Y s the canonical projection and by πY : Jk
s (X, Y ) → Y s

the natural projection to the target. We set ∆s
Y = {(y, · · · , y) ∈ Y s} and

d : ∆s
Y → Y is the natural identification map. Furthermore, for a smooth

map f : X → Y , jk
s f : X(s) → Jk

s (X, Y ) denotes the s-fold k-jet of f . (For
details, see [7, Chapter II, §4].)

In order to prove Theorem 3.3, we need the following.

Proposition 3.5. Let f : X → Y be a smooth map between manifolds
(Y need not be a surface). Let W be a submanifold of Jk

s (X, Y ) such that
πY (W ) ⊂ ∆s

Y . Suppose that U is an open subset of Y and that V is an open
neighborhood of f in C∞(X, Y ). Then there exists a smooth map g : X → Y
such that

(1) g ∈ V,
(2) g = f on f−1(U) = g−1(U),
(3) jk

s g is transverse to W on W ∩ π−1
Y (d−1(Y − U)).

Proof. Set W ′ = W ∩ π−1
Y (d−1(Y − U)), which is an open submanifold of

W . Then there exists a countable family {Wr}∞r=1 of open sets of W ′ with
the following properties (a)-(f).

(a) ∪∞r=1Wr = W ′.
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(b) Wr ⊂ W ′, where Wr denotes the closure of Wr in Jk
s (X, Y ).

(c) Wr is compact.
(d) There exist coordinate neighborhoods Ur,1, · · · , Ur,s in X and Vr,1, . . . ,

Vr,s in Y such that {Ur,i}s
i=1 are mutually disjoint and π(Wr) ⊂ Ur,1× · · · ×

Ur,s × Vr,1 × · · · × Vr,s.
(e) Ur,i is compact for 1 ≤ ∀i ≤ s.
(f) Vr,i ∩ U = ∅ for 1 ≤ ∀i ≤ s.
Using this family {Wr}∞r=1 in the argument of [7, proof of Theorem 4.13

(p. 58)] or [15, pp. 311-312], we see that there exists a smooth map gr :
X → Y such that jk

s gr : X(s) → Jk
s (X, Y ) is transverse to W on Wr and that

gr = f on f−1(U) = g−1
r (U) in an arbitrary neighborhood of f in C∞(X, Y ).

Thus, putting

Cf,U = {g ∈ C∞(X, Y ) : g = f on f−1(U) = g−1(U)},
we see that

Dr = Cf,U ∩ {g ∈ C∞(X, Y ) : jk
s g is transverse to W on Wr}

is dense in Cf,U . On the other hand, Dr is open by [7, Lemma 4.14 (p. 57)].
The proposition is proved if we show that ∩∞r=1Dr is dense in Cf,U . Thus we
have only to show that Cf,U is a Baire space (see [7, Definition 3.2 (p. 44)]).
First note that Cf,U is a closed subset of C∞(X, Y ). Then by imitating the
proof of [7, Proposition 3.3 (p. 44)], we see easily that Cf,U is a Baire space.
This completes the proof. �

Let M and N be as in Theorem 3.3. We consider some submanifolds of the
(multi-)jet bundles as follows. For the jet bundle J3(M,N), we consider the
four submanifolds Σn−1,0,Σn,0,Σn−1,1,0 and Σn−1,1,1,0 as defined in [1] (or [7,
p. 156, Sect. 5]. Note that their codimensions are equal to n− 1, 2n, n and
n+1 respectively by [1, Theorem (6.2)]. For the multi-jet bundle J3

2 (M,N),
we consider

S1
2 = {(j3f(p), j3g(q)) : f(p) = g(q), j3f(p) ∈ Σn−1,0, j3g(q) ∈ Σn−1,0},

S2
2 = {(j3f(p), j3g(q)) : f(p) = g(q), j3f(p) ∈ Σn−1,0, j3g(q) ∈ Σn−1,1,0},

S3
2 = {(j3f(p), j3g(q)) : f(p) = g(q), j3f(p) ∈ Σn−1,1,0, j3g(q) ∈ Σn−1,1,0}.

For the multi-jet bundle J3
3 (M,N), we consider

S1
3 = {(j3f(p), j3g(q), j3h(r)) : f(p) = g(q) = h(r),

j3f(p), j3g(q), j3h(r) ∈ Σn−1,0}.

Note that S1
2 , S2

2 , S3
2 and S1

3 are easily seen to be submanifolds and that
their codimensions are equal to 2n, 2n + 1, 2n + 2 and 3n + 1 respectively.

For a smooth map f : M → N , we have the following facts:
(1) j3f is transverse to Σn−1,0,Σn,0,Σn−1,1,0 and Σn−1,1,1,0 if and only if

f exhibits only fold and cusp points as its singularities.
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(2) Suppose f satisfies (1). Then j3
3f is transverse to S1

3 if and only if
f |(S(f)−{cusp points}) has no multiple points of multiplicity greater than two.

(3) Suppose f satisfies (1) and (2). Then j3
2f is transverse to S1

2 if and
only if f |(S(f)−{cusp points}) is an immersion with normal crossings (see [7,
Proposition 5.6 (p. 158)]).

(4) Suppose f satisfies (1). Then j3
2f is transverse to S2

2 and S3
2 if and

only if for every cusp point p of f , we have f−1(f(p)) ∩ S(f) = {p}.
Using the above facts, we obtain the following.

Lemma 3.6. Let f : M → N be a proper smooth map of an n-dimensional
manifold M (n ≥ 2) into a surface N . For an open set U of N , f is excellent
on U if and only if f−1(U) ∩ ∂M = ∅ and the jets of f are transverse to
Σn−1,0,Σn,0,Σn−1,1,0,Σn−1,1,1,0, S1

2 , S2
2 , S3

2 and S1
3 on the part corresponding

to f−1(U).

Proof of Theorem 3.3. Set U = IntF . By Proposition 3.5 and Lemma 3.6,
we see that there exists a smooth map g : M → N such that g ∈ V, g = f
on f−1(U) = g−1(U) and that g is excellent on N − F . Since f and g are
continuous and N is Hausdorff, we see that g = f on the closure of f−1(U).

However, we do not know if g is excellent on a neighborhood of N − IntF .
This is because there is a possibility of a point in f−1(N−F ) being mapped
into ∂F by g. In order to exclude this possibility, we modify the argument
as follows.

Since ∂F is a closed submanifold of N , the set of maps of M into N
transverse to ∂F forms an open set of C∞(M,N) (see [7, Proposition 4.5 (p.
52)]). Thus we may assume that every map in the open set V is transverse
to ∂F from the beginning. Furthermore, since the set of the proper maps
of M into N forms an open set (see [10, Theorem 1.5 (p. 38)]), we may
further assume that every element of V is a proper map. We may further
assume that each element of V maps ∂M into F − V by a similar reason,
where V is a closed neighborhood of ∂F in N . Now suppose that g ∈ V.
Then, since g−1(∂F ) is a closed regular submanifold of IntM , we see that
the closure of g−1(U) is equal to g−1(F ). Since f = g on the closure of
f−1(U) and f−1(U) = g−1(U), we see that f = g on f−1(F ) = g−1(F ).
Combining the facts that g is excellent on N − F and that f is excellent
on a neighborhood of ∂F , we see that g is excellent on a neighborhood of
N − IntF . This completes the proof of Theorem 3.3. �

Remark 3.7. Results similar to Theorem 3.3 hold for some other dimension
pairs as well.

4. Graphic as the discriminant set.

Let ΘA,ΘB,ΘX ,ΘY , H, G be as is Section 2, where H, G may not be
generic. In this section, we first observe that we can obtain a smooth map
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f : M − (ΘA ∪ ΘB ∪ ΘX ∪ ΘY ) → I × I from H and G, and we show, by
using Theorem 3.3, that f can be deformed to a map Φ which is excellent
in the exterior of a regular neighborhood of ΘA ∪ ΘB ∪ ΘX ∪ ΘY by an
arbitrarily small deformation. Then we see that we can obtain sweep-outs
H ′, G′ associated to A ∪P B, X ∪Q Y respectively from Φ, which have
the feature “generic” in Sect. 2. Finally we observe that the corresponding
graphic is actually the discriminant set (for the definition, see Sect. 3) of Φ.

Let M be a closed 3-manifold. In this section we consider a smooth map
f from M to the Euclidean space R2. Recall that S(f) denotes the set of
singular points (or singular set) of f . That is,

S(f) = {q ∈ M | rank (dfq : TqM → Tf(q)R2) ≤ 1}.

Then as a special situation of Definition 3.2, we have:

Definition 4.1. Let f : M → R2 be a smooth map. For an open set U of
R2, we say that f is excellent on U if f−1(U) ∩ ∂M = ∅, and the following
conditions are satisfied.

(1) For each point q ∈ S(f) there exist local coordinates (u, x, y) for q,
and (X, Y ) for f(q) such that:

(1-1) X ◦ f = u, Y ◦ f = x2 + y2, or
(1-2) X ◦ f = u, Y ◦ f = x2 − y2, or
(1-3) X ◦ f = u, Y ◦ f = y2 + ux− x3.
(2) For each cusp q, f−1(f(q)) ∩ S(f) = {q} (that is, the fiber which

contains q does not contain another singular point).
(3) f |S(f)−{cusps} is an immersion (possibly) with normal crossing (that

is, an immersion (possibly) with transverse self intersections).

We call a singular point of type (1-1) ((1-2) resp.) a definite fold (indefinite
fold resp.). Recall that a singular point of type (1-3) is called a cusp.

Figure 4.1.
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Figure 4.2.

Figure 4.3.

Figure 4.4.
Now we describe the relationship between graphic and excellent map. Let

M , A ∪P B, X ∪Q Y , ΘA, ΘB, ΘX , and ΘY be as in Section 2. (Here we
suppose that ΘA ∪ΘB and ΘX ∪ΘY are in general position.)

Let H, G be sweep-outs obtained from the Heegaard splittings A ∪P B,
X ∪Q Y respectively. We may suppose that H|P×(0,1) : P × (0, 1) → M −
(ΘA ∪ ΘB) and G|Q×(0,1) : Q × (0, 1) → M − (ΘX ∪ ΘY ) are smooth. Let
Φ : M − (ΘA ∪ΘB ∪ΘX ∪ΘY ) → I × I be the map defined by:

(∗) Φ(p) = (s, t) ⇐⇒ p ∈ Ps ∩Qt.

Since H|P×(0,1), G|Q×(0,1) are smooth maps, we see that Φ is also smooth.
Since {Ps} and ΘX ∪ΘY , {Qt} and ΘA ∪ΘB are generic, we see that:
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(∗1) H (G resp.) is standard (see Sect. 2) in a small regular
neighborhood N(ΘX∪ΘY ) of ΘX∪ΘY (N(ΘA∪ΘB) of ΘA∪ΘB

resp.), and, hence, Φ is transverse to the frontier of a regular
neighborhood of ∂(I × I) in I × I.

By Theorem 3.3, we see that we can deform Φ in M − (N(ΘA ∪ ΘB) ∪
N(ΘX ∪ ΘY )) by an arbitrarily small deformation, to a map Φ′ which is
excellent on the complement of the regular neighborhood of ∂(I × I) in
I × I, and this together with (∗1) implies that Φ′ is excellent on Int(I × I).

Since Φ′ is obtained from Φ by a small deformation, we may suppose:
(∗2) pr1 ◦ Φ′, pr2 ◦ Φ′ have no critical points, where pr1, pr2 :
I × I → I are the projections to the first, and second factors
respectively.

By condition (∗2), we see that, there exist sweep-outs H ′, G′ such that
H ′(P × {s}) = Φ′−1({s} × I), and G′(Q× {t}) = Φ′−1(I × {t}). Note that
H ′, G′ are small deformations of H, G. By the definition of H ′, G′, we
immediately have:

(∗)′ Φ′(p) = (s, t) ⇐⇒ p ∈ H ′(P × {s}) ∩G′(Q× {t}).

Then by Definition 4.1 (and the definition of the graphic in Sect. 2) we see
that H ′ and G′ are generic in the sense of Rubinstein and Scharlemann (see
Sect. 2) and, by comparing Definition 4.1 and the definition of the graphic
in Sect. 2, it is easy to see that the corresponding graphic is actually the
image of the singular set of Φ′ on M − (ΘA ∪ ΘB ∪ ΘX ∪ ΘY ), where the
image of a definite fold corresponds to a center tangency, the image of an
indefinite fold corresponds to a saddle tangency, and the image of a cusp
corresponds to a birth-death vertex.

Now we summarize the above results to give:

Theorem 4.2. Let H, G be as above. Then, by an arbitrarily small defor-
mation of H and G, we obtain sweep-outs H ′ and G′ such that:

1. The above map Φ′ (see (∗)′) is excellent on Int (I × I),
2. The maps H ′ and G′ are generic. Hence we can obtain a graphic Γ

from H ′ and G′, and then Γ∩ Int (I× I) is the discriminant set of the
excellent map Φ′|M−(ΘA∪ΘB∪ΘX∪ΘY ).

5. Isotopy, and stabilization of Heegaard surfaces.

Let f : M → I × I(⊂ R2) be an excellent map obtained in the previous
section (which is denoted by Φ′ there). Let α : I → R2 be an embedding of
the unit interval.

Definition 5.1. We say that α is transverse to f if α satisfies the following
two conditions:
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(1) α(∂I) ⊂ ∂(I × I), and α and ∂(I × I) are transverse (i.e., a smooth
slight extension of α is transverse to smooth extensions of I × {0}, I × {1},
{0} × I, and {0} × I),

(2) for each pair (t, q) ∈ (0, 1)×M with α(t) = f(q), we have:

dfq(TqM) + dαt(TtI) = Tf(q)R2.

Then, by Definition 4.1, it is easy to see:

Lemma 5.2. Suppose that α satisfies Definition 5.1 (1). Then α is trans-
verse to f if and only if:

For q ∈ M with f(q) ∈ α(I), we have either one of:
1. q is not a singular point of f ,
2. q is a fold point which is not a normal crossing, and α is transverse

to the discriminant set at f(q),
3. q is a fold point which is mapped to a normal crossing, and α is trans-

verse to the two arcs (which are local images of the singular set), or
4. q is a cusp. In this case, there are two arcs in a neighborhood of

f(q) (which are local images of the singular set). Then there is a slight
smooth extensions of the arcs, say `1, `2 such that α is transverse to
`1, and `2.

Figure 5.1.

Lemma 5.3. Suppose that α is transverse to f . Then f−1(α(I)) is a 2-
dimensional submanifold of M .

Proof. By condition Definition 5.1 (2), we see that f−1(α(0, 1)) is a 2-
dimensional proper submanifold in M − (ΘA ∪ ΘB ∪ ΘX ∪ ΘY ). Then by
condition Definition 5.1 (1), we see that f−1(α[0, ε]) (f−1(α[1− ε, 1]) resp.)
is a disk, which cap off f−1(α(0, 1)) to make a closed surface f−1(α(I)). �

Proposition 5.4. Let α, β be arcs transverse to f . Suppose that α(I) is
deformed to β(I) through a sequence of moves of the following types.

(0) Ambient isotopy of I × I which fixes ∂(I × I) ∪ Γ setwise.
(1) Passing a crossing vertex as α− → α0 → α+ in Figure 5.2.
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Figure 5.2.

(2) Passing a cusp as α− → α0 → α+ in Figure 5.3.

Figure 5.3.

(3) Passing a vertex in ∂(I × I) as in Figure 5.4.

Figure 5.4.

(4) Passing a corner of ∂(I × I) as in Figure 5.5.

Figure 5.5.

Then the surfaces f−1(α(I)), and f−1(β(I)) are isotopic in M .

Proof. First, we consider moves (0), (1), and (2). Suppose that α0(I) is
deformed to α1(I) through a sequence of moves (0), (1), and (2). By
Lemma 5.2, we see that there is a 1-parameter family of transverse arcs
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αs (0 ≤ s ≤ 1) from α0 to α1. Then we obtain an isotopy of surfaces
f−1(αs) in M .

Now we consider move (3). Note that the deformation (3) gives the isotopy
as in Figure 5.6.

Figure 5.6.

This shows that the deformation (3) gives mutually isotopic surfaces.
Finally we consider about move (4). Note that in a neighborhood of a

corner of I× I, Ps and Qt are disjoint. Hence the deformation (4) obviously
gives equal surfaces.

Combining the above observations, we have the conclusion of the propo-
sition. �

As a consequence of Proposition 5.4. we have:

Corollary 5.5 (cf. Example 2.10). Suppose that the graphic obtained from
P and Q contains a region as in Figure 5.7. Then P and Q are isotopic in
M .

Figure 5.7.

Proof. Let α(t) = (t, ε), and β(t) = (ε, t) for a small ε > 0. It is easy to
see that α(I) is deformed to β(I) within the above region by applying the
deformations of Proposition 5.4. �

For a stabilization of a Heegaard splitting, we have:

Proposition 5.6. Let α be an arc transverse to f such that f−1(α(I)) is a
Heegaard surface. Suppose that a transverse arc α′ is obtained by changing
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α locally as in Figure 5.8. Then f−1(α′(I)) is a Heegaard surface which is
a stabilization of Φ−1(α(I)).

Figure 5.8.

Proof. We use the following picture (Figure 5.9) for the proof. The picture
corresponds to the point of the intersection of α(I) and the image of an
indefinite fold (here Ps’s are represented by horizontal planes).

Figure 5.9.

Let Pi be the subsurface of Φ−1(α′(I)) corresponding to Φ−1(αi), where
αi is as in Figure 5.8. It is directly observed from Figure 5.9 that each Pi

looks as in Figure 5.10.

Figure 5.10.

By summing up Pi’s, we see that Φ−1(α′(I)) is a stabilization of
Φ−1(α(I)). �

Corollary 5.7. Let P , and Q be the Heegaard surfaces as in Example 2.11.
Then P and Q become isotopic by applying one stabilization.
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Proof. We first take transverse arcs α, and β as in Figure 5.11. Then, by
Figure 5.11, we see that α(I) can be deformed to the arc in Figure 5.12,
by one application of the deformation of Proposition 5.6, and deformations
in Proposition 5.4. By reflecting the pictures in Figure 5.11 in the line
connecting right-bottom corner to left-top corner, we see that β(I) is also
deformed to the arc in Figure 5.12, and this gives the conclusion. �

Figure 5.11.

Figure 5.12.

6. Orbifold version of Rubinstein-Scharlemann graphic.

In this section, we formulate an orbifold version of the Rubinstein-Scharle-
mann setting, and show that the local labelling scheme described in [18]
holds in this setting.

Let M be a compact 3-manifold, γ a union of mutually disjoint arcs or
simple closed curves properly embedded in M , F a surface properly em-
bedded in M , which is in general position with respect to γ, and `(⊂ F ) a
simple closed curve with ` ∩ γ = ∅.

Definition 6.1. A surface D is a γ-disk, if D is a disk intersecting γ in at
most one transverse point.

Definition 6.2. We say that ` is γ-inessential if ` bounds a γ-disk in F .
We say that ` is γ-essential if it is not γ-inessential.
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Let `1, `2(⊂ F ) be simple closed curves with `i ∩ γ = ∅ (i = 1, 2).

Definition 6.3. We say that `1 and `2 are γ-parallel if `1 ∪ `2 bounds an
annulus A in F such that A ∩ γ = ∅.

Definition 6.4. We say that D is a γ-compressing disk for F if; D is a
γ-disk; and D ∩ F = ∂D, and ∂D is γ-essential in F . The surface F is
γ-compressible if it admits a γ-compressing disk, and it is γ-incompressible
if it is not γ-compressible.

Let a be an arc properly embedded in F with a ∩ γ = ∅.

Definition 6.5. We say that a is γ-inessential if there is a subarc b of ∂F
such that ∂b = ∂a, and a ∪ b bounds a disk D in F such that D ∩ γ = ∅.
We say that a is weakly γ-inessential if there is a subarc b of ∂F such that
∂b = ∂a, and a ∪ b bounds a γ-disk D in F .

Definition 6.6. Let F1, F2 be surfaces embedded in M such that ∂F1 =
∂F2. We say that F1 and F2 are γ-parallel, if there is a submanifold N in M
such that (N,F1∩F2, N ∩γ) is homeomorphic to (F1×I, ∂F1×{1/2},P×I)
as a triple, where P is a union of points in Int(F1), and F1 (F2 resp.)
corresponds to the closure of the component of ∂(F1 × I) − ∂F1 × {1/2}
containing F1 × {0} (F1 × {1} resp.).

The submanifold N is called a γ-parallelism between F1 and F2.
We say that F is γ-boundary parallel if there is a subsurface F ′ in ∂M

such that F and F ′ are γ-parallel.

Definition 6.7. Let F1, F2 be mutually disjoint surfaces in M which are
in general position with respect to γ. We say that F1 and F2 are γ-isotopic
if there is an ambient isotopy φt (0 ≤ t ≤ 1) of M such that; φ0 = idM ;
φ1(F1) = F2, and; φt(γ) = γ for each t.

Genus g n-bridge position.
Let Γ = {γ1, . . . , γn} be a system of mutually disjoint arcs properly em-

bedded in M .

Definition 6.8. We say that Γ is trivial if there exists a system of mutually
disjoint disks {D1, . . . , Dn} in M such that (1) Di ∩ Γ = ∂Di ∩ γi = γi, and
(2) Di ∩ ∂M is an arc, say αi, such that αi = c`(∂Di − γi).

Example 6.9. Let β be a system of trivial two arcs in a 3-ball B. The pair
(B, β) is often refered as 2-string trivial tangle, or a rational tangle.

Let K be a link in a closed 3-manifold M . Let M = A ∪P B be a genus
g Heegaard splitting. Then the next definition is borrowed from [6].

Definition 6.10. We say that K is in a (genus g) n-bridge position (with
respect to the Heegaard splitting A∪P B) if K∩A (K∩B resp.) is a system
of trivial n arcs in A (B resp.).
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In this paper, we abbreviate genus 0 n-bridge position to n-bridge posi-
tion.

Unknotting tunnel.
Let K be a knot in a closed 3-manifold M . A tunnel for K is an embedded

arc σ in S3 such that σ∩K = ∂σ. We say that a tunnel σ for K is unknotting
if S3−Int N(K ∪ σ, S3) is a genus two handlebody.

Orbifold setting.
Let K be a link in a closed 3-manifold M . We regard K as γ above. Let

L1, L2 be a pair of mutually disjoint 1-complexes in M such that:
1. Each vertex of Li has valency zero, one or three,
2. (L1 ∪ L2) ∩K consists of the union of a (possibly, empty) sublink of

K, and a subset of the vertices of L1 ∪ L2 with valency one,
3. Let N be a regular neighborhood of L1 ∪ L2, and E = c`(M − N).

Then (E,E ∩K) is homeomorphic to (P × (0, 1),P × (0, 1)), where P
is a closed surface, and P is a finite set of (possibly empty) points in
P .

Let A, B be the closures of the components of M − (P × {1/2}), where
L1 ⊂ A, L2 ⊂ B. We say that A ∪ B is an orbifold Heegaard splitting
of (M,K). Then as in Sect. 2, we obtain a sweep-out H : P × I → M .
Let R1, R2 be another pair of 1-complexes satisfying the above conditions
(1), (2), and (3), and G : Q × I → M the corresponding sweep-out. Then,
as in Theorem 4.2, we may suppose that we can obtain an excellent map
f : M − (L1 ∪ L2 ∪ R1 ∪ R2) → R2 from H and G such that the graphic
obtained from H and G is the discriminant set f(S(f)) ⊂ I × I. Here we
note that we have to slightly generalize the definition of standard position
for a neighborhood of a valency one vertex (e.g. Figure 6.1), and it is easy
to see the procedures in Sect. 4 work under this situation.

Figure 6.1.

Example 6.11. Suppose that K is in a genus g n-bridge position with
respect to a Heegaard splitting A ∪P B. Then, by adding n edges to each
of the appropriate spines of A and B, we can obtain 1-complexes satisfying
the above conditions.
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Figure 6.2.

Example 6.12. Let K be a tunnel number one knot with unknotting tunnel
τ . Let L1 = K ∪ τ . Let L2 be a spine of the genus two handlebody c`(M −
N(K ∪ τ)) with each vertex having valency three. Then L1, L2 satisfies the
above conditions.

Definition 6.13. Let H, G be sweep-outs as above. We say that H and G
are K-comparable if f |K−(L1∪L2∪R1∪R2) : K−(L1∪L2∪R1∪R2) → Int(I×I)
is an immersion (possibly) with normal crossing, and f(K− (L1 ∪L2 ∪R1 ∪
R2)) and f(S(f)) are in general position in Int(I × I).

Proposition 6.14. By an arbitrarily small deformation on K rel (L1∪L2∪
R1 ∪ R2) with respect to Whitney topology, we can arrange H and G to be
K-comparable.

Proof. Note that f−1(f(S(f))) has the structure of a simplicial complex with
dimension at most 2 (see Figure 6.3), and, hence, by an arbitrarily small
deformation of K with respect to Whitney topology we can arrange so that
K and f−1(f(S(f))) are in general position, that is, K and the 1-skeleton are
disjoint, and K and f−1(f(S(f))) intersect transversely in a finite number
of points. This shows that f(K) and f(S(f)) intersect transversely in a
finite number of points. Possibly f(K) may contain a crossing vertex of the
graphic f(S(f)). Then we further apply a small deformation to make f(K)
avoid crossing vertices and to make f |K−(L1∪L2∪R1∪R2) an immersion with
normal crossing, and this gives the conclusion. �

Figure 6.3.
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For a K-comparable pair H and G we can obtain a graphic Γ as in the
following manner.

Regions: A region is a component of the subset of Int(I × I) consisting
of values (s, t) such that Ps and Qt intersect transversely, and K ∩
(Ps ∩Qt) = ∅.

Edges: An edge is a component of the subset consisting of values (s, t)
such that either:

(1) Ps and Qt intersect transversely except for one non-degenerate
tangent point and K ∩ (Ps ∩Qt) = ∅, or

(2) Ps and Qt intersect transversely and K ∩ (Ps ∩ Qt) consists of
one point.

By Definition 6.13, we see that edge is a 1-dimensional subset of
Int(I × I) which is monotonously increasing or decreasing.

Crossing vertices: A crossing vertex is a component of the subset con-
sisting of points (s, t) such that either:

(1) Ps and Qt intersect transversely except for two non-degenerate
points of tangency and K ∩ (Ps ∩Qt) = ∅, or

(2) Ps and Qt intersect transversely except for one non-degenerate
tangent point and K ∩ (Ps ∩Qt) consists of one point, or

(3) Ps and Qt intersect transversely and K ∩ (Ps ∩ Qt) consists of
two points.

Note that in this setting we may (as in Sect. 2) also regard a cross-
ing vertex to be a crossing point of two edges. This follows from
the same reason as in Section 2 (Case (1)), or from the condition
“K and f−1(f(S(f))) are generic” (Case (2)), or from the condition
“f |K−(L1∪L2∪R1∪R2) is an immersion with normal crossings” (Case (3)).

Birth-death vertices: A birth-death vertex is a component of the sub-
set consisting of points (s, t) such that Ps and Qt intersect transversely
except for a single degenerate tangent point and K ∩ (Ps ∩Qt) = ∅.

Labelling regions of the graphic.
Consider a region of the graphic I × I − Γ. Then the K-isotopy class of

Ps ∩Qt in Ps or Qt is independent of the choice of (s, t) in each region, and,
hence, we often abbreviate Ps by P , and Qt by Q.

The purpose of the rest of this section is to claim that the nature of the
(local) labelling schemes discussed in [18] holds also in our setting. We
assume that the reader is familiar with Sect. 4, 5 of [18].

Definition 6.15. We say that an orbifold Heegaard splitting A ∪P B is
weakly K-reducible if there exist K-compressing disks DA, DB for P in A,
B respectively such that ∂DA ∩ ∂DB = ∅. The orbifold Heegaard splitting
A ∪P B is strongly K-irreducible if it is not weakly K-reducible.
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Definition 6.16. Let (s, t) be a point in a region of I×I−Γ. (Hence, P ∩Q
consists of a system of simple closed curves in M disjoint from K.) Let CK

P

(CK
Q resp.) be the subset of the simple closed curves which are K-essential

in P (Q resp.). Then the subset CK
A of CK

P is defined by:

CK
A = {c|c bounds a K-disk D in Q− CK

P such that N(∂D, D) ⊂ A},
where N(∂D, D) is a regular neighborhood of ∂D in D.

Analogously CK
B (⊂ CK

P ), and CK
X , CK

Y (⊂ CK
Q ) are defined.

Lemma 6.17 (Lemma 4.3 of [18]). If c ∈ CK
A , then c bounds a K-disk in

A.

Proof. The proof is basically the same as Rubinstein-Scharlemann’s except
for the consideration on K. That is:

Let D be the K-disk which c bounds in Q, such that N(∂D, D) ⊂ A. If
IntD ∩ P = ∅, then D gives a desired K-disk. Suppose that IntD ∩ P 6= ∅.
Let ∆(⊂ D) be an innermost disk. Since IntD ∩ CK

P = ∅, we see that ∂∆
bounds a K-disk ∆′ in P . For a proof of the next claim, see Appendix A-3.

Claim. ∆′ ∩K = ∅ if and only if ∆ ∩K = ∅. Furthermore, if ∆′ ∩K 6= ∅,
then ∆ and ∆′ are K-parallel, i.e., ∆ ∪ ∆′ bounds a 3-ball D3 such that
D3 ∩K is an unknotted arc.

By the claim, we see that we can apply cut and paste on D using ∆ and
∆′ to get a new disk D′ with fewer intersections. By applying the argument
finitely many times, we obtain the desired disk. �

As an immediate consequence of Lemma 6.17, we have:

Corollary 6.18 (Corollary 4.4 of [18]). If there exists a region such that
both CK

A and CK
B are non-empty, then A ∪P B is weakly K-reducible.

In the rest of this section, we suppose:
M admits a 2-fold branched covering space p : M̃ → M along
K.

Lemma 6.19 (Lemma 4.5 of [18]). Suppose that CK
P = ∅, CK

Q = ∅, and
there exists a ∂-reducing K-disk in A which intersects Q only in K-inessen-
tial simple closed curves. Suppose, moreover, that A contains a K-essential
curve of Q. Then either A∪P B is weakly K-reducible, or M is the 3-sphere
S3 and K is a trivial knot.

Proof. By Appendix A-3, we may suppose, by K-isotopy, that P and Q are
disjoint, and that the ∂-reducing K-disk D and Q are disjoint. Without loss
of generality, we may suppose that Y is contained in A. Now consider the
2-fold branched covers (along K) Ã, B̃, P̃ , X̃, Ỹ , D̃ of A, B, P , X, Y , D
respectively. Note that, by the definition of an orbifold Heegaard splitting,
Ã, B̃ are handlebodies.
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Take a maximal compression body C̃ of Ã− IntỸ for ∂Ã. By the unique-
ness of maximal compression body, we may suppose, by applying Z2-equi-
variant cut and paste arguments as in the Proof of 10.3 of [9] or [12], that
C̃ is invariant under the covering translation τ . Let P ′ be a component of
the inner boundary of C̃.

If P ′ is a sphere, then M is S3 (see Proof of [18, Lemma 4.5]), and, by
Z2-Smith Conjecture ([21], or [16]), K is a trivial knot in S3.

Suppose that P ′ is not a sphere. Note that P ′ is compressible in B̃ ∪ C̃
since P ′ is contained in a handlebody X̃ (see the proof of Lemma 4.5 of
[18]). Then note that B̃∪P̃ C̃ is a Heegaard splitting in the sense of Casson-
Gordon [4]. Hence, by [4], there exists a compressing disk D′ (⊂ B̃ ∪ C̃) for
P ′ such that D′ ∩ P̃ consists of a circle (hence, D′ ∩ C̃ is an annulus).

Now we show that we can have such D′ which moreover is equivariant
with respect to τ . We may suppose, by general position argument, that D′

and τ(D′) intersect transversely. Then, by isotopy, we may suppose that
each component of C̃∩(D′∩τ(D′)) is an essential arc in the annulus D′∩ C̃,

(and τ(D′)∩ C̃). Then, by applying equivariant cut and paste arguments as
in the proof of 10.3 of [9] or [12] on D′, and τ(D′), we obtain an equivariant
compressing disk(s) DB. Since each component of C̃ ∩ (D′ ∩ τ(D′)) is an
essential arc of D′ ∩ C̃, we see that each component of DB intersects C̃ in
an annulus, (hence, intersects P̃ in a circle).

Then apply cut and paste arguments on DB ∩ C̃ and D̃ to obtain a com-
pressing disk D̃′ (⊂ C̃) for P̃ such that D̃′ ∩ (DB ∩ C̃) = ∅. Then, by
applying equivariant cut and paste arguments on D̃′, and τ(D̃′), we obtain
equivariant disk(s) DA (⊂ C̃) for P̃ such that DA ∩ DB = ∅. Then p(DA),
and p(DB ∩ B̃) give weak K-reducibility of K. �

Labelling scheme.
Now we mimic the procedures in [18, Section 5]. If CK

A (CK
B , CK

X , CK
Y

resp.) is non-empty, then we label the region A (B, X, Y resp.). If CK
P and

CK
Q are both empty and A (B resp.) contains an K-essential curve of Q,

then we label the region b (a resp.), and if X (Y resp.) contains an essential
curve of P , then we label the region y (x resp.). By Corollary 6.18 we have:

Rule 1. If there exists a region with both labels A and B assigned, then
A ∪P B is weakly K-reducible.

We obviously have:

Rule 2. No region can have both an upper case label and lower case label.

Next, we consider how labels change as one cross an edge of Γ.
Note that we have the following three possibilities.

1) The edge comes from center tangency.
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In this case, the regions have exactly the same label.

2) The edge comes from saddle tangency.

In this case, the effect is banding two components of P ∩ Q, say c0 and
c1, to make a simple closed curve, say c, or vice versa.

3) The edge comes from P ∩Q ∩K.

In this case the effect is that a component of P ∩Q passes a puncture by
K on P, (and Q).

Note that situation 3) did not appear in Rubinstein-Scharlemann setting.
With this fact in mind, it is easy, by tracing the proof of [18, Corollary 5.1],
to see:

Rule 3 ([18, Corollary 5.1]). If both labels A and B appear in two adjacent
regions, then A ∪P B is weakly K-reducible.

Then we have:

Rule 4 ([18, Corollary 5.2]). In adjacent regions of I × I − Γ, labels a and
b (x and y resp.) cannot appear.

Proof. Suppose that a and b occur opposite sides of an edge. Then argu-
ments in the proof of [18, Corollary 5.2] show that edge does not come from
saddle tangency. Then it is easy to see that this phenomena can occur only
in case when Q is a 2-sphere and Q∩K consists of three points a1, a2, a3 and
a component of the intersection P ∩Q is changed from a circle separating a1

and a2∪a3 to a circle separating a1∪a2 and a3. However this is impossible,
since Q ∩K must consists of even number of points. �

With tracing the proof of [18, Lemma 5.3] with consideration on K we
easily have:

Lemma 6.20 ([18, Lemma 5.3]). Suppose, in I × I − Γ, a region labelled
A is adjacent to a region labelled with a lower case letter. Then the edge
represents either (1) a saddle tangency in which a band which is K-essential
in P and weakly K-inessential in Q is attached to an intersection curve
which is K-inessential in both P and Q, or (2) a passing of K which changes
an element of CK

A bounding a disk (in P ) with two punctures by K into a
disk with one puncture by K.

Then we have:

Rule 5 ([18, Corollary 5.4]). Suppose, in I × I − Γ, a region labelled A is
adjacent to a region labelled b. Then either A ∪P B is weakly K-reducible,
or M ∼= S3 and K is a trivial knot.

Proof. We see, by Lemma 6.20, that A ∪P B satisfies the assumption of
Lemma 6.19, and this gives the conclusion. �
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In the following, the notation a stands for, as in [18], either a or A, and
similar for b, x, and y. With the above rules, we see that the arguments in
the proof of [18, Lemma 5.7] (it is easy to check that [18, Lemma 5.6] holds
in our setting since the new phenomenon is the situation 3) in the preceding
Rule 3) completely works in our setting to give:

Rule 6 ([18, Lemma 5.7]). If all letters a, b, x, and y appear in quadrants
of a crossing vertex of Γ, then either two opposite quadrants are unlabelled,
or one of A ∪P B, X ∪Q Y is weakly K-reducible, or M ∼= S3 and K is a
trivial knot.

By using these rules, the arguments in the proof of [18, Proposition 5.9]
show (the difference here is the consideration on K, a possibility that three
edges may be joined to a vertex in ∂(I × I) (see Figure 6.1)):

Proposition 6.21. Let A∪P B, X ∪Q Y be orbifold Heegaard splittings for
(M,K) obtained from two bridge positions as in Example 6.11. Suppose that
A ∪P B, X ∪Q Y are strongly K-irreducible, and K is not a trivial knot in
S3. Then there is an unlabelled region in I × I − Γ.

And, this together with Appendix A-3, and the arguments in the proof
of [18, Corollary 6.2] shows:

Corollary 6.22. Let A ∪P B, X ∪Q Y be as in Proposition 6.21. Then,
by applying K-isotopy, we may suppose that P and Q intersect non-empty
collection of simple closed curves which are K-essential in both P and Q.

7. 2-bridge position of a 2-bridge knot.

Let K be a non-trivial 2-bridge knot (that is, K is a non-trivial knot which
admits a genus 0 2-bridge position). In this section, we show that the
2-bridge positions of K are unique up to K-isotopy, which was originally
proved by Schubert [20].

Theorem 7.1. Let K be a non-trivial 2-bridge knot, and P , Q are 2-spheres
in S3 which give 2-bridge positions of K. Then P is K-isotopic to Q, i.e.,
there is an ambient isotopy ϕt (0 ≤ t ≤ 1) of S3 such that (1) ϕt(K) = K
(0 ≤ t ≤ 1), (2) ϕ0 = idS3, and (3) ϕ1(P ) = Q.

For the proof of Theorem 7.1, we prepare some lemmas, proofs of which
are given in Appendix B. (For the defiition of β-essential surface, see Defi-
nition 6.2.)

Lemma 7.2 (Appendix B-1). Let (B, β) be a 2-string trivial tangle. Let F
be a surface properly embedded in B. Suppose that F is β-essential. Then
F is a disk which is disjoint from β, and F separates the components of β.
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Figure 7.1.
Recall that it is often said that (C, γ) is a rational tangle if (C, γ) is

homeomorphic to the 2-string trivial tangle (B, β) as a pair.

Lemma 7.3 (Appendix B-2). Let (B, β) be a 2-string trivial tangle, and F
a β-incompressible surface in B.

Then either (0) F is β-essential (see Lemma 7.2), (1) F is a β-boundary
parallel disk intersecting β in at most one point, (2) F is a β-boundary
parallel disk intersecting β in two points (and, hence, F separates (B, β)
into the parallelism and a rational tangle), or (3) F is β boundary parallel
annulus such that F ∩ β = ∅.

Figure 7.2.

Lemma 7.4 (Appendix B-3). Let D be a β-compressible disk in B such
that ∂D is β-essential in ∂B, and D ∩ β consists of two points. Then D
separates (B, β) into two tangles (B1, β1), and (B2, β2), where (B1, β1) is
a rational tangle such that there is a β-essential disk D′ in (B1, β1) with
D ∩ D′ = ∅. Moreover if (B2, β2) happens to be a rational tangle, then
(B2, β2) is a β-boundary parallelism for D.

Figure 7.3.
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Let A, B (X, Y resp.) be the closures of the components of S3−P (S3−Q
resp.).

Proposition 7.5. Every genus 0 Heegaard splitting of S3 which gives a 2-
bridge position of K is strongly K-irreducible.

Proof. We give the proof for A ∪P B. Assume that A ∪P B is weakly K-
reducible, and let DA, DB be a pair of K-esssential disks in A, B respectively
such that ∂DA ∩ ∂DB = ∅. Since P ∩K consists of four points, we see that
∂DA and ∂DB are parallel in P − K, and this together with Lemma 7.2
implies that K is a 2-component trivial link, a contradiction. �

Proof of Theorem 7.1. Note that, by Proposition 7.5, A ∪P B, X ∪Q Y are
strongly K-irreducible. Hence, by Corollary 6.22, we may suppose that
P and Q intersect non-empty collection of simple closed curves which are
K-essential in both P and Q.

The proof is carried out by the induction on the number of the components
of P ∩Q. The following Claims 1 and 2 give the first step of the induction.

Claim 1. If P ∩Q consists of one component, then P and Q are K-isotopic.

Proof. Let DA = Q∩A, DB = Q∩B, DX = P ∩X, and DY = P ∩Y . Then
DA, DB, DX , DY are disks each of which intersects K in two points. Then
we have the following cases.

Case 1. The disks DA, DB, DX , DY are K-incompressible in A, B, X, Y
respectively.

In this case, by Lemma 7.3 (2), we have:

(1) “DA and DX are K-parallel in A” or “DA and DY are K-parallel in A”,

(2) “DB and DX are K-parallel in B” or “DB and DY are K-parallel in B”,

(3) “DX and DA are K-parallel in X” or “DX and DB are K-parallel in
X”, and

(4) “DY and DA are K-parallel in Y ” or “DY and DB are K-parallel in Y ”.

It is easy to see that the above 4 conditions imply either one of:

(1) “DA and DX are K-parallel in A (and, X), and DB and DY are K-
parallel in B (and, Y )”, or

(2) “DA and DY are K-parallel in A (and, Y ), and DB and DX are K-
parallel in B (and, X)”.

Since the argument is symmetric, we may suppose that (1) holds. Then,
by using the parallelisms, we can move DA to DX , and DB to DY to give a
desired K-isotopy.

Case 2. One of the disks DA, DB, DX , or DY is K-compressible in A, B,
X, or Y .
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Without loss of generality, we may suppose that DY is K-compressible in
Y , and the K-compressing disk is contained in B. Note that this implies that
DB is K-compressible in B. Note moreover that DX is K-incompressible
in X, since DX separates the boundary components of each component of
K∩X in X, and similarly DA is K-incompressible in A. Then, by Lemma 7.3
(2) and the last half of Lemma 7.4, we see that DB and DX are K-parallel
in B (and, X). Similarly we can show that DA and DY are K-parallel in A
(and, Y ). Hence we can obtain a desired K-isotopy as in Case 1.

This completes the proof of Claim 1. �

Claim 2. If P ∩Q consists of two components, then P and Q are K-isotopic.

Proof. Let D1, A0, D2 be the closures of the components of P−(P ∩Q) such
that D1 and D2 are disks, and A0 is an annulus. Without loss of generality,
we may suppose that D1 ∪D2 is contained in X, and A0 is contained in Y .

Subclaim. Either D1 or D2 is K-boundary parallel in X.

Proof. If D1 or D2 is K-incompressible, then this immediately follows from
Lemma 7.3 (2). Suppose that D1 and D2 are K-compressible. Let B3

1 be the
closure of the component of X−D1 which corresponds to B2 in Lemma 7.4.
By exchanging suffix, if necessary, we may suppose that Int(B3

1) ∩ P =
∅. Without loss of generality, we may suppose that B3

1 is contained in A.
Let D1 = B3

1 ∩ Q. Since D1 separates the boundary components of each
component of K ∩ A in A, we see that D1 is K-essential in A. Hence,
by Lemma 7.3 (2) and the last half of Lemma 7.4, we see that B3

1 is a
K-parallelism.

Let B3
1 be the parallelism between D1 and ∂X obtained in Subclaim.

Then we can push D1 out of X along the parallelism, and we have the
conclusion by Claim 1.

This completes the proof of Claim 2. �

Completion of Proof. Suppose that ](P ∩Q) ≥ 3. Note that the components
of P ∩ Q are mutually K-parallel in P . Let D1, A1, . . . , Am, D2 be the
closures of the components of P − (P ∩Q) such that D1, D2 are disks and
A1, . . . , Am are annuli that are located on P in this order. Suppose that
D1 or D2 is K-boundary parallel in X or Y . Then, by using the arguments
in the proof of Claim 2, we can reduce ](P ∩ Q), to give the conclusion.
Suppose that D1 and D2 are not K-boundary parallel in X and Y . By
Lemma 7.3 (2), this implies that D1 and D2 are K-compressible.

Claim 3. Both D1 and D2 are contained in the closure of a component of
S3−Q, say X. And each component of P ∩Y is a K-incompressible annulus.
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Proof. Assume that D1 is contained in X, and D2 is contained in Y . By
applying K-compression on D1 (D2 resp.) we obtain a K-essential disk E1

(E2 resp.) in X (Y resp.) such that ∂Ei = ∂Di. Note that E1 (E2 resp.)
separates the components of K ∩ X (K ∩ Y resp.). This implies that K
is a 2-component trivial link, a contradiction. Hence we may suppose that
D1 and D2 are contained in X. Let Ai be a component of P ∩ Y . Assume
that Ai is K-compressible in Y . Then, by applying K-compression on Ai,
we obtain two K-essential disks in Y . Then, by the above argument, we see
that K is a 2-component trivial link, a contradiction.

Claim 3 together with Lemma 7.3 (3) implies that each component of
P ∩ Y is a K-boundary parallel annulus in Y . Take an outermost one of
P ∩ Y , say Aj , and push Aj out of Y along the parallelism. This reduces
](P ∩ Q) by two, and we have the conclusion by the assumption of the
induction.

This completes the proof of Theorem 7.1. �

8. Genus one 1-bridge position of a 2-bridge knot.

For a 2-bridge knot K we can obtain four genus one 1-bridge positions of K
as follows.

Let A ∪P B be the Heegaard splitting which gives the 2-bridge position.
Then let a1, a2, b1, b2 be the closures of the components of K − P , where
a1 ∪ a2 (b1 ∪ b2 resp.) is contained in A (B resp.). Let T1 = A ∪N(b1, B),
α1 = a1 ∪ b1 ∪ a2, T2 = c`(B − N(b1, B)), and α2 = b2. Then each Ti is a
solid torus and αi is a trivial arc in Ti, and, hence, T1 ∪ T2 gives genus one
1-bridge position of K. Moreover, by using a1, a2, b2 for b1, we can obtain
other three genus one 1-bridge positions of K.

Figure 8.1.

Remark 8.1. In [17], Morimoto-Sakuma study the isotopy classes of the
1-bridge positions above.
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We say that these genus one 1-bridge positions are standard.
The purpose of this section is to prove:

Theorem 8.2. Every genus one 1-bridge positions of a non-trivial 2-bridge
knot is standard.

First, we prepare some lemmas for the proof of Theorem 8.2, proofs of
which are given in Appendix C. Let α be a trivial arc in a solid torus T .
For (T, α), we have:

Lemma 8.3 (Appendix C-1). Let D be an α-compressing disk for ∂T .
Then D is either:

(1) a meridian disk of T with D∩α = ∅. In this case, we obtain, by cutting
(T, α) along D, a 1-string trivial tangle,

(2) a meridian disk of T with D ∩ α consists of one point, and we obtain,
by cutting (T, α) along D, a 2-string trivial tangle, or

(3) ∂-parallel disk in T with D∩α = ∅. In this case, D cobounds a 1-string
trivial tangle in (T, α).

Figure 8.2.

Lemma 8.4 (Appendix C-2). Let D be an α-essential disk in T such that
D ∩ α consists of two points. Then there exists an α-compressing disk D′

disjoint from D such that D′∩α consists of one point. Moreover, by cutting
(T, α) along D′, we obtain 2-string trivial tangle (B, β) such that D is a
β-incompressible disk in (B, β) (hence D is β-boundary parallel).

We note that the disk D in Lemma 8.4 is either separating or non-
separating in T .

Figure 8.3.

Lemma 8.5 (Appendix C-3). Let D1, D2 be mutually disjoint non α-paral-
lel, α-essential disks such that Di ∩α (i = 1, 2) consists of two points. Then
there exists an α-compressing disk D′ for ∂T disjoint from D1 ∪ D2 such
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that D′ ∩α consists of one point. Moreover each Di is non-separating in T ,
and, by cutting (T, α) along D′, we obtain 2-string trivial tangle (B, β), and
D1, D2 are mutually non β-parallel, β-boundary parallel, β-incompressible
disks in (B, β).

Figure 8.4.

Lemma 8.6 (Appendix C-4). Let D be an α-compressible disk such that
∂D is α-essential in ∂T , and D ∩ α consists of two points. Then there is a
disk ∆ in T such that ∆∩D = ∂∆∩D = γ an arc, and ∆∩α = c`(∂∆−γ).
Particularly, if D is separating in T , then D separates (T, α) into (T ′, α′),
and (B′, α′′) such that α′ is a trivial arc in a solid torus T ′. In this case,
if (B′, α′′) happens to be a rational tangle, then (B′, α′′) is an α-boundary
parallelism.

Figure 8.5.
In the rest of this section, we give a proof of Theorem 8.2. Let K be a

non-trivial 2-bridge knot. Let A ∪P B be a genus 0 Heegaard splitting of
S3 which gives a 2-bridge position of K, and X ∪Q Y a genus one Heegaard
splitting which gives a genus one 1-bridge position of K. Note that A ∪ B,
X ∪ Y give orbifold Heegaard splittings of (S3,K) (see Example 6.11).

Proposition 8.7. Exactly one of the following (1) or (2) holds.
1. X ∪Q Y gives a standard genus one 1-bridge position.
2. X ∪Q Y is strongly K-irreducible.

Proof. Suppose that X ∪Q Y is weakly K-reducible. Let DX , DY be a pair
of K-esssential disks in X, Y respectively such that ∂DX ∩ ∂DY = ∅. Since
H1(S3) = {0}, we see that either DX is separating in X or DY is separating
in Y . Without loss of generality, we may suppose that DX is separating in
X.
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Claim 1. The disk DY is non-separating in Y .

Proof. Assume that both DX and DY are separating in X and Y respec-
tively. By Lemma 8.3 (3), we see that the closure of a component of X−DX

(Y −DY resp.), say B3
X (B3

Y resp.), is a 3-ball such that K ∩B3
X (K ∩B3

Y
resp.) is a trivial arc. Since ∂DX ∩ ∂DY = ∅, we see that ∂DX and ∂DY

are K-parallel in Q. This implies that B3
X ∪B3

Y is a 3-ball, and B3
X ∩B3

Y is
a disk intersecting K in two points. This shows that K is a connected sum
of trivial knots, and, hence, K is a trivial knot, a contradiction. �

Claim 2. The disk DY intersects K in one point.

Proof. Assume this does not hold, i.e., DY ∩K = ∅. Let N(DY ) be a regular
neighborhood of DY in Y . Let X ′ = X ∪N(DY ), and Y ′ = c`(Y −N(DY )).
Then, by Lemma 8.3 (3), we see that X ′ is a 3-ball such that K ∩ X ′ is
a trivial arc. Moreover, by Lemma 8.3 (1), we see that Y ′ is a 3-ball such
that K ∩ Y ′ is a trivial arc. Hence we see that K is a trivial knot, a
contradiction. �

Let N ′(DY ) be a regular neighborhood of DY in Y . Let X ′′ = X∪N ′(DY ),
and Y ′′ = c`(Y − N ′(DY )). Then, by Lemma 8.3 (3), we see that X ′′ is a
3-ball such that K ∩ X ′′ is a system of 2-string trivial arcs. Moreover, by
Lemma 8.3 (2), we see that Y ′′ is a 3-ball such that K ∩ Y ′′ is a system of
2-string trivial arcs. Hence X ′′ ∪ Y ′′ gives a 2-bridge position of K, and the
genus one 1-bridge position X ∪ Y is obtained from X ′′ ∪ Y ′′ in a standard
manner.

Conversely, suppose that X ∪Q Y gives a standard genus one 1-bridge
position. Then it is clear there exist disks corresponding to DX , DY above
in X, Y , and these disks give a weak K-irreducibility of X ∪Q Y . This
together with the above shows that X ∪Q Y gives a standard genus one
1-bridge position if and only if X ∪Q Y is weakly K-irreducible.

This completes the proof of Proposition 8.7. �

Then we prove:

Proposition 8.8. Suppose that P ∩ Q consists of non-empty collection of
simple closed curves which are K-essential in both P and Q. Then the genus
one 1-bridge position X ∪Q Y of K is obtained from A ∪P B in a standard
manner.

For the proof of Proposition 8.8, we prepare the following lemma, the
proof of which is left to the reader.

Lemma 8.9. Let T be a solid torus, and A an annulus properly embedded
in T such that each component of ∂A is a longitude of T . Then there is a
homeomorphism h : (annulus)× I → T such that h((annulus)×{1/2}) = A.
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Proof of Proposition 8.8. The proof is carried out by the induction of the
number of the components P ∩ Q. The following Claims 1 and 2 give the
first step of the induction.

Claim 1. If P ∩ Q consists of one component, then the genus one 1-bridge
position X ∪Q Y of K is obtained from A ∪P B in a standard manner.

Proof. Let DX = P ∩X, and DY = P ∩Y . Then DX , DY are disks properly
embedded in X, Y respectively, each of which intersect K in two points such
that ∂DX = ∂DY . Since P is separating in S3, DX is separating in X, and
this shows that ∂DX is contractible in Q. Let E be the disk in Q bounded
by ∂DX(= ∂DY ). Then E intersects K in two points. Without loss of
generality, we may suppose that E is contained in A. Since E separates
the boundary components of each component of K ∩ A, we see that E is
K-incompressible in A. Then, by Lemma 7.3(2) we have either one of the
following two cases.

Case 1. E is not K-parallel to one of DX or DY in A.

In this case, we may suppose without loss of generality that E is not K-
parallel to DX . Then, by Lemma 7.3 (2), we see that E is K-parallel to DY

in Y , and, by Lemma 8.4, we see that there is a K-compressing disk D for
∂X in X such that D intersects K in one point and D ∩DX = ∅, and these
imply that the genus one 1-bridge position X ∪Q Y of K is K-isotopic to a
genus one 1-bridge position which is obtained from A ∪P B in a standard
manner by using the arc K ∩ (B ∩X).

Figure 8.6.

Case 2. E is K-parallel to DX and DY in A.

In this case, we consider the genus one surface F = Q ∩ B. Note that
∂F is a K-essential simple closed curve in P . Then, by Lemma 7.3, we see
that there is a K-compressing disk D for F in B. Without loss of generality,
we may suppose that D is contained in X. Then we have the following two
cases.

Case 2.1. D ∩K = ∅.
In this case, we obtain a K-compressing disk D′ for ∂B in B by com-

pressing F along D. By applying a slight isotopy, we may regard D′ as a
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K-compressing disk for ∂X in X such that ∂D′ = ∂E. Then, by Lemma 8.6,
we see that the arc K ∩X is pushed into by an isotopy rel ∂ in X to an arc
contained in E. Then we further push the arc along the parallelism between
E and DY to an arc contained in the disk DY . We denote by K ′ the image
of K under this isotopy. Then K ′ is contained in B and K ′ ∩ ∂B is an arc.
Since this isotopy does not move the component of K ∩ B contained in Y
(= c`(K ′ ∩ IntB)), c`(K ′ ∩ IntB) is a trivial arc in B. This implies that K
is a trivial knot, a contradiction.

Figure 8.7.

Case 2.2. D ∩K consists of one point.

In this case, we obtain, by applying K-compression on F along D and
slight isotopy, a disk D′′ in B with ∂D′′ = ∂E, and D′′ intersects K in two
points.

Subclaim. D′′ ∪ E bounds a K-parallelism between D′′ and E in X.

Proof. Assume not. Suppose that D′′ is K-compressible in X. Then, by
applying K-compression and slight isotopy, we obtain a K-compressing disk
E′ in B such that ∂E′ = ∂E. Then, by the argument of Case 2.1, we see that
K is a trivial knot, a contradiction. Suppose that D′′ is K-incompressible
in X. By the assumption, we see that E′ ∪DX bounds a rational tangle in
X which is not a K-parallelism between E′ and DX . Then, by Lemma 7.3
(2), we see that E′ and DY must bound a K-parallelism in B. But this is
impossible, since DY contains the boundary components of a component of
K ∩B. �

By the subclaim together with the arguments in Case 1, we see that the
genus one 1-bridge position X ∪Q Y of K is K-isotopic to a genus one 1-
bridge position which is obtained from A ∪P B in a standard manner by
using the arc K ∩ (B ∩X).
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Figure 8.8.

This completes the proof of Claim 1. �

Claim 2. If P ∩Q consists of two components, then the genus one 1-bridge
position X ∪Q Y of K is obtained from A ∪P B in a standard manner.

Proof. Let D1, A0, D2 be the closures of the components of P−(P ∩Q) such
that D1 and D2 are disks, and A0 is an annulus. Without loss of generality,
we may suppose that D1 ∪ D2 is contained in X, and A0 is contained in
Y . Since P is separating in S3, we see that both D1 and D2 are either
separating or non-separating in X.

Case 1. Both D1 and D2 are separating in X.

Let E be the disk in Q bounded by ∂D1. By changing subscript, if
necessary, we may suppose that ∂D2 ∩ E = ∅, i.e., D1 is “outer” than D2.
Without loss of generality, we may suppose that E is contained in A. Then
we have the following cases.

Case 1.1. D1 and E are K-parallel in X.

In this case, we can push D1 along the parallelism out of X to make
P ∩X = D2. Hence, we have the conclusion by Claim 1.

Case 1.2. D1 and E are not K-parallel in X.

In this case, we first claim that D1 is K-incompressible in X. Assume
that D1 is K-compressible in X. Then, by Lemma 8.6, the component of
K −D1 contained in X is isotopic rel ∂ to an arc in D1 joining D1 ∩K. We
denote by K ′ the image of K under this isotopy. Then K ′ is contained in A
and K ′∩∂A(= K ′∩D1) is an arc, and c`(K ′∩ IntA) is a trivial arc in A (see
Claim 1, Case 2.1). This implies that K is a trivial knot, a contradiction.
Hence D1 is K-incompressible in X.

Let B3 be the 3-ball in X bounded by D1 ∪ E. By Lemma 8.4, we see
that (B3,K ∩ B3) is a rational tangle. Assume that E is K-compressible
in A. Then by applying the last half of Lemma 7.4 to E in A, we see that
(B3,K∩B3) is a K-parallelism, contradicting the fact that D1 and E are not
K-parallel in X. Hence E is K-incompressible in A. Then, by Lemma 7.3
(2), we see that E and c`(P −D1) bounds a K-parallelism in A. However
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this is impossible, since the boundary components of a component of K ∩A
is contained in c`(P −D1). This shows that Case 1.2 does not occur.

Case 2. Both D1 and D2 are non-separating in X.

In this case, we first note that, since Di∩(X∩K) (i = 1, 2) consists of two
points, the two points K∩Q are contained in a component of Q−(∂D1∪∂D2).
Then, let R be the closure of the component of X − (D1 ∪D2) which does
not contain K ∩ Q. Without loss of generality, we may suppose that R is
contained in A. We have the following cases.

Case 2.1. Both D1 and D2 are K-incompressible in X.

In this case, we have the following subcases.

Case 2.1.1. D1 and D2 are not K-parallel in X.

Figure 8.9.

By Lemma 8.5, we see that (R,K∩R) is a rational tangle. By Lemma 8.9,
we see that A0 is parallel to the annulus R ∩ Q in Y , and, hence, P is K-
isotopic to ∂R. Now let a be the component of K ∩ B that is contained in
X. Then, by Lemma 8.5 again, we see that the torus obtained from ∂R by
adding a tube along a is K-isotopic to Q. Hence we have seen that the genus
one 1-bridge position X ∪Q Y of K is obtained from A ∪P B in a standard
manner by using the arc a.

Case 2.1.2. D1 and D2 are K-parallel in X, and there exists a K-incompress-
ible disk D′ in X such that D′ intersects K in two points, D′ is non-
separating in X, D′ ∩ (D1 ∪ D2) = ∅, and D′ is not K-parallel to D1 (or
D2).

Figure 8.10.
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Let R′ be the closure of the component of X − (R ∪D′) which does not
contain K ∩Q. By exchanging subscript, if necessary, we may suppose that
R′ ∩ R = D2. Let A′ = R′ ∩ Q, and D′′ = A′ ∪ D′. We note that D′′ is a
disk properly embedded in B, which intersects K in two points. Since D′′

separates the boundary components of each component of K ∩ B in P , we
see that D′′ is K-incompressible. Moreover D′′ and D2 are not K-parallel
in X, hence in B. Hence, by Lemma 7.3 (2), we see that D′′ and c`(P −D2)
(= D1 ∪ A0) are K-parallel in B. This shows that P is K-isotopic to ∂R′.
Then, by the argument of Case 2.1.1, with regarding R′ as R we see that
the genus one 1-bridge position X ∪Q Y of K is obtained from A ∪P B in a
standard manner.

Case 2.1.3. D1 and D2 are K-parallel in X, and there does not exist a
K-incompressible disk D′ as in Case 2.1.2.

Figure 8.11.

In this case, it is easy to see that the argument of Case 2.1.1 works to
show that the genus one 1-bridge position X ∪Q Y of K is obtained from
A ∪P B in a standard manner.

Case 2.2. Either D1 or D2 is K-compressible in X.

Without loss of generality, we may suppose that there is a K-compressing
disk D for D1 ∪D2 such that ∂D ⊂ D2.

By applying K-compression on D2, we obtain a compressing disk D for
∂X in X such that D∩K = ∅. By applying a slight isotopy, we may suppose
that D2 ∩D = ∅. By Lemma 8.9, we see that A0 and R ∩Q are parallel in
Y . Hence, by K-isotopy, we may suppose that P = ∂R, (and A = R).

Then we have the following subcases.

Case 2.2.1. D is not contained in R.
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Figure 8.12.

Since ∂D1 and ∂D2 are K-parallel, we see that D1 is also K-compressible
in X. Then, by Lemma 8.6, we see that there is a disk ∆ in X such that
∆ ∩D1 = ∂∆ ∩D1 = γ an arc, and ∆ ∩ (K ∩X) = c`(∂∆− γ). Hence, we
can move K by an isotopy along ∆ such that ∆ ∩ (K ∩ X) is moved to γ
(hence, the component of K ∩ B which intersects Y is not changed by this
isotopy). Since each component of K ∩B is a trivial arc, this shows that K
is a trivial knot, a contradiction.

Case 2.2.2. D is contained in R.

Figure 8.13.

Let R′ = c`(X −R), and A∗ = R′ ∩ ∂X. Then A∗ is an annulus properly
embedded in B such that each component of ∂A∗ is K-essential in ∂B,
and A∗ intersects K in two points. By Lemma 7.3, we see that there is a
K-compressing disk D′ for A∗ in B.

Then we claim that D′ is contained in X. In fact, assume that D′ is
contained in Y . Since H1(S3) = {0}, we see that ∂D′ bounds a disk E in
A∗ such that E ∩K consists of two points, and D′ ∩K = ∅. Let B3′ be the
3-ball in Y bounded by D′ ∪ E, and B3 = c`(X − N(D)). By Lemma 8.3
(1), we see that K ∩B3(= K ∩X) is a trivial arc in B3. By Lemma 8.3 (3),
we see that K ∩ B3′ is a trivial arc in B3′. Note that B3 ∪ B3′ is a 3-ball,
and B3 ∩B3′ = E. This shows that K is a trivial knot, a contradiction.

Hence D′ is contained in X. Since each component of ∂A∗ separates the
boundary points of each component of K ∩B in P , we see that D′ ∩K 6= ∅,
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and, hence, D′ ∩K consists of a point. By applying K-compression on A∗

along D′, we obtain two disks D′
1, D′

2 in B such that ∂D′
1 = ∂D1, and

∂D′
2 = ∂D2. Since D′

i (i = 1, 2) separates the boundary components of a
component of K ∩ B, D′

i is K-incompressible in B. Then, by Lemma 7.3
(2), Di ∪D′

i (i = 1, 2) bounds a rational tangle in B. Let B3′′ be the 3-ball
obtained from X by cutting along D′. We regard D′

1, D′
2 as contained in

∂B3′′, and D1, D2 are properly embedded in B3′′. By Lemma 8.3 (2), we
see that (B3′′,K∩B3′′) is a 2-string trivial tangle. Then we see that D1, D2

are K-compressible, by the condition of Case 2.2. Hence, by the last half of
Lemma 7.4, we see that D1 and D′

1 (D2 and D′
2 resp.) are K-parallel. Let

a be the component of K ∩ B that is contained in X. Then, by the above
observations, we see that the genus one 1-bridge position X ∪Q Y of K is
obtained from A ∪P B in a standard manner by using a.

This completes the proof of Claim 2. �

Completion of the proof of Proposition 8.8. Suppose that ](P ∩ Q) ≥ 3.
Note that the components of P ∩Q are mutually K-parallel in P . Let D1,
A1, . . . , Am, D2 be the closures of the components of P − (P ∩Q) such that
D1, D2 are disks and A1, . . . , Am are annuli that are located on P in this
order. Then we have the following cases.

Case 1. Either D1 or D2 is non-separating in the solid torus.

Without loss of generality, we may suppose that D1 is contained in X,
and is non-separating in X. Then A1 is contained in Y , and, by Lemma 8.9,
there is a homeomorphism from A1 × I to Y such that A1 corresponds to
A1 × {1/2}. Let U be the closure of the component of Y − A1 which does
not contain K ∩Q.

Suppose that (IntU) ∩ P 6= ∅. Then we can push the component of
(IntU) ∩ P along the parallelism U to X to reduce ](P ∩Q), yet still have
at least two components ∂A1.

Suppose that (IntU)∩P = ∅. Then we can push A1 along the parallelism
U to X to reduce ](P ∩Q) by two.

In either case we have the conclusion by the assumption of the induction.

Case 2. Both D1 and D2 are separating in the solid torus.

If D1 or D2 is K-boundary parallel, then we can apply the assumption
of the induction by the argument as in Case 1. Hence we suppose that D1

and D2 are not K-boundary parallel. Let Ei be the disk in Q bounded by
∂Di. Without loss of generality, we may suppose that E1 ⊂ E2, and D1 is
contained in X. Then we have the following subcases.

Case 2.1. D1 is K-incompressible in X.

Let B3 be the closure of the component of X − D1 such that ∂B3 =
D1 ∪ E1. Then, by Lemma 8.4, (B3,K ∩ B3) is a rational tangle. Suppose
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(IntB3) ∩ P 6= ∅. We note that each component of c`((IntB3) ∩ P ) is an
annulus whose boundary components are parallel to ∂D1 in Q − K. This
shows that each annulus is K-incompressible in B3. Hence, by Lemma 7.3
(3), we see that the closure of each component of (IntB3) ∩ P is boundary
parallel annulus. Hence, we can push them to Y to reduce ](P ∩Q), and we
have the conclusion by the assumption of the induction. If (IntB3)∩P = ∅,
then by Lemma 7.3 (2), the last half of Lemma 7.4, and the assumption that
D1 is not K-boundary parallel in X, we see that c`(P −D1) is K-isotopic
to E1 rel D1. Hence, by the argument in Claim 1, we see that the genus
one 1-bridge position X ∪Q Y of K is obtained from A ∪P B in a standard
manner.

Case 2.2. D1 is K-compressible in X.

We moreover have the following subcases.

Case 2.2.1. D2 ⊂ Y , and D2 is K-incompressible in Y .

Let B3 be the closure of the component of Y−D2 such that ∂B3 = D2∪E2.
In this case, since ∂D1 ⊂ IntE2, we see that (IntB3) ∩ P 6= ∅. Hence, by
the argument of Case 2.1 (for the case (IntB3) ∩ P 6= ∅), we can show that
the genus one 1-bridge position X ∪Q Y of K is obtained from A ∪P B in a
standard manner.

Case 2.2.2. D2 ⊂ Y , and D2 is K-compressible in Y .

In this case, by K-compressing D2, we obtain a K-compressing disk D′
2

for ∂Y in Y such that ∂D′
2 = ∂D2. Then, by Lemma 8.3 (3), we see that

K ∩ Y is rel ∂ isotopic to an arc αY in E1. And we also see that K ∩X is
rel ∂ isotopic to an arc αX in E1 such that αX ∩ αY = ∂αX = ∂αY . Hence
K is a trivial knot, a contradiction.

Case 2.2.3. D2 ⊂ X.

Let T ′ and B3 be the closures of the component of T −D1 such that T ′ is
a solid torus and B3 is a 3-ball. Without loss of generality, we may suppose
that B3-side of D1 is contained in B. Since D1 is K-compressible, we see
that K ∩ T ′ is rel ∂ isotopic in T ′ to an arc α in D1, by an isotopy that
does not move K −T ′. Note that since D2 ⊂ X, c`(K −T ′) is a component
of K ∩ B, hence, a trivial arc in B. This shows that K is a trivial knot, a
contradiction.

This completes the proof of Proposition 8.8. �

Proof of Theorem 8.2. Let A ∪P B be a Heegaard splitting which gives a 2-
bridge position of K, and X∪Q Y a Heegaard splitting which gives the given
genus one 1-bridge position of K. By Proposition 8.7, it is enough to assume
that X∪QY is strongly K-irreducible for the proof of Theorem 8.2. Then, by
Proposition 7.5, and Corollary 6.22, we may suppose that P and Q intersect
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in non-empty collection of simple closed curves which are K-essential in both
P and Q. Then we have the conclusion by Proposition 8.8. �

Appendix A.

Let γ be a system of trivial arcs in a handlebody H, and p : H̃ → H the
two fold branched cover of H along γ.

Let F be a surface properly embedded in H, which is in general position
with respect to γ. Then, by using Z2-equivariant loop theorem [12], we see
that:

Lemma A.1. F is γ-incompressible if and only if F̃ (= p−1(F )) is incom-
pressible.

Moreover, by using Z2-equivariant cut and paste argument as in [9, Proof
of 10.3], we see that:

Lemma A.2. A γ-incompressible surface F is γ-boundary compressible if
and only if F̃ is boundary compressible.

By using Z2-Smith conjecture ([21], [16]) together with the Z2-equivariant
cut and paste argument and the irreducibility of H, we have:

Lemma A.3. A γ-incompressible surface F is γ-boundary parallel if and
only if F̃ is boundary parallel. In particular, if F is a disk intersecting γ in
one point, and ∂F bounds a disk D in ∂H such that D intersects γ in one
point, then F is γ-boundary parallel (in fact, F and D are γ-parallel).

Appendix B.

Let (B, β) be a 2-string trivial tangle, and (B̃, β̃) the 2-fold branched cov-
ering space of B along β. Then B̃ is a solid torus, β̃ a system of two trivial
arcs in B̃, and the covering translation τ is a π-rotation along β̃ (for details,
see [3, Chapter 12]).

Figure B-1.
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We leave the proof of the next lemma to the reader.

Lemma B.0. Let F be an orientable incompressible surface properly em-
bedded in a solid torus. Then either:

1. F is a meridian disk,
2. F is a boundary parallel disk, or
3. F is a boundary parallel annulus.

Then, we show:

Lemma B.1. Let D be a β-essential surface in B. Then D is a disk disjoint
from β, and D separates the components of β.

Proof. Let D̃ be the lift of D in B̃. By Lemmas A-1, A-3, we see that B̃ is
an essential surface in the solid torus B̃. By Lemma B-0, we see that D̃ is
a meridian disk. Suppose that D̃ ∩ β̃ 6= ∅. Then we see that D̃ ∩ β consists
of a point, and, hence, D ∩ β consists of a point. However this implies that
∂D is β-inessential in ∂B. Hence, by Lemmas A-3, and B-0, we see that D
is β-boundary parallel, a contradiction. Since ∂D is β-essential in ∂B, we
see that ∂D separates the points ∂β in ∂B. This shows that D separates
the components of β. �

Lemma B.2. Let F be a β-incompressible surface in B.
Then either (0) F is β-essential, (1) F is a β-boundary parallel disk inter-

secting β in at most one point, (2) F is a β-boundary parallel disk intersect-
ing β in two points and F separates (B, β) into the parallelism and a rational
tangle, or (3) F is a β-boundary parallel annulus such that F ∩ β = ∅.

Proof. Let F̃ be the lift of F in B̃. By Lemma A-1, we see that F̃ is one
of (1), (2), or (3) of Lemma B-0. It is easy to see that (1) ((2) resp.) of
Lemma B-0 corresponds to the conclusion (0) ((1) resp.). Suppose that F̃
is an incompressible annulus ((3) of Lemma B-0). Then it is easy to see
that we have conclusion (2) if F̃ ∩ β̃ 6= ∅, and we have conclusion (3) if
F̃ ∩ β̃ = ∅. �

Lemma B.3. Let D be a β-compressible disk in B such that ∂D is β-
essential in ∂B, and D ∩ β consists of two points.

Then D separates (B, β) into two tangles (B1, β1), and (B2, β2), where
(B1, β1) is a rational tangle such that there is a β-essential disk D′ in
(B1, β1) with D ∩ D′ = ∅. Moreover if (B2, β2) happens to be a rational
tangle, then (B2, β2) is a β-boundary parallelism for D.

Proof. Let D̃ be the lift of D in B̃. By Lemma A-1, we see that D̃ is a
compressible annulus in B̃. Since ∂D is β-essential, we see that, by com-
pressing D̃, we obtain two meridian disks, say D1 and D2. Let B3

1 , B3
2 be

the closures of the components of B̃ − (D1 ∪D2). Then B3
1 , B3

2 are 3-balls,
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and the closure of a component of B̃− D̃, say T̃ , is obtained from one of B3
1

or B3
2 , say B3

1 , by adding a 1-handle, and hence T̃ is a solid torus, and there
is an equivariant compressing disk D̃′ for D̃ in T̃ such that τ(D̃′) ∩ D̃′ = ∅.
Hence T̃ /τ gives a rational tangle, and p(D̃′) gives D′. Then the closure of
the other component of B̃ − D̃, say E, is obtained from B3

2 by removing a
regular neighborhood of an arc properly embedded in B3

2 , and taking the
closure. This shows that E is homeomorphic to the exterior of a knot in
S3 by a homeomorphism such that E ∩ ∂T is a regular neighborhood of
a meridian loop of the knot in ∂E. Suppose that E is a solid torus, i.e.,
(E,K ∩ E) is a rational tangle. Then the knot is a trivial knot. Since
E ∩ ∂T is a regular neighborhood of a meridian loop of the knot, we see
that E is a ∂-parallelism for D̃, and by Lemma A-3, we see that (B2, β2) is
a β-boundary parallelism for D.

Appendix C.

Let α be a trivial arc in a solid torus T , and (T̃ , α̃) the 2-fold branched
covering space of T along α. Then T̃ is a genus two handlebody, α̃ a 1-
string trivial arc in T̃ , and the covering translation is a π-rotation along
α̃.

Figure C-1.

Lemma C.1. Let D be an α-compressing disk for ∂T . Then D is either:

(1) a meridian disk of T with D∩α = ∅. In this case, we obtain, by cutting
(T, α) along D, a 1-string trivial tangle,

(2) a meridian disk of T with D ∩ α consists of one point, and we obtain
by cutting (T, α) along D, a 2-string trivial tangle, or

(3) ∂-parallel disk in T with D∩α = ∅. In this case, D cobounds a 1-string
trivial tangle in (T, α).
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Proof. Let D̃ be the lift of D in T̃ . Then we have either D̃ is a union of two
disks if D ∩ α = ∅ (Case 1), or D̃ is a disk if D ∩ α consists of one point
(Case 2).

In Case 1, we have either each component of D̃ is non-separating, or
separating, which correspond to the conclusions (1), (3) respectively. In Case
2, it is easy, by a homological argument, to see that D̃ is non-separating,
and this gives conclusion (2) �

Lemma C.2. Let D be an α-essential disk in T such that D ∩ α consists
of two points. Then there exists an α-compressing disk D′ for ∂T such
that D′ ∩ D = ∅, and D′ ∩ α consists of one point. Moreover, by cutting
(T, α) along D′, we obtain a 2-string trivial tangle (B, β) such that D is a
β-incompressible disk in (B, β) (hence D is β-boundary parallel).

Proof. Let D̃ be the lift of D in T̃ . By Lemma A-1, we see that D̃ is an
essential annulus in T̃ . Then it is easy to see that:

The annulus D̃ is obtained from a meridian disk ∆ by attaching a band.
(For a proof of this, see, for example, [13, Lemma 3.2].)

Let F̃ = c`(∂T̃ −N(∂D̃), where N(∂D̃) is a regular neighborhood of ∂D̃

in ∂T̃ . Note that F̃ is compressible in T̃ (in fact, slightly push off of ∆ gives
a compressing disk of F̃ ). Hence, by Z2-equivariant loop theorem [12], we
have an equivariant compressing disk(s) G for F̃ .

Claim 1. G consists of one disk, and, hence, G ∩ α consists of one point.

Proof. Assume that G consists of two disks D1, D2. Then we have the
following three cases.

Case 1. Each Di is separating in T̃ .

In this case D1 and D2 are parallel and the closures of T̃ − G are two
solid tori T1, T2, and a 3-ball B, which is a parallelism between D1, and
D2. Note that α̃ is contained in B, and this shows that D̃ is contained in
B, contradicting the incompressibility of D̃.

Figure C-2.
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Case 2. Each Di is non-separating, and G = D1 ∪D2 is non-separating in
T̃ .

Since G ∩ D̃ = ∅, this contradicts the incompressibility of D̃.

Figure C-3.

Case 3. Each Di is non-separating, and G = D1 ∪D2 is separating in T̃ .

In this case, we see that Di (i = 1, 2) intersects β̃, a contradiction. �

Figure C-4.

Hence, G is a disk, and G ∩ α consists of one point. Then:

Claim 2. G is non-separating in T̃ .

Proof. Assume that G is separating. Then the closures of T̃ − G are solid
tori T1, T2 with τ(Ti) = Ti. Moreover the fixed point set of τ |Ti is an arc
in Ti. But, by using Z2-equivariant loop theorem, it is easy to see that such
τ |Ti does not exist. �

By Claim 2, we see that we obtain a solid torus T ′ by cutting T̃ along G,
and this shows that we obtain a 2-string trivial tangle (B, β), and obviously
D is β-incompressible. �

Figure C-5.
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Lemma C.3. Let D1, D2 be mutually disjoint non α-parallel, α-essential
disks such that Di ∩ α (i = 1, 2) consists of two points. Then there exists
an α-compressing disk D′ for ∂T disjoint from D1 ∪ D2 such that D′ ∩ α
consists of one point. Moreover each Di is non-separating in T , and, by
cutting (T, α) along D′, we obtain 2-string trivial tangle (B, β), and D1, D2

are mutually non β-parallel, β-boundary parallel, β-incompressible disks in
(B, β).

Proof. Let D̃i be the lift of Di in T̃ (i = 1, 2). By Lemma A-1, we see that D̃i

is an incompressible annulus in T̃ . Let F̃ = c`(∂T̃−N(∂D̃1∪∂D̃2, ∂T̃ )). The
argument in the proof of Lemma C-2 works in this case to show that there
is an equivariant compressing disk G for F̃ such that G is non-separating,
and G intersects α̃ in one point. Then let T̃ ′ be the solid torus obtained by
cutting T̃ along G, and G1, G2 the copies of G in ∂T̃ ′. By Lemma B-0 (3),
we see that there are annuli A1, A2 in ∂T̃ ′ such that Ai and D̃i are parallel
(i = 1, 2). Since D̃1, D̃2 are essential, we see that G1 ⊂ A1, G2 ⊂ A2. It is
easy to see that this gives the conclusion of Lemma C-3. �

Lemma C.4. Let D be an α-compressible disk such that ∂D is α-essential
in ∂T , and D ∩ α consists of two points. Then there is a disk ∆ in T such
that ∆∩D = ∂∆∩D = γ an arc, and ∆∩α = c`(∂∆−γ). Particularly, if D
is separating in T , then D separates (T, α) into (T ′, α′), and (B′, α′′) such
that α′ is a trivial arc in a solid torus T ′. In this case, if (B′, α′′) happens
to be a rational tangle, then (B′, α′′) is an α-boundary parallelism.

Proof. Let D̃ be the lift of D in T̃ . By Lemma A-1, we see that D̃ is a
compressible annulus in T̃ . It is easy to see that there is a compressing disk
∆̃ for D̃ such that τ(∆̃) = ∆̃, hence α̃ ⊂ ∆̃. Then the projection of ∆̃ gives
∆. Since ∂D is β-essential, we see that, by compressing D̃ along ∆̃, we
obtain two meridian disks, say D1 and D2, which are mutually parallel in T̃ .
Suppose that D is separating in T . Then D̃ is also separating in T̃ , and the
closures of the components of B̃− (D1∪D2) consist of B3 and T ′, where B3

is a 3-ball, and T ′ is a solid torus. Then the closure of a component of T̃−D̃,
say H, is obtained from T ′ by adding a 1-handle, and hence H is a genus two
handlebody. Now we consider the closure of the other component of T̃ − D̃,
say E. Then E is obtained from B3 by removing a regular neighborhood of
an arc properly embedded in B3, and taking the closure. This shows that E
is homeomorphic to the exterior of a knot in S3 by a homeomorphism such
that E ∩∂T is a regular neighborhood of a meridian loop of the knot in ∂E.
Suppose that E is a solid torus, i.e., (B′, α′′) is a rational tangle. Then the
knot is a trivial knot. Since E ∩ ∂T is a regular neighborhood of a meridian
loop of the knot, we see that E is a ∂-parallelism for D̃, and by Lemma A-3,
we see that D is α-boundary parallel. �
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