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A method of Sym and Pohlmeyer, which produces geo-
metric realizations of many integrable systems, is applied to
the Fordy–Kulish generalized non-linear Schrödinger systems as-
sociated with Hermitian symmetric spaces. The resulting
geometric equations correspond to distinguished arclength-
parametrized curves evolving in a Lie algebra, generalizing
the localized induction model of vortex filament motion. A natu-
ral Frenet theory for such curves is formulated, and the general
correspondence between curve evolution and natural curvature
evolution is analyzed by means of a geometric recursion operator.
An appropriate specialization in the context of the symmet-
ric space SO(p+2)/SO(p)×SO(2) yields evolution equations
for curves in Rp+1 and Sp, with natural curvatures satisfying
a generalized mKdV system. This example is related to recent
constructions of Doliwa and Santini and illuminates certain
features of the latter.

1. Introduction.

Shortly after it was discovered that the Korteweg-deVries equation could
be linearized via the spectral transform method [G-G-K-M], Shabat and
Zakharov [S-Z] showed that the method could also be applied to the (cubic)
non-linear Schrödinger equation,

(NLS) −iψt = ψss +
1
2
|ψ|2ψ.

Almost concurrently, Hasimoto [Has] discovered the connection between
NLS and the localized induction equation (LIE), an idealized model of the
evolution of the curved centerline of a thin vortex tube in a three-dimensional
ideal fluid. (See [Bat] for a derivation, and [Ric] for the history of this equa-
tion, also known as the Betchov-Da Rios equation.) Denoting this evolving
centerline by γ(s, t) (where s is arclength along the curve and t is time), the
curve evolution in this model is described by

(LIE) γt = γs × γss = κB,

where κ(s) is the curvature and B the binormal. Recall that along a space
curve, the Frenet frame {T,N,B} satisfies the equations Ts = κN, Ns =
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−κT + τB, Bs = −τN . The LIE-NLS connection is this: If a curve γ with
curvature κ and torsion τ evolves according to LIE, then the associated
complex curvature function, ψ = κei

R s τ(u)du, evolves according to NLS.
In view of the LIE-NLS correspondance, it is not surprising that LIE

manifests familiar integrability characteristics, but in geometric form: Soli-
ton solutions, a hierarchy of conserved Hamiltonians in involution, a recur-
sion operator generating the corresponding infinite sequence of commuting
Hamiltonian vectorfields – the localized induction hierarchy.

The Hamiltonian nature of LIE itself was introduced by Marsden and
Weinstein in [M-W]; the equation’s Poisson geometry was further elucidated
in [L-P1]; Yasui and Sasaki developed the structure of LIE in the setting of
hereditary operator, Hamiltonian pairs, and master symmetries [S-Y].

Other recent papers have addressed a variety of closely related geomet-
ric topics of a more concrete nature, including: Knotted soliton curves of
constant torsion [C-I]; planar, spherical, and constant torsion-preserving
curve evolution [L], [L-P3, L-P4]; integrable variational problems for curves
[Lan-S1, Lan-S2, Lan-S3]; pseudospherical surfaces and Weingarten sys-
tems [Per1, Per2], evolution of immersed Riemann surfaces in R3 pre-
serving the Willmore integral [G-L]. It is by now clear that the localized
induction hierarchy is a rich source of examples and structure in the classical
differential geometry of curves and surfaces.

Here we consider natural generalizations of the LIE hierarchy in higher
dimensional spaces. Our starting point is the Fordy-Kulish [F-K] construc-
tion of a generalized nonlinear Schrödinger equation (gNLS) (with spectral
problem) associated to a Hermitian symmetric Lie algebra g. We apply
a technique due to Sym [Sym] and Pohlmeyer [Pohl], differentiation with
respect to the spectral parameter, which produces geometric realizations of
many integrable systems. By this route, we arrive at a generalized LIE hi-
erarchy for distinguished arclength-parametrized curves evolving in g, the
first three terms of which are:

γt = γs,

γt = −[γs, γss],

γt = −
(
γsss +

3
2
[γss, [γs, γss]]

)
.

Here, [ , ] is the Lie bracket in g, and the subscript s denotes derivative by
a curve parameter which is unit speed with respect to the Cartan-Killing
form on g. In this setting, a direct generalization of Hasimoto’s result is
proved (Theorem 3), establishing the correspondence between the above
curve evolution equations and evolution of natural curvatures by equations
in the gNLS hierarchy; in particular, a curve evolving by the second order
flow, gLIE, has curvatures satisfying gNLS.
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Interestingly, as in the three-dimensional case, the odd-order flows are
more amenable to geometrically meaningful reductions. In fact, by an ad
hoc reduction, in the class of symmetric spaces SO(p+ 2)/SO(p)× SO(2),
we were able to fully realize our original goal; namely, we obtain geometric
evolution equations applicable to arbitrary smooth curves in En and Sn. For
the third order flow, our equations take the form

γt = −
(
γsss +

3
2
‖γss‖2γs

)
= −

(
1
2
k2T +

∑
i

(ui)sUi

)
.

Here, u1, . . . , un−1 are curvatures belonging to a natural frame T,U1, . . . ,
Un−1. We show (Theorem 5) that the corresponding natural curvature vec-
tor, u = (u1, . . . , un−1), satisfies the vector modified Korteweg-deVries equa-
tion:

(mKdV) ut = −
(
usss +

3
2
|u|2us

)
.

Note that these simple equations for γ and u are given, finally, without
reference to a Lie algebra.

We now describe the contents of the paper. Section 2 is a review of
the Fordy-Kulish construction of generalized NLS equations. In Section 3,
we apply the Sym-Pohlmeyer geometrization procedure in the Fordy-Kulish
setting, and develop a natural Frenet theory for the resulting curves. In
Section 4, we introduce the geometric recursion operator for the generalized
LIE hierarchy, and derive key variation formulas. Section 5 treats the special
class of Hermitian symmetric spaces mentioned above, and the reduction
yielding curve evolutions in Euclidean spaces and spheres. We note that
our constructions in the latter case are related to recent work of Doliwa
and Santini [D-S]; in fact, our investigation developed out of an effort to
better understand their equations. Since the completion of our paper, we
have learned from Chuu-Lian Terng of her own work (with K. Uhlenbeck)
on generalizations of LIE [T-U1, T-U2].

2. The Fordy-Kulish generalizations of NLS.

Following a standard framework in the theory of integrable systems, the
nonlinear soliton equations arise as compatibility conditions for an overde-
termined linear system

(LS) φs = (λA+Q)φ, φt = V φ.

This system involves two independent variables, s (“position”) and
t (“time”), and a scalar λ, the spectral parameter. The eigenfunction φ(s, t;λ)
has values in a Lie group G, while U(s, t;λ) = λA + Q(s, t) and V (s, t;λ)
have values in the Lie algebra g of G. Here Q is the potential, which
is meant to evolve isospectrally, hence the lack of λ-dependence. For the
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Fordy-Kulish generalized NLS equations, g is taken to be the compact real
form of a complex semi-simple Lie algebra gC ; in fact, g is required to be
a Hermitian symmetric Lie algebra, and A, Q, are specific to the struc-
ture of g. To recall briefly some of the relevant features of this structure,
g has a decomposition as a vector space sum, g = k ⊕ m, of a com-
pact subalgebra k and complement m, satisfying the bracket conditions
[k,k] ⊂ k, [m,m] ⊂ k, and [k,m] ⊂ m. Also, k is associated with a special
element A in h, a Cartan subalgebra of g; namely, k is the commutator
algebra of A: k = kernel(adA) = {B ∈ g : [B,A] = 0}. Further, J = adA

satisfies J2|m = −Id, i.e., J is a complex structure on m. Such an element
A is fixed to form (LS) and Q is required to be an m-potential, that is,
Q(s, t) ∈ m for all t. The set of m-potentials Q(s) is clearly a vector space;
we will refer to a tangent vectorfield W as a m-field. Some of the above will
be explained more explicitly, as required for specializations, below. (Also,
see [F-K], [Hel] for more details.)

Cross-differentiating the equations in (LS) gives the zero curvature con-
dition Ut − Vs + [U, V ] = 0 or

(ZC1) Qt = Vs − [λA+Q,V ].

With the aim of finding V in terms of Q, such that the compatibility
condition (ZC1) is satisfied, a polynomial ansatz is invoked: V =∑n

j=0 P
(j)(s, t)λn−j . (Our indexing convention reverses the order of [F-K].)

The strategy here is to substitute this expression for V into (ZC1), set the
coefficients of powers of λ equal to zero, then solve recursively for the P (j)

and, finally, obtain a nonlinear PDE for the m-field Q (from the λ0 term).
To carry this out requires the decomposition of g given above. Namely,
each P (j) is decomposed as P (j) = P

(j)
m +P

(j)
k , with P (j)

m ∈ m and P (j)
k ∈ k.

Then, using the above bracket conditions and J2 = −Id, one obtains the
equations:

P (0)
m = 0,

P (j)
m = −J(∂sP

(j−1)
m − [Q,P (j−1)

k ]), j = 1, . . . , n,

∂sP
(j)
k = [Q,P (j)

m ], j = 0, . . . , n,

Qt = ∂sP
(n)
m − [Q,P (n)

k ].

Note the first and third of these equations imply P (0) is necessarily a
constant in k – we will take the “obvious choice” P (0)

k = P (0) = A. Also,
a choice of “constant of integration” is made, at each stage, as we are ap-
parently required to compute an antiderivative to obtain P (j)

k . An essential
(and remarkable) feature of the recursion scheme is that the antiderivative
is explicit, and is polynomial in Q and its derivatives; here, we simply il-
lustrate this point with the important case n = 2. The required terms are
readily generated in the order: P (1)

m = Q, P
(1)
k = 0, P (2)

m = −[A,Qs], P
(2)
k =
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1
2 [Q, [Q,A]] (the last antiderivative following from the Jacobi identity). The
induced evolution on the m-field Q is then given by

(gNLS) Qt = −JQss −
1
2
ad3

QA ,

which we will refer to as the Fordy-Kulish generalized NLS equation. (In
[F-K], the NLS equations are displayed componentwise, rather than in vec-
tor notation.)

The above recursion scheme may be more compactly described by intro-
ducing a recursion operator R̃ = R̃Q which takes m-fields X̃ to m-fields:

R̃X̃ = −(∂s − adQ∂
−1
s adQ)JX̃.

(Appropriate specification of the antiderivative ∂−1
s depends on the context.)

Defining X̃(j) = JP
(j)
m , we can now write the recursion scheme and nonlinear

equations as

X̃(1) = JQ, X̃(2) = R̃X̃ = Qs,

X̃(j+1) = R̃X̃(j), j = 1, 2, 3, . . . ,

Qt = X̃(j+1), j = 0, 1, 2, . . . .

The last of these equations defines the (j + 1)rst term in the Fordy-Kulish
NLS hierarchy, the above NLS equation being the third term.

It will be useful to have a concrete (and particularly simple) example at
hand for illustrating the main ideas in the next few sections; thus, we begin
our:

Running example.
For the “classical NLS”, we take g = su(2). We use the basis A = −i

2 σ
3,

B = −i
2 σ

1, C = −i
2 σ

2, where σ1, σ2, σ3 are the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
.

The bracket relations [A,B] = C, [B,C] = A, [C,A] = B, imply that
k = span(A) and m = span(B,C) define a Hermitian symmetric Lie algebra
structure on g = su(2). Writing Q = bB + cC, and plugging into the
generalized NLS equation yields:

Qt = −J
(
Qss +

1
2
|Q|2Q

)
,

where |Q|2 = (b2 + c2). In this case, we can identify m with the complex
numbers (Q with ψ = b + ic), and then J coincides with multiplication by
i. Using this identification (and a time reversal), we obtain exactly (NLS),
given in the introduction.
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We conclude this section by recording some useful general identities, to
be used in later sections. First of all, we note that the above treatment of
the overdetermined linear system LS did not fully reflect the dependence of
φ on the three variables, s, t, and λ. Introducing W (s, t, λ) = φλφ

−1, we
write down the augmented linear system

φs = Uφ, φt = V φ, φλ = Wφ,

with corresponding compatibility conditions

(ZC2) Ut − Vs + [U, V ] = Vλ −Wt + [V,W ] = Ws − Uλ + [W,U ] = 0.

Secondly, the geometric objects related to LS will be expressed in terms
of conjugates of U , V , and W , for which we will use the following notational
shorthand: For B,C ∈ g, we write {B} = φ−1Bφ, and {B,C} = {[B,C]}.
The following lemma (whose proof involves straighforward differentiation)
states analogues of a standard principle of rigid body mechanics (with “time”
being s, t, or λ): absolute velocity = relative velocity + transferred velocity
([Arn], p. 128).

Proposition 1. For any g-field B(s, t, λ),

i) {B}s = {Bs}+ {B,U},
ii) {B}t = {Bt}+ {B, V }, and
iii) {B}λ = {Bλ}+ {B,W}.

Finally, combining Proposition 1 with (ZC2) yields at once six simple
identities; three of these we will use, so we collect them in:

Proposition 2. For U , V , and W as above, we have

{V }s = {Ut}, {W}t = {Vλ}, and {W}s = {Uλ}.

3. Sym-Pohlmeyer curves.

Throughout this section, we “freeze time” in the definitions of the previous
section. In other words, we consider a time-independent potential Q(s), and
suppose φ = φ(s;λ) satisfies the linear system φs = Uφ = (λA + Q)φ, for
each value of the “parameter” λ. Setting W (s, λ) = φλφ

−1, we consider the
g-valued function

γ(s, λ) = {W} = φ−1φλ.

By Proposition 2, we have γs = {W}s = {Uλ} = {A}. If K is the Cartan-
Killing form on g, K(B,C) = tr(adBadC), then by Ad-invariance of K,
K(γs, γs) = K(A,A) = constant. In fact, K(A,A) = tr((adA)2) = −d,
where d = dim(m). Therefore, γ will be an arclength-parameterized curve
in g with respect to the rescaled form 〈, 〉 = −1

dK. Henceforth, we refer to
any curve in the one parameter family γ(s, λ) as a Sym-Pohlmeyer curve,
and denote by T the unit tangent vector T = γs = {A}.
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To develop a Frenet theory for such curves, we first use Proposition 1
to obtain an expression for the curvature normal κN of a Sym-Pohlmeyer
curve,

κN = Ts = {A}s = {As}+ {A, λA+Q} = {A,Q} = {Q̃}.
We refer to the m-field Q itself as a curvature coefficients vector. Next,
we fix a basis for g of the form A1 = A,A2, . . . , Ac, B1, . . . , Bd, where the
Ai span k and the Bj span m. Since the Killing form K is definite (g is
compact), we can further specify the basis to be orthonormal with respect
to 〈, 〉. The curvature normal vector is now expressible as

κN =


d∑

j=1

κjBj

 =
d∑

j=1

κjNj

where Nj = {Bj}.
Next, we write the derivatives of the Nj ,

(Nj)s = {Bj}s = {Bj , U} = {Bj , λA+Q},
as a linear combination of themselves and the vectors Ti = {Ai}, i = 1, . . . , c.
Finally, we write the derivatives

(Ti)s = {Ai}s = {Ai, Q}, i = 2, . . . , c.

At this point, we have a closed system of Frenet equations for the c+ d =
dim(g) frame vectors Ti, Nj , involving only the curvature functions κj , the
spectral parameter λ, and the structure constants of g.

Running example.
For Sym-Pohlmeyer curves in (su(2); −1

2K) ∼= (R3; 〈, 〉) with curva-
ture vector Q = bB + cC, the curvature normal is given by Ts = κN =
−c{B}+ b{C} = κ1N1 + κ2N2, with κ1 = −c, κ2 = b,N1 = {B}, N2 = {C}.
Our Frenet system is completed by the two equations (N1)s = −κ1T −λN2,
and (N2)s = −κ2T + λN1. For λ = 0, this is none other than the natural
Frenet system for curves in R3 (see, e.g., [Bis]). For a general value of the
constant λ, such a system may be thought of as inertial, in that the rigid
body defined by {T,N1, N2} (identifying s with time) has constant tangen-
tial component of angular velocity. The relationship to the classical Frenet
system can be written κ1 + iκ2 = κeiθ, and N1 + iN2 = (N + iB)eiθ, where
θ =

∫ s
τ(u) + λdu; also, κ2 = κ2

1 + κ2
2 and τ = κ−2(κ1(κ2)s − κ2(κ1)s)− λ.

While κ, τ and {T,N,B} are uniquely defined along a regular space curve γ
(with κ 6= 0), the curvatures κ1, κ2 and frame vectors N1, N2 are determined
(given λ) only up to multiplication by a complex unit, eiα – this freedom
corresponds to the choice of antiderivative in the above formulas. Aside from
this difference, the natural Frenet theory resulting from these definitions is
similar to the classical Fundamental Theorem for space curves. In partic-
ular, the set of unit speed curves Γ = {γ : R 7→ R3} can be parametrized
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by the following data: initial position γ(0), initial frame T (0), N1(0), N2(0),
and shape κ1(s), κ2(s). For a given curve γ, this data is unique up to choice
of arclength parameter s, real parameter λ, and S1-parameter eiθ.

How does the Sym-Pohlmeyer construction fit together with the above
parametrization of Γ? Since Q = κ2B − κ1C and λ are explicitly part
of the construction, it suffices to discuss the initial data γ(0), and T (0),
N1(0), N2(0). Writing T = Adφ−1A, N1 = Adφ−1B, N2 = Adφ−1C, we see
that the initial frame is determined by the initial condition on φ, via the
adjoint representation of SU(2). In fact, the two-to-one homomorphism
Ad : SU(2) 7→ SO(3) implies all initial frames are achieved (twice) as
φ(0) varies over SU(2). Next, allow the initial condition on φ to depend
on λ, and regard φ(0, λ) as an arbitrary curve in SU(2). Since φ−1φλ de-
scribes the usual trivialization of the tangent bundle TSU(2), it follows that
γ(0, λ0) = φ−1φλ|(0,λ0) is an arbitrary point in su(2) ∼= R3. In conclusion,
the Sym-Pohlmeyer curves are precisely the unit speed curves in R3, and
the correspondence between the Sym-Pohlmeyer construction and Γ is fully
described.

Remarks.
1) The above example is prototypical in some, but not all respects. In

general, Sym-Pohlmeyer curves constitute a very special subclass of the unit
speed curves in g ∼= Rc+d – the latter cannot all be described by only d
curvatures. In fact, the tangent indicatrix T (s) of a regular curve in Rc+d

can be any smooth curve in the unit sphere Sc+d−1 ⊂ Rc+d, whereas a Sym-
Pohlmeyer curve has tangent of the form T = {A} = Adφ−1A. Now the
Ad-orbit of A can be identified with the Hermitian symmetric space G/K
(K having Lie algebra k). Thus, the tangent indicatrix of a Sym-Pohlmeyer
curve lies in G/K ⊂ Sc+d−1 ⊂ g. In special cases, the above procedure may
produce a closed system with fewer than (c+ d) frame vectors - this will be
true of our main construction of Section 5 - and the situation may resemble
the example more closely.

2) In the general case, it is reasonable to refer to k1, . . . , kd as natural
curvatures (though this term will have a more special meaning in Section
5). Note that the non-uniqueness of natural curvatures is described by
the group K (SU(1) = {eiθ} in the example). Specifically, suppose φs =
(λA + Q)φ, and consider the Sym-Pohlmeyer curve γ = φ−1φλ. Now let
ϕ = φ0φ, where φ0 ∈ K is any constant element. Then γ = ϕ−1ϕλ, and ϕ
satisfies the linear system ϕs = (λA+Adφ0Q)ϕ, as is easily checked. So the
“gauge transformation” φ 7→ ϕ = φ0φ leaves the curve γ unchanged, while
transforming the natural curvatures according to Q 7→ Adφ0Q.
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4. The recursion operator and variation formulas.

Next we “un-freeze” time, and apply the above constructions to time-de-
pendent potentials Q(s, t), obtaining two-parameter families of unit speed
curves γ(s, t, λ). The t-derivatives of these will be called Sym-Pohlmeyer
(variation) fields. Note that Proposition 2 gives a formula for such vector-
fields:

γt = {W}t = {Vλ}.

Also, V satisfies the zero curvature equation, Vs = Ut + [U, V ] = Qt +
[λA + Q,V ]. Comparing k-components gives (Vk)s = [Q,Vm], i.e., the k-
component of V is determined by the m-component of V , according to
Vk = ∂−1

s [Q,Vm]. Differentiation of this equation by λ shows that, similarly,
(Vλ)k is determined by (Vλ)m: (Vλ)k = ∂−1

s [Q, (Vλ)m]. It is convenient to
introduce an operator K which takes m-fields to k-fields:

K(Bm) = ∂−1
s [Q,Bm].

Thus any Sym-Pohlmeyer field is of the form Y = {K(Bm) +Bm}, for some
m-field Bm (modulo integration constant in K). Now the above definitions
easily imply the following formula for the arclength derivative of such a
Sym-Pohlmeyer field:

Ys = {(Bm)s}+ {K(Bm), Q}+ λ{Bm, A} = {Cm},

where Cm is an m-field.

Remark. The result just obtained has the following (partial) interpretation
in the context of curve geometry (in a Riemannian manifold). Suppose
γ(s, t) is any one-parameter family of arclength parametrized curves, and
let X be the vectorfield X = ∂tγ. Then Xs (the covariant derivative of X
with respect to the unit tangent T ) has no tangential component; in fact,
the condition for a vectorfield X to be locally arclength preserving ([L-P2])
is 〈Xs, T 〉 = 0. Of course, a Sym-Pohlmeyer field satisfies this condition:
〈T, Ys〉 = 〈{A}, {Cm}〉 = 〈A,Cm〉 = 0, since k and m are orthogonal with
respect to the Killing form. In the special case c = 1, the Sym-Pohlmeyer
fields are exactly the locally arclength preserving vectorfields, while for c > 1,
the Sym-Pohlmeyer vectorfields form a strictly smaller class of vectorfields.

For a Sym-Pohlmeyer curve γ in a Hermitian symmetric Lie algebra g,
we now define three operators on vectorfields Y = {B} along γ.

(i) renormalization operator:

P({B}) = {K(Bm) +Bm} = {∂−1
s [Q,Bm] +Bm};

(ii) geometric recursion operator:

RY = −P([T, ∂sY ]);
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(iii) intertwining operator:

Z(Y ) = adA(AdφY ).

The next lemma explains the nomenclature for Z:

Proposition 3. For Y a Sym-Pohlmeyer field,

ZRY = (R̃ − λ)ZY.

Proof. Using the above computation of Ys, we have

ZRY = −ZP([T, Ys])
= −Z({A, (Bm)s + [K(Bm), Q] + λ[Bm, A]})
= −Z({J((Bm)s + [K(Bm), Q]) + λBm})
= −J(J((Bm)s − adQ∂

−1
s adQBm) + λBm)

= (∂s − adQ∂
−1
s adQ)Bm − λJBm

= −(∂s − adQ∂
−1
s adQ)J2Bm − JλBm

= (R̃ − λ)JBm = (R̃ − λ)ZY.
Next, we consider a Sym-Pohlmeyer variation, γ(s, t, λ) = φ−1φλ = {W},

and the corresponding Sym-Pohlmeyer field (infinitesimal variation) X =
γt = {Vλ}.

Proposition 4. RX = {V + Ã} , for some constant Ã ∈ k.

Proof.

RX = −P
([
T,

∂

∂s

∂

∂t
γ

])
= −P([T, Tt])

= −P([T, {A}t]) = −P([T, {A, V }])
= −P({A, [A, V ]}) = −P({J2V })
= P({Vm}) = {K(Vm) + Vm} = {V + Ã}.

This last step uses K(Vm) = Vk + Ã, as observed above, with the arbitrary
“integration constant” Ã ∈ k explicitly displayed here.

Theorem 1. Variation of curvatures formula:
The time variation of the “curvature coefficients vector” Q induced by a
Sym-Pohlmeyer field X = γt = {Vλ} is given by

Qt = ZR2X + [Q, Ã].

In the “gauge term”, [Q, Ã], Ã ∈ k is a constant.

Proof. Combining Propositions 2 and 4, we have

ZR2(γt) = ZR({V + Ã}) = −ZP([T, {V + Ã}s])

= −ZP([T, {Qt}+ {Ã,Q}]) = −ZP({A,Qt + [Ã,Q]})
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= −(adA)2(Qt + [Ã,Q]) = Qt + [Ã,Q] .

The term [Q, Ã] can be interpreted as follows. As explained in Remark
2 of the previous section, the non-uniqueness of natural curvatures for a
given curve corresponds to the set of transformations Q 7→ Adφ0Q, where
φ0 ∈ K is a constant. For a curve evolving in time t, φ0 should be treated
as a function of t as well (with initial value φ0|t=0 = Id). Differentiation
of φ0 with respect to t results in the term [(φ0)t|t=0, Q] in the infinitesimal
variation of Adφ0Q.

The appearance of the square of the recursion operator in this formula
suggests that between the curve γ and curvature coefficients vector Q, there
is an intermediate object whose variation ought to be considered in this
context. The appropriate intermediate object is a Sym-Pohlmeyer frame
Ti = {Ki}, i = 1, . . . , c, , Nj = {Mj}, j = 1, . . . , d, as considered above.

Theorem 2. Variation of Frames formula:
If B ∈ g is constant, then the time variation of F = {B} induced by a
Sym-Pohlmeyer field X = γt is given by

Ft = [F,RX] + {Ã, B},

for some constant Ã ∈ k; i.e., RX is essentially the “Darboux vector” for
any Sym-Pohlmeyer frame along γ.

Proof. Using Propositions 1 and 4, we compute

Ft = {B, V } = [{B}, {V }] = [F,RX] + {Ã, B}.

We are now in a position to geometrize the Fordy-Kulish NLS hierarchy,
the first few terms of which we list here for convenience:

X̃(1) = JQ,

X̃(2) = Qs,

X̃(3) = −JQss −
1
2
ad3

QA,

X̃(n+1) = R̃X̃(n).

For a Sym-Pohlmeyer curve γ with curvature vector Q and with λ = 0,
let vector fields Xn be defined along γ according to:

X(0) = {A} = T,

X(1) = {Q} = −[γs, γss],

X(2) = −
{
−1

2
[Q, [Q,A]] + [A,Qs]

}
= −

(
γsss +

3
2
[γss, [γs, γss]]

)
,

X(n+1) = RX(n).
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Now consider the curve evolution equation γt = X(n). By Theorem 1 and
Proposition 3, we can write the corresponding curvature evolution as

Qt = ZR2X(n) + [Q, Ã] = ZR(n+1)X(1) + [Q, Ã]

= R̃(n+1)ZX(1) + [Q, Ã] = R̃(n+1)X̃(1) + [Q, Ã]

= X̃(n+2) + [Q, Ã].

We summarize this result (suppressing the gauge term, [Q, Ã]) as:

Theorem 3. Evolution of a Sym-Pohlmeyer curve (with λ = 0) by γt =
X(n) corresponds to curvature evolution by Qt = X̃(n+2). In particular, the
generalized LIE,

(gLIE) γt = −[γs, γss],

corresponds to the curvature evolution by gNLS, Qt = −JQss − 1
2ad

3
QA (the

analogue of Hasimoto’s result).

Running example.
The geometric recursion operator for curves in R3 can be written: RX =

−P(T × ∂
∂sX). Here, × is the cross product in R3, and the reparameteriza-

tion operator P turns an arbitrary vectorfield along γ, Y = fT + gU + hV ,
into a locally arclength preserving vectorfield, PY =

∫ s(κ1g + κ2h)ds T +
gU + hV , by changing only the tangential component. Using the identifi-
cation of m with the complex plane, the operator Z may be regarded as a
simple isomorphism between normal vectorfields Y = gN1 + hN2 and com-
plex functions Z(Y ) = i(g + ih). On the other hand, Q has already been
identified with the complex function ψ = b+ ic = κ2− iκ1. Using these def-
initions, the infinitesimal variation of ψ induced by the vectorfield X = γt

may be written as: ∂
∂tψ = ZR2X + irψ, r a real constant. This differ-

ential formula for the Hasimoto transformation easily implies, e.g., that if
γ(s, t) evolves by LIE, ∂

∂tγ = κB = −κ2N1 + κ1N2, then ψ (with λ = 0)
evolves according to NLS. [There is a minor difference between the formulas
discussed here and those of [L-P1, L-P2, L-P3]. In those references, ψ
was the “complex curvature function” κ1 + iκ2 = i(b+ ic) mentioned in the
introduction. The differential formula was written in terms of this ψ (with a
minor difference in the definition of Z); if ∂

∂tγ = κB, then NLS is satisfied
by the latter ψ as well (NLS being i-equivariant).]

5. Evolution of curves in Rp+1 and Sp.

We have seen that the geometric realization of the Fordy-Kulish NLS hier-
archy is a sequence of evolution equations on the space of Sym-Pohlmeyer
curves in a (real compact) Lie algebra g. The Sym-Pohlmeyer curves have
curvature vectors Q which are m-valued. As stated in Section 3, Sym-
Pohlmeyer curves in general form a proper subset of the set of all arc-length
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parameterized curves in the Lie algebra g. In this section we describe a spe-
cific instance of our constructions which allows for a more complete anal-
ysis and full geometric interpretation. We will consider the Lie algebra
g = so(p+ 2) with subalgebra k = so(p)⊕ so(2) corresponding to the Her-
mitian symmetric space BDI. After describing the relevant structure and
commutation relations in appropriate detail, we give an explicit formula for
the the operator R̃2 restricted to a distinguished subspace of m-fields.We
then show that the Sym-Polhmeyer curves associated with appropriately re-
stricted curvature functions can be naturally considered as corresponding
to all curves in the Euclidean space Rp+1, and the geometric realizations of
the terms in an associated mKdV hierarchy appear as quite natural evolu-
tion equations on curves. We explicitly compute the first non-trivial term,
and show that it induces curvature evolution corresponding to a particu-
larly simple coupled mKdV system. This mKdV system is a rather special
reduction of a system which fits into the general framework of [F-K], [A-F]
(though BDI is an exceptional case in the framework of [A-F]).

We consider so(p+ 2) lying in gl(p+ 2, R). We have gl(p+ 2, R) commu-
tation relations [ej,k, el,m] = δk,lej,m − δm,jel,k , 1 ≤ j, k, l,m ≤ p+ 2, where
ej,k is the matrix with 1 in the jth row, kth column, zero otherwise. Setting
fi,j = ei,j−ej,i , we can express so(p+2) commutation relations in the form

[fj,k, fl,m] = δj,mfk,l + δk,lfj,m − δj,lfk,m − δk,mfj,l.

As it turns out, in addition to the natural notation for the so(p+2) basis,
{fi,j}, 1 ≤ i < j ≤ p + 2, it will be convenient to have a notation adapted
to a particular decomposition of so(p+ 2); thus we define

A = f1,2,

Xj = f1,j+2, j = 1, . . . , p,
Yk = fk+2,2, k = 1, . . . , p,

Km,n = fm+2,n+2, m, n = 1, . . . , p.

The so(p+ 2) commutation relations now take the form:

[A,Xj ] = Yj , [A, Yj ] = −Xj , [A,Km,n] = 0,
[Xj , Yk] = δj,kA,

[Xj , Xk] = [Yj , Yk] = −Kj,k,

[Xj ,Km,n] = δj,mXn − δj,nXm,

[Yj ,Km,n] = δj,mYn − δj,nYm,

[Kj,k,Kl,m] = δj,mKk,l + δk,lKj,m − δj,lKk,m − δk,mKj,l.

Now consider the following subspaces of g = so(p+ 2):

k = span{A} ⊕ span{Km,n},

mx = span{Xj}, my = span{Yk},
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and
m = mx ⊕my.

Part of the structure implicit in these definitions is summarized in

Proposition 5.
i) g = k⊕m, and k = so(2)⊕ so(p);
ii) k is the commutator subalgebra of A in g;
iii) J = adA|m satisfies J2 = −I.

In particular, g admits a Hermitian symmetric Lie algebra structure (as
defined in Section 2).

Remark. The proposition does not fully capture all the relevant structure
of g for the geometric considerations to follow. In this connection it should
be noted that the same Hermitian symmetric Lie algebra g = k⊕m arises
as a byproduct of the standard construction of so(p + 2) as compact real
form of so(p+2, C). However, a different X,Y -decomposition of m appears,
which lacks the required properties; specifically, the X,Y -bracket relations
are not as simple as above.

Next, recall the recursion operator R̃ = R̃Q (first introduced in Section
2) which takes an m-field X̃ to an m-field R̃X̃ (and which depends on the
m-potential Q). Henceforth, we adopt the following:

Specialization. Q is an mx-valued potential (more briefly, an mx-potential)
and X̃ is an mx-field.

The fact that this specialization is preserved by R̃2 is an immediate con-
sequence of the following:

Proposition 6. Let Q =
∑

k uk(s)Xk, and X̃ =
∑

m xm(s)Xm. Then

i) R̃X̃ = −
∑

k

(
∂sxk + uk

∑
l ∂
−1
s (ulxl)

)
Yk;

ii) R̃2X̃ = −
∑

k

(
∂2

sxk +
∑

l(∂s(uk∂
−1
s (ulxl))

+ul∂
−1
s (ul∂sxk − uk∂sxl))

)
Xk.

Proof. The proof is by straightforward computation; however, we include
it, since (i) depends on the nice bracket formula [Xj , Yk] = δj,kA, and (ii) in-
volves a noteworthy cancellation. Consider R̃X̃ = (−∂sJ+adQ∂

−1
s adQJ)X̃.

The first term, −∂sJX̃, can immediately be written as −
∑

k ∂sxkYk. The
second term can be rewritten as

adQ∂
−1
s adQJX̃ =

∑
k,l,m

uk∂
−1
s (ulxm)[Xk, [Xl, Ym]]

=
∑
k,l,m

uk∂
−1
s (ulxm)[Xk, δl,mA]
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= −
∑
k,l,m

uk∂
−1
s (ulxm)δl,mYk

= −
∑

k

uk

∑
l

∂−1
s (ulxl)Yk.

Summing these two terms gives the desired formula (i).
To prove (ii), write R̃R̃X̃ = (−∂sJ+adQ∂

−1
s adQJ)R̃X̃, and note that the

first term is−∂sJR̃X̃ = −∂s(
∑

k( ∂sxk+uk
∑

l ∂
−1
s (ulxl))Xk); this accounts

for the first two terms of (ii). Next, using [Xi, [Xj , Xk]] = [Xi,−Kj,k] =
δi,kXj − δi,jXk, one computes

adQ∂
−1
s adQJR̃X̃

=
∑
i,j,k

ui∂
−1
s

(
uj

(
∂sxk + uk

∑
r

∂−1
s (urxr)

))
(δi,kXj − δi,jXk)

=
∑
l,j

ul∂
−1
s

(
uj

(
∂sxl + ul

∑
r

∂−1
s (urxr)

))
Xj

−
∑
l,k

ul∂
−1
s

(
ul

(
∂sxk + uk

∑
r

∂−1
s (urxr)

))
Xk

=
∑
l,k

ul∂
−1
s

(
uk

(
∂sxl + ul

∑
r

∂−1
s (urxr)

)

−ul

(
∂sxk + uk

∑
r

∂−1
s (urxr)

))
Xk

= −
∑
l,k

ul∂
−1
s (ul∂sxk − uk∂sxl)Xk,

which is the last term of formula (ii).

We return now to the Fordy-Kulish NLS hierarchy. The second evolution
equation, Qt = X̃(2) = Qs evidently preserves the space of mx-potentials.
In fact, writing Q =

∑
i ui(s)Xi, the resulting evolution for the components

ui is given by (ui)t = (ui)s.
From the proposition, it now follows that the evolution Qt = X̃(4) =

R̃2X̃(2) also preserves the space of mx-potentials, and the same is true for
all of the even evolution equations Qt = X̃(2n). In particular, we can apply
formula (ii) to the mx-field X̃(2) =

∑
i(ui)sXi, obtaining

X̃(4) = −
∑

k

(
∂3

suk +
∑

l

(∂s(uk∂
−1
s (ul∂sul))
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+ ul∂
−1
s (ul∂

2
suk − uk∂

2
sul))

)
Xk.

Substituting 1
2ul

2 for ∂−1
s (ul∂sul), and ul∂suk − uk∂sul for ∂−1

s (ul∂
2
suk −

uk∂
2
sul), we obtain a simpler expression for X̃(4):

X̃(4) = −
∑

k

(
∂3

suk +
3
2

∑
l

ul
2∂suk

)
Xk.

It follows that the evolution equation Qt = X̃(4) in terms of the components
ui is a modified Korteweg-deVries system:

(mKdVS) (ui)t = −

(
∂3

sui +
3
2

∑
l

ul
2∂sui

)
, i = 1, . . . , p.

Remark. So far, we have seen that the space of mx-fields (along mx-
potentials) is preserved by the operator R̃2; as a consequence, the even
terms in the NLS hierarchy induce evolution equations on the space of mx-
potentials. It turns out that a corresponding result holds in the general
setting of Hermitian symmetric Lie algebras, with the X, Y-decomposition of
m mentioned in the previous remark. For reasons already given, one cannot
generally expect such simple formulas and equations corresponding to those
just presented. But from our point of view, the most important difference
with the present case shows up in the construction of Sym-Pohlmeyer curves
from curvature data Q. Note the key role of the X,Y -bracket relations in
the following

Proposition 7. Consider an mx-potential Q =
∑

i uiXi with associated
Sym-Pohlmeyer curve γ (with λ = 0). The unit tangent vectorfield T =
{A} and vectorfields Ui = {Yi}, i = 1, . . . , p , defined along γ, satisfy the
following closed, linear system:

Ts =
∑

i

uiUi,

(Ui)s = −uiT.

Proof. We have

Ts = {A}s = {As}+ {[A,Q]}

=

{[
A,
∑

i

uiXi

]}
=
∑

i

ui{Yi} =
∑

i

uiUi;

(Ui)s = {Yi}s = {(Yi)s}+ {[Yi, Q]}
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=

Yi,
∑

j

ujXj


=
∑

j

uj{[Yi, Xj ]}

= −
∑

j

ujδi,j{A} = −ui{A} = −uiT.

Let Ψ be a (p+ 1)× (p+ 1) matrix which is the fundamental solution to
the matrix differential equation

Ψs =


0 u1 · · · up

−u1 0 · · · 0
...

...
...

−up 0 · · · 0

Ψ,

Ψ(s0) = Ip+1 = (p+ 1)× (p+ 1) identity matrix.

Then by the fundamental theorem of differential equations, we can express
the moving frame T (s), Ui(s) as

T (s)

U1(s)
...

Up(s)

 = Ψ


T (s0)

U1(s0)
...

Up(s0)

 .

It follows that the Sym-Pohlmeyer curve γ ⊂ g actually lies in the
affine space γ(s0) + Rp+1, where Rp+1 is here identified as the span of
T (s0), Ui(s0), i = 1, . . . , p. Moreover, the equations given in the propo-
sition are the natural Frenet equations (see Running example in Section 3)
for a curve in Rp+1 with curvatures ui(s), i = 1, . . . , p and natural frame
T, Ui, i = 1, . . . , p . Thus, we conclude that the Sym-Pohlmeyer curve γ
may be regarded as a general space curve in Rp+1.

Since the natural Frenet equations are not so well-known, we take a mo-
ment to indicate some of their geometric significance. To begin with, the
conclusion just reached depends on an analogue of the classical Fundamental
Theorem of Curve Theory (for curves in n-dimensional Euclidean space). In
particular, every smooth curve γ in Rp+1 satisfies the above system for some
choice of curvature functions ui(s), i = 1, . . . , p , and is uniquely determined,
up to congruence, by these functions. (The converse statement differs a bit
from that of the classical theorem, in that the natural curvatures ui are
uniquely determined by a curve γ only after the frame T (s0), Ui(s0) has
been specified at some initial point γ(s0).) Note that Ts = κN =

∑
i uiUi,
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implies κ2 =
∑

i(ui)2, so one can recover the standard (first) curvature from
natural curvatures.

What’s more important, the curvatures ui measure the sphericity of a
curve in Rp+1. In particular, suppose that, for some j, uj = cj = constant 6=
0 . Then (γ(s) + (1/cj)Uj)s = T + (1/cj)cj(−T ) = 0, so γ lies on a p-
dimensional sphere of radius 1/cj . Further, Uj is the inward pointing unit
normal to the sphere along γ, and the remaining frame vectors determine a
natural Frenet system along the spherical curve γ in the sense of covariant
differentiation in the sphere. Namely,

∇TT =
∑
i6=j

uiUi,

∇TUi = −uiT, i 6= j.

More generally, if ui1 = c1, ui2 = c2, . . . , uil = cl, then γ lies on a (p+1−l)-
dimensional sphere of radius (c21 + c22 . . . c

2
l )
−1/2. In the exceptional case,

ui1 = ui2 = . . . uil = 0, γ(s) lies on a (p + 1 − l)-plane. This corresponds
to the case in classical Frenet theory in which the last l curvatures vanish –
here the order of the curvatures matters.

As an application of the above discussion, we are now in a position to give
a purely geometric version of our earlier variation formula, in the context of
Euclidean and spherical curves.

Theorem 4. Variation of curvatures formula:
Let M be Euclidean space of dimension d = (p + 1), or a round sphere of
dimension d = p. Denote by G the (constant) scalar curvature of M (so
G = 0 or G = 1

r2 in the case of a sphere of radius r). Let γt = X =
αT +

∑d−1
i=1 xiUi describe a variation of a curve in M through unit speed

curves, where Ui, i = 1, . . . , (d− 1), is a natural frame along γ(s, t). Then
the induced variation of the associated natural curvatures ui is given by

(ui)t = (∂2
s +G)xi + ∂s(αui) +

d−1∑
l=1

(ul∂
−1
s (ul∂sxi − ui∂sxl))

+
∑

j

ci,juj , i = 1, . . . , (d− 1).

In the gauge term
∑

j ci,juj, the ci,j are constants with ci,j = −cj,i.

Proof. Combine Theorem 1 with Propositions 3 and 6, after taking account
of the above discussion.

We now merge the last few topics and consider the geometric evolution of
curves in Rp+1 and Sp corresponding to the above mKdV system. According
to Theorem 3, the curve evolution γt = X(2) corresponds to the curvature
evolution Qt = X̃(4). In the present context, a fully geometric interpretation
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of this result is possible; note that the following theorem (like the previous
one) is formulated entirely in terms of curve geometry – no Lie algebras!

Theorem 5. Motion of a curve γ(s, t) in Rp+1 by the geometric evolution
equation

γt = −
(

3
2
κ2T + Tss

)
= −

(
1
2
k2T +

∑
i

(ui)sUi

)
,

corresponds to curvature evolution by the mKdV system

(ui)t = −
(
∂3

sui +
3
2
|u|2∂sui

)
, i = 1, . . . , p.

Here, the functions ui are natural curvatures and k2 = |u|2 =
∑

i(ui)2 the
squared curvature of γ. In particular, if one of the natural curvatures uj is
initially constant along γ, then this condition is preserved, and γ evolves on
a sphere.

Proof. The first statement is easily obtained from the previous theorem, by
direct computation. Alternatively, in view of Theorem 3, it suffices to note
that in the present context,

X(2) = −
{
−1

2
[Q, [Q,A]] + [A,Qs]

}

= −

−1
2

∑
i,j

uiuj [Xi, [Xj , A]] +
∑

i

(ui)s[A,Xi]


= −

{
1
2

∑
i

(ui)2A+
∑

i

(ui)sYi

}

= −

(
1
2

∑
i

(ui)2T +
∑

i

(ui)sUi

)
= −

(
3
2
κ2T + Tss

)
.

It is also evident from the form of the coupled mKdV equations that the
condition uj = constant is preserved in time, so the last statement follows.

Remark. In the case k 6= 0, the vectorfield X(2) is readily expressed in
terms of the standard Frenet frame:

X(2) = −
(

3
2
κ2T + Tss

)
= −

(
1
2
κ2T + κsN + κτB

)
.

Here, τ and B are, respectively, the second curvature and second normal (in
three dimensions, the torsion and binormal).

Expressed in this form, this vectorfield appeared in [L-P1] as the “next”
term (above X1 = kB) in the localized induction hierarchy, and the connec-
tion to the (complex) mKdV equation was discussed. The planar version of
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this curve evolution and the connection to mKdV were considered in [G-P]
and in [L-P3]. In [L-P4], the authors showed that the even terms of the
R3 localized induction hierarchy preserve curves lying on the sphere S2, ex-
pressing these vectorfields in terms of the natural curvatures and frames. In
[D-S], Doliwa and Santini show that X = 1

2κ
2T + κsN + κτB describes an

evolution of curves on S3, and discuss corresponding curve evolution equa-
tions in spheres of arbitrary dimension. Our curve evolution equations (of
this section) apparently coincide with those of [D-S] (though our approach
is considerably different). On the other hand, the corresponding curvature
evolutions of [D-S] are increasing complicated as dimension of the sphere in-
creases, and do not generally bear a close resemblance to the familiar (scalar)
mKdV equation; we attribute this to their use of standard Frenet systems,
rather than the natural Frenet systems we have employed here. Finally, our
general formalism suggests a new perspective on the main conclusions of
[D-S], regarding the characterization of integrable curve dynamics (as will
be discussed in a future paper).

In this work we have described a Lie-theoretic construction of generaliza-
tions of the localized induction hierarchy and, in a special case, have shown
how curvature evolution equations related to (but simpler in form than)
those of Doliwa and Santini may be extracted as a subhierarchy. These
geometric realizations of the Fordy-Kulish NLS systems have a structure
remarkably similar to the R3 LIE equations studied previously. Given the
known relations between the localized induction hierarchy and classical geo-
metric constructions, it is not unreasonable to expect that the geometric
realizations of the Fordy-Kulish NLS systems will have similar interesting
relations to geometry.
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