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In this note we give a detailed exposition of the Seiberg-
Witten invariants for closed oriented 3-manifolds paying par-
ticular attention to the case of b1 = 0 and b1 = 1. These are
extracted from the moduli space of solutions to the Seiberg-
Witten equations which depend on choices of a Riemannian
metric on the underlying manifold as well as certain pertur-
bation terms in the equations. In favourable circumstances
this moduli space is finite and naturally oriented and we may
form the algebraic sum of the points. Given any two sets
of choices of metric and perturbation which are connected
by a 1-parameter family, we analyse in detail the singular-
ities which may develop in the interpolating moduli space.
This leads then to an understanding of how the algebraic sum
changes. In the case b1 = 0 a topological invariant can be
extracted with the addition of a suitable counter-term, which
we identify (this idea is attributed to Donaldson). In the
case b1 = 1 a topological invariant is defined which depends
only on cohomological information related to the perturba-
tion term. We prove a ‘wall-crossing’ formula which tells us
how the invariant changes with different choices of this per-
turbation. Throughout we pay careful attention to genericity
statements and the issue of orientations and signs in all the
relations. The equivalence of this invariant in the case of an
integral homology sphere with the Casson invariant is treated
in Lim, 1999 (see also works of Nicolescu, preprint). The
equivalence with Reidemeister Torsion in the case b1 > 0 is a
result of Meng & Taubes, 1996. Some related material is in
Marcolli, 1996, Froyshov, 1996 and in the survey Donaldson,
1996. Taubes, 1990 contains the originating construction in
this article in the context of flat SU(2)-connections.

1. The Seiberg-Witten Invariants.

We denote by Y an oriented 3-manifold. Let g be a Riemannian metric on
Y and P → Y a spin-c structure (see for example [LM]). Denote by S → Y
the associated positive spinor bundle, i.e., S = P×%C2 where % : spinc(3) →
EndC(C2) is the irreducible representation of the complex Clifford algebra
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Cl(R3) with %(dy) = +1, where dy is the oriented volume form on Y . Let
ξ : spinc(3) = spin(3)×{±1}U(1) → U(1) be the map which takes the square
of the second factor. Then the bundle L = LP = P ×ξ C → Y is the
determinant line bundle of P ; it is clearly a U(1)-bundle. We remark that a
classical fact is w2(Y ) = 0 and this gives the existence of a spin-c structure
P → Y with c1(L) any given class in 2H2(Y ;Z) ⊂ H1(Y ;Z).

For a pair (A,Φ) consisting of a U(1)-connection on L and a section of S
the π-perturbed Seiberg-Witten equations (SWπ) read:

FA =
1
4
σ(Φ,Φ) + ω, DA+αΦ = 0.

Here FA denotes the curvature 2-form of A and DA the Dirac operator
coupled to A. The term σ(·, ·) is a certain symmetric bilinear form S →
Λ2(iR) (see Section 2 for details). The perturbation π consists of a pair
(α, ω) where α ∈ Ω1(iR) and ω ∈ Ω2(iR), dω = 0.
U(1) embeds into spinc(3) by the map ι(z) = [Id, z]. Given a smooth

map g : Y → U(1) ⊂ C, we have an automorphism of P given by the rule
p 7→ pι(g). This induces, by pulling back, the action (A,Φ) → g(A,Φ) =
(A + 2g−1dg, g−1Φ). If (A,Φ) is a Seiberg-Witten solution, then g(A,Φ)
is also a solution. Thus the set of Seiberg-Witten solutions is invariant
under the above automorphisms of S. The automorphism g called a gauge
transformation and the group of all gauge transformations is the gauge group
denoted G.

We will consider the set of L2
2-SWπ-solutions modulo gauge equivalence

(details in Sec. 2). The set of such solutions will be denoted by Zπ(P ; g)
or Zπ,g(P ). When the underlying metric is understood we shall omit it and
simply write Zπ(P ). Fixing a value of k ≥ 1, denote by Pk the space of all
perturbations π of class Ck.

Theorem 1. For π from an open dense subset of Pk the irreducible part
Z∗π(P ; g) of Zπ(P ; g) is a finite set of points and these are naturally oriented.
Let #Z∗π(P ; g) denote the algebraic sum, assuming π as above. Then:

(i) if b1(Y ) > 1, #Z∗π(P ; g) is independent of g and π
(ii) if b1(Y ) = 1, #Z∗π(P ; g) depends only on the component of H2(Y ;R)\

{c1(L)R} in which [ i
2πω] lies in, ω being the 2-form component of π

(iii) if b1(Y ) = 0, #Z∗π(P ; g) is independent of π and g after the addition
of a counter-term ζ(π, g) which is a combination of the spectral invari-
ants of Atiyah-Patodi-Singer. #Z∗π(P ; g) + ζ(π; g) takes values in Z if
H1(Y ;Z) = {0} and Z

[
1

8|H1(Y ;Z)|

]
if H1(Y ;Z) 6= {0}.

The exact expression for the counter-term ζ(π, g) is in Proposition 17.
For b1(Y ) = 1 the formula for the change in #Zπ(P ; g) when we cross the
‘wall’ in H2(Y ;R) defined by {c1(L)R} is given in Corollary 20.
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Let spinc(Y ) denote the equivalence classes of spin-c structures on Y .
There is a well-defined map spinc(Y ) → 2H2(Y ;Z) which sends a represen-
tative P to c1(LP ).

Corollary 2. Let Y be connected. The Seiberg-Witten equations define an
oriented diffeomorphism invariant τ of Y in the following form:

(i) if b1(Y ) > 0, τ : spinc(Y ) → Z
(ii) if b1(Y ) = 1, let spin∗c(Y ) be the set of pairs ([P ],U) where U a com-

ponent of H2(Y ;R)\{c1(LP )R}. Then τ : spin∗c(Y ) → Z
(iii) if b1(Y ) = 0 and H1(Y ;Z) = {0} there is a unique spin-c structure

and so τ ∈ Z
(iv) if b1(Y ) = 0 and H1(Y ;Z) 6= {0}, then τ : spinc(Y ) → Z

[
1

8|H1(Y ;Z)|

]
.

In the subsequent sections we work up to a proof of Theorem 1. Sec-
tion 2 discusses the framework for defining the moduli space and their first
properties. Section 3 looks at generic properties. The details of the proof of
Theorem 1 are in Section 4.

Addendum. The reviewer has brought to the attention of the author of
an alternative exposition of some of the material in this article, in [Ch].

2. The Moduli Space.

Throughout this section Y denotes a closed oriented 3-manifold with Rie-
mannian metric g and P → Y a fixed spin-c structure.

2.1. The Basic Set-up.
As in the usual gauge theory set-up we work with the following spaces.

(For more details see, for instance, [M].) Let C(P ) denote the space of
pairs (A,Φ) consisting of a L2

2 connection A on L and Φ a L2
2- section of

S → Y . This forms a Hilbert manifold. Let G denote the space of L2
3 gauge

transformations of S i.e., L2
3 maps g : Y → S1 ⊂ C. This forms a Hilbert

Lie group. G acts on C(P ) by g(A,Φ) = (A+ 2g−1dg, g−1Φ). This action is
smooth with Hausdoff quotient B(P ).

A pair (A,Φ) is irreducible if Φ is not identically 0. Otherwise it is called
reducible. G acts freely on C∗(P ), the open set of irreducibles and its quotient
is denoted by B∗(P ). The projection map C∗(P ) → B∗(P ) forms a principle
G-bundle. At a reducible (A, 0), for which we simply write A, the stabilizer
of G is exactly those gauge transformations g for which dg = 0; thus the
stabilizer is identified with U(1) ⊂ C, the constant gauge transformations.

Let Ωp
k(iR) denotes the p-forms on Y of class L2

k, and Γk(S) the sections
of S of class L2

k. Since C(P ) is an affine space modelled on the vector space
Ω1

2(iR)×Γ2(S) the tangent space at any point is canonically identified with
the vector space itself. On the other hand the tangent space to the identity
of G is identified with Ω0

3(iR).
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The derivative of the map g 7→ g(A,Φ) at the identity is given by γ 7→
(2dγ,−γΦ). The tangent bundle of C(P ) carries a natural Riemannian met-
ric which is the L2-inner product on Ω1

2(iR)×Γ2(S). This inner product is in-
variant under complex multiplication in Γ2(S). By taking the L2-orthogonal
to the image of the derivative of the gauge group action we obtain a slice
(A,Φ) +XA,Φ for the action at (A,Φ). XA,Φ is defined as

{(a, φ) | 2d∗a = i〈iΦ, φ〉} ⊂ Ω1
2(iR)× Γ2(S).

If Φ = 0 then XA,Φ reduces to ker d∗ × Γ2(S). The stabilizer of A pre-
serves XA and acts by z(a, φ) = (a, z−1φ); therefore the stabilizer acts as
the opposite complex structure on Γ2(S). If Φ 6= 0 then a sufficiently small
neighbourhood N of zero in XA,Φ models an open set for the gauge equiva-
lence class [(A,Φ)] in B(P ). If Φ = 0 then the same is true except that we
should take N/U(1) instead.

The symmetric bilinear form σ(Φ,Ψ) ∈ Λ2(iR) for us will be defined as
the adjoint of Clifford multiplication, that is defined by the condition that
for all ω ∈ Λ2(iR),

〈ω ·Ψ,Φ〉 = 〈ω, σ(Φ,Ψ)〉.

The representation c : Λ2(iR) → EndC(S) given by Clifford multiplication is
an isomorphism onto its image which is the trace-free Hermitian symmetric
endomorphisms of S. If we identify Λ2(iR) with its image under c then

σ(Φ,Ψ) =
1
2
(Φ⊗Ψ∗ + Ψ⊗ Φ∗ − 〈Φ,Ψ〉RId).

In the formula expressions of the form v ⊗ w∗ mean the endomorphism
v⊗w∗(u) = v〈u,w〉C. We remark that this formula assumes the convention
that if τ is unit length in Λ2(R) then c(iτ) is to be unit length in EndC(S).

Fix a perturbation term π = (α, ω) of class Ck, k ≥ 1 (we assume this
from now on). To set up the moduli space we define the SWπ-section s =
sπ,g : Ω0

2(iR)× C(P ) → Ω1
1(iR)⊕ Γ1(S) by

s(η,A,Φ) =
(
∗

(
FA −

1
4
σ(Φ,Φ)− ω

)
+ 2dη,DA+αΦ− ηΦ

)
.

Since we will want to vary the perturbation term later, we introduce the the
Banach space Qk of Ck-sections of Λ1(Y )⊗ iR and the Banach space Ωk of
closed Ck-sections of Λ2(Y ) ⊗ iR. Then our perturbations π are from the
space Pk which is Qk × Ωk.

From the definition of the SWπ-section, it would seem that the zeros
might capture a much larger set than the SWπ-solutions themselves; but as
the following Lemma shows this is only so in a minor way.

Lemma 3. Let s(η,A,Φ) = 0. If Φ 6= 0 then η = 0 and (A,Φ) is a SWπ-
solution. If Φ = 0 then η = constant and (A, 0) is a SWπ-solution.
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Proof. We claim that the vector (∗(FA − 1
4σ(Φ,Φ) − ω), DA+αΦ) is L2-

orthogonal to (2dη,−ηΦ). Before we show this we recall some useful identi-
ties: (i) if η ∈ Ω0

k(iR) then DA+α(ηΦ) = dη · Φ + ηDA+αΦ (ii) the Clifford
action of a ∈ Ω1

k(iR) is equal to the action of − ∗ a (iii) if η ∈ Ω0
k(iR) then

〈ηΦ,Ψ〉 = −〈Φ, ηΨ〉. To prove the claim we compute:

〈2dη, ∗(FA − 1
4σ(Φ,Φ)− ω)〉L2 − 〈ηΦ, DA+αΦ〉L2

= 〈2η, d∗ ∗ (FA − ω)〉L2 − 〈∗2dη, 1
4σ(Φ,Φ)〉L2 − 〈ηΦ, DA+αΦ〉L2

= −1
2〈∗dη · Φ,Φ〉L2 − 〈ηΦ, DA+αΦ〉L2

= 1
2〈dη · Φ,Φ〉L2 − 〈ηΦ, DA+αΦ〉L2

= 1
2〈DA+α(ηΦ),Φ〉L2 − 1

2〈ηDA+αΦ,Φ〉L2 − 〈ηΦ, DA+αΦ〉L2

= 1
2〈DA+α(ηΦ),Φ〉L2 + 1

2〈DA+αΦ, ηΦ〉L2 − 〈ηΦ, DA+αΦ〉L2 = 0.

The last step follows from DA+α being self-adjoint. Therefore s(η,A,Φ) = 0
if and only if (A,Φ) is a SWπ- solution and (2dη,−ηΦ) = 0. �

Thus we identify the space of Seiberg-Witten solutions with

s−1(0) ∩ {0} × C(P )

and the Seiberg-Witten moduli space Zπ(P ) is the quotient by G of this,
where G acts only on the C(P ) factor. The local structure of the moduli
space near a solution (η,A,Φ) ∈ s−1(0) is determined by the elliptic complex
associated to the map s:

Ω0
3(iR)

δ0
A,Φ−→ Ω0

2(iR)⊕ Ω1
2(iR)⊕ Γ2(S)

δ1
η,A,Φ−→ Ω1

1(iR)⊕ Γ1(S)

where

δ0A,Φ(γ) = (0, 2dγ,−γΦ)

δ1η,A,Φ(ξ, a, φ) = (∗(da− 1
2σ(Φ, φ)) + 2dξ,DA+αφ+ 1

2a · Φ− ξΦ− ηφ).

Since we will be interested only in the case where η = 0 we will in subsequent
notation omit it when that is understood. Thus we let H i

A,Φ, (i = 0, 1, 2)
denote the cohomology of the complex when η = 0.

Lemma 4. Let (A,Φ) be a SWα,ω-solution.

(i) If Φ 6= 0 then H0
A,Φ = 0, H1

A,Φ = H2
A,Φ

(ii) If Φ = 0 then H0
A,Φ = H0(iR), H1

A,Φ = H0
A,Φ⊕H2

A,Φ, H2
A,Φ = H1(iR)⊕

HA+α.

Note. In this article Hk(iR) always denotes the pure imaginary harmonic
forms of degree k and HA the kernel of DA.
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Proof. A direct computation shows that the L2-adjoint of δ1A,Φ is given by
δ1∗A,Φ(b, ψ) = (2d∗b − i〈iΦ, ψ〉, δ1A,Φ(a, ψ)). The adjoint of δ0A,Φ on the other
hand, is δ0∗A,Φ(η, a, φ) = 2d∗a− i〈iΦ, φ〉. Therefore

H1
A,Φ = ker δ0∗A,Φ ∩ ker δ1A,Φ

= {(ξ, a, φ) | 2d∗a− i〈iΦ, φ〉 = 0, da− 1
2σ(Φ, φ) = 0,

DA+αφ+ 1
2a · Φ = 0, dξ = 0, ξΦ = 0}

H2
A,Φ = ker δ1∗A,Φ

= {(b, ψ) | 2d∗b− i〈iΦ, ψ〉 = 0, db− 1
2σ(Φ, ψ) = 0,

DA+αψ + 1
2b · Φ = 0}.

The remainder of the proof follows easily. �

The local structure of the moduli space may now be deduced by the
Kuranishi argument. Let (0, A,Φ) ∈ s−1(0). If Φ 6= 0, then a neighbourhood
of [(0, A,Φ)] in Zπ(P ) is modelled on the zeros of a map (the obstruction
map) Ξ : H1

A,Φ → H2
A,Φ. If Φ = 0 then the same is true except that Ξ is

S1-equivariant and we should take Ξ−1(0)/S1.
If (A,Φ) is a regular solution, i.e., H2

A,Φ = {0}, and Φ 6= 0 then Ξ−1(0) is
exactly one point. Thus a regular irreducible solution is isolated. Therefore
we have:

Proposition 5. If Z∗π(P ) consists solely of gauge equivalence classes of reg-
ular solutions then Z∗π(P ) is a discrete set, i.e., every point is isolated.

2.2. Compactness and Regularity.

Proposition 6. Fix π ∈ Pk, k ≥ 1.
(i) If (A,Φ) is a SWπ-solution then (A,Φ) is gauge equivalent to a SWπ-

solution of class Lp
k+1, p ≥ 2.

(ii) Let {(Ai,Φi)}∞i=1 be a sequence of SWπ-solutions.
Then there is a subsequence {i′} ⊂ {i} and gauge transformations {gi′} such
that {gi′(Ai′ ,Φi′)} converges in L2

k to a L2
k SWπ-solution. In particular, this

converges in C(P ), and therefore B(P ).

Proof. The proof is due to [KM]. We include it here for completeness. The
Bochner formula for the Dirac operator reads (see for instance [LM])

D∗
A+αDA+αΦ = ∇∗

A+α∇A+αΦ +
1
4
κΦ +

1
2
FA+α · Φ,

κ being scalar curvature. We also have Kato’s inequality

1
2
∆|Φ|2 ≤ 〈∇A+α∇A+αΦ〉.
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If (A,Φ) is a SWα,ω-solution then DA+αΦ = 0 and

〈FA+α · Φ,Φ〉 =
1
4
|σ(Φ,Φ)|2 + 〈(ω + dα) · Φ,Φ〉

=
1
8
|Φ|4 + 〈(ω + dα) · Φ,Φ〉.

Applying Kato’s inequality to the Bochner formula we obtain
1
2
∆|Φ|2 ≤ −1

4
κ|Φ|2 − 1

8
|Φ|4 + |ω + dα|.|Φ|2.

At a maximum for Φ, ∆|Φ|2 ≥ 0. If this is non-zero we obtain

|Φ|2 ≤ max
Y

(−2κ+ 8|ω + dα|, 0).

Since ω and α are in C1, we obtain a uniform pointwise bound on the spinor
component of any SWα,ω-solution.

Let us prove (ii). Suppose that (Ai,Φi) is a given sequence of SWα,ω-
solutions. Choose a fixed reference smooth connection A, and write Ai =
A+ai. Then after a gauge transformation we may assume that dai = 0 and
the harmonic component of ai is uniformly bounded, since the component
group of maps Y → U(1) is H1(Y ;Z), and thus H1(Y ; iR)/H1(Y ; iZ) is
compact. Let âi be the L2-component of ai which is L2-pependicular to the
harmonic forms. Since the harmonic forms are C∞, ai− âi must lie in Ck for
every k. The SWα,ω equations together with the uniform pointwise bound
on Φi gives (by ellipticity) a uniform Lp

1 bound for the âi. Applying this
to the equation for Φi this gives again by ellipticity a uniform Lp

1 bound on
the Φi. Circulating inductively we terminate with uniform Lp

k+1 bounds on
both âi and Φi, since α and ω are assumed to be in Ck. The uniform bound
holds for all p ≥ 2. Therefore the sequence (ai,Φi) is uniformly bounded in
Lp

k+1. By Rellich’s theorem a subsequence of (ai,Φi) converges in Lp
k. For

p sufficiently large, Lp
k ⊂ L2

k+1; thus the sequence converges in C(P ), since
the underlying topology in L2

2.
The proof of (i) follows from the preceding by applying it to the constant

sequence. �

2.3. Reducible Solutions.
When Φ = 0, the Seiberg-Witten equations reduce to a single equation

for the connection A: FA = ω. If ω = 0 then the reducible (up to gauge
equivalence) is identified with the moduli space of flat U(1)-connections on
L. Thus a necessary condition is that c1(L)R = 0. If this is so, then by by
a well-known fact in differential geometry, the gauge equivalence classes of
flat connections is completely determined by the holonomy representation
of π1(Y ) and is therefore topologically a product U(1) × · · · × U(1) where
the number of factors equals b1(Y ). In particular if b1(Y ) = 0 then the
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reducible is exactly one point. (Note: When b1(Y ) = 0, L admits only one
flat connection, up to gauge.)

Lemma 7. The equation FA = ω has a solution if and only if the real coho-
mology classes [FA] = [ω] or equivalently [ i

2πω] = c1(L)R. If the latter holds,
then the space of equivalence classses of reducible solutions is topologically
U(1)× · · · ×U(1) where the number of factors equals b1(Y ), and in the case
b1(Y ) = 0, a single point.

Proof. As explained above the condition [FA] = [ω] is necessary. For suffi-
ciency, let A0 be such that [FA0 ] = [ω]. Then we only need to solve for a in
FA0+a = ω which is equivalent to da = ω−FA0 . Since ω−FA0 is exact such
an a can be found. Assuming solutions exist, let F denote the space of all
A’s such that FA = 0. Then F + a describes all the solutions to FA = ω.
Therefore the space of reducible solutions up to gauge are topologically the
same as in the case ω = 0. �

2.4. Orientation.
Suppose Z∗π(P ) consists only of regular points. It is clear that Z∗π(P )

is orientable. We want to produce a procedure for inducing a global ori-
entation. The fundamental elliptic complex can be combined into a single
operator Lη,A,Φ : Ω0

2(iR) ⊕ Ω1
2(iR) ⊕ Γ2(S) → Ω0

1(iR) ⊕ Ω1
1(iR) ⊕ Γ1(S),

Lη,A,Φ = δ1η,A,Φ + δ0∗η,A,Φ. A direct computation verifies that this operator is
formally self-adjoint.

Let Λ = det Ind{Lη,A,Φ}. Let g ∈ G and (a, φ) ∈ kerLη,A,Φ. Then
(a, g−1φ) ∈ kerLη,g(A,Φ). Therefore the action of G lifts to an action on Λ.
Note that if Φ = 0 then the stabilizer U(1) maps the fibre of Λ at A = (A, 0)
back to itself by the identity. Hence Λ decends to a line bundle Λ̂ over
Ω0

2(iR)× B(P ).

Proposition 8. The real line bundle Λ̂ is trivial.

Proof. We need to show that Λ posseses a G-equivariant trivialization. The
substitution of (1− ε)Φ, 0 ≤ ε ≤ 1, for Φ and (1− ε)η for η in the definition
of δ1η,A,Φ and δ0∗η,A,Φ defines a homotopy of Lη,A,Φ to an operator L′η,A,Φ given
by L′η,A,Φ(ξ, a, φ) = (∗da+ 2dξ,DAφ). This homotopy is G-equivariant. We
have kerL′η,A,Φ = H0(iR) ⊕H1(iR) ⊕HA = cokerL′η,A,Φ. This family has
a trivial determinant, and this proves Λ is G-equivariantly trivial. �

Notice that the homotopy given in the proof is the identity over {0} ×
CRed(P ). Thus over this set det Ind{Lη,A,Φ} is the determinant of the index
of a constant family {LdRham} tensored with the complex family {DA}.
Since a complex family is canonically oriented, we may ignore it. The kernel
and cokernel of LdRham are H0(iR)⊕H1(iR) and by identifying them with
each other we obtain a trivialization of det Ind{Lη,A,Φ} over {0}× CRed(P ).
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This orients det Ind{Lη,A,Φ} over all of Ω0
2(iR) × C(P ). This is the natural

orientation of Λ̂.
Consider the trivial real line bundle R over Ω0

2(iR)×B∗(P ). Then Λ̂ has
the property that over the open set O of Ω0

2(iR) × B∗(P ) defined by the
condition that kerLη,A,Φ = 0, there is a canonical isomophism h : Λ̂|O

∼=−→
R|O.

Proposition 9. Let Λ̂ have the natural orientation described above. As-
sume Z∗π(P ) consists only of regular points. Then the following rule defines
an orientation ε : Z∗π(P ) → {±1}. Let x ∈ Z∗π(P ). Denote by o(x,R) the
canonical orientation of R|x and o(x, Λ̂) the orientation induced by Λ̂ via
the isomorphism h above. Then

ε(x) =
{

1 if o(x,R) = o(x, Λ̂)
−1 otherwise.

3. Generic Properties.

Let {g(t)}, t ∈ Iε = (−ε, 1 + ε) be a 1-parameter family of metrics on Y . In
this section we examine the parameters (π, t) in P× Iε for which the moduli
space Zπ(P ; g(t)) consists solely of regular points.

In order to understand how the geometric structures and operators
changes with the 1-parameter family of metrics it will be useful to be able to
work with a single reference underlying metric, spin-c structure and model
for the spinors. Fix an underlying metric which we take to be g, let PSO be
the corresponding oriented orthonormal frame bundle and h an automor-
phism of TY . h induces an automorphism h∗ of PGL+ , the component of
positively oriented frames of the frame bundle of Y . The image of PSO in
PGL+ under h describes the orthonormal frame bundle of another metric.
Conversely, the positive orthonormal frame bundle of any other metric can
be recovered on this way. Call the second metric g′.
h can be lifted to an isomorphism between P , the spin-c structure for g

and P ′, the spin-c structure for g′. This, in turn, induces a fibrewise isometry
ĥ between the corresponding spinor bundles S and S′. By changing ĥ to
euĥ where u is a smooth function on Y we can arrange it so that euĥ gives
an isometry between Γ(S) and Γ(S′) with respect to their L2-norms.

Given the 1-parameter family g(t) the construction of euĥ above can be
carried out smoothly in the parameter t, taking for instance g = g(0) to be
the reference metric. Therefore using these isomorphisms as identifications
we may assume (A,Φ) etc. for every t is defined on a fixed reference bundle.
The Dirac operator now depends also on t, and we denote this as Dg(t)

A . It
is always self-adjoint with respect to the reference spinor bundle. Further
information regarding the relation between the Dirac operator for different
metrics can be found in [B], [BG] and [H].
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3.1. Singular Locus of Dirac Operators.
In this section we discuss the singular locus for certain families of Dirac

operators, i.e., the parameters for which the Dirac operator is singular. This
will be crucial for us later.

Suppose b1(Y ) = 0. Since H2(Y ; iR) = 0, we have a bounded right
inverse d−1 : Ωk → Ω1

2(iR) for the operator d. Let θ be a fixed C∞ flat
connection on the determinant L. Then for any given ω, A = θ + d−1(ω)
solves FA = ω. Define {D(α, ω, t)} to be the family of Dirac operators

D : P × Iε → Fred0(Γ(S)), D(α, ω, t) = D
g(t)
θ+α+d−1(ω)

.

Here Fred0 denotes the Banach space of Fredholm operators of index zero.
In the case b1(Y ) = 1, we shall also define a family as follows: This time

we keep the metric fixed, so we drop it from the notation. Let A0 be a fixed
C∞ connection on L and denote by ω0 its curvature. Fix a choice of non-zero
a0 ∈ H1(iR) such that i

4πa0 defines a generator for H1(Z). (The choice of
constants here is so that a0 is the class of a gauge change 2g−1dg.) Then the
set {A0 + ta0 | t ∈ [0, 1)}, parametrizes all the reducible SWα,ω0 solutions
up to gauge equivalence. Let Ek, k ≥ 2, denote the exact forms in Ωk.
Then on Ek we can as before define a bounded inverse d−1 : Ek → Ω1

2(iR).
Given ω ∈ Ek then A = A0 + ta0 + d−1(ω) solves FA = ω0. Thus the set
{A0 + ta0 + d−1(ω0) | t ∈ [0, 1)} parameterizes up to gauge equivalence all
the reducible SWα,ω+ω0-solutions, ω ∈ Ek. Define the family {D(α, ω, t)} by

D : Q× Ek × Iε → Fred0(Γ(S)), D(α, ω, t) = DA0+ta0+α+d−1(ω).

Proposition 10. Let N be the subset of P×Iε consisting of all (α, ω, t) for
which D(α, ω, t) is singular. Similiarly define the subset K of Q × Ek × Iε
for D(α, ω, t). Then N and K are nowhere dense closed subspaces.

Proof. We prove only the case for N . The other is done similiarly. Let B
be the unit L2-ball in Γ2(S). Let V → P × Iε × B be the vector bundle
whose fibre at (π, φ) is the real L2-orthogonal to φ in Γ1(S). By evaluating
D(α, ω, t) on φ ∈ B we obtain a section, call it D, of V . We claim this section
is transverse to the zero section. Let D(α0, ω0, t0)φ0 = 0. Let ψ ∈ Vα0,ω0,t0,φ0

be L2-orthogonal to the derivative dD at (α0, ω0, t0, φ0). By varying φ0 in
the tangent direction δφ we find dD(δφ) = D(α0, ω0, t0)δφ; thus ψ must
also satisfy D(α0, ω0, t0)ψ = 0 (since D(α, ω, t) is self-adjoint). On the other
hand, by varying α0, dD(δα) = δα ·t0 φ0 and if ψ is L2-pependicular to this
then ψ = ifφ0 for some real function f . The condition D(α0, ω0, t0)ψ = 0
then leads to df ·t0 φ = 0; but since φ0(x) 6= 0 on an open set it must be
that df = 0, and so f is a constant. Finally ψ being in V is necessarily
L2-orthogonal to φ0; thus f = 0. Hence ψ = 0 and transversality holds
and the zeros of D defines a smooth infinite dimensional submanifold M of
P × Iε ×B. The projection map p : M→ P × Iε is proper since the kernel
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of the Dirac operator is always finite dimensional. Applying the Sard-Smale
theorem we can concude that there exists an open dense set O in P×Iε with
the property that D(α, ω, t), (α, ω, t) ∈ O has nullity ≤ 1 over the reals. But
since this is a complex linear operator and self-adjoint, D(α, ω, t) must be
non-singular. The proposition now follows. �

Let πi = (αi, ωi), i = 0, 1, be given perturbations. Denote by {π(t)} =
{(α(t), ω(t))}, t ∈ Iε the 1-parameter family of perturbations defined by
π(t) = (1 − t)π0 + tπ1. For a fixed value of π, D(π(t) + π, t) defines a 1-
parameter family of Dirac operators. We use the notation {Dπ(t)} for this 1-
parameter family. We call this family transverse (for the choice of π) if Dπ(0)
and Dπ(1) are non-singular and the family has transverse spectral flow, as
t varies over [0, 1]. Transverse spectral also includes the condition that
multiple zero-eigenvalues do not occur as t varies. For the case b1(Y ) = 1,
fix a value of α0. In a similar way we have a 1-parameter family {Dπ(t)}
obtained by considering D((α0, ω0) + π, t) for a fixed π. Transversality is
defined in the same way as before.

Proposition 11. Suppose {D0(t)} has the property that D0(t) is non-singu-
lar for t = 0, 1. Then there are arbitarily small π such that {Dπ(t)} is a
transverse family. A similiar statement holds for {Dπ(t)}.

Proof. We shall only prove the case of {D0(t)}. The other case is handled
by essentially the same argument. Let x = (π0, t0) ∈ P × I, I = (0, 1).
Consider the map

G : Γ2(S)× P × I → Γ2(S), G(φ, π, t) = D(π, t)φ.

The differential of G at (0, π0, t0) is given by

dG(δφ, δω, δt) = D(π0, t0)δφ.

Then ker dG = Ht0⊕P⊕R and coker dG = Ht0 . HereHt0 denotes the kernel
of D(π(t0)+π0, t0) (acting on Γ2(S)). By the implicit function theorem there
is a neighbourhood V of (0, x) ∈ Ht0 × P × I and a unique smooth map
f : V → H⊥

t0 such that for (φ, π, t) ∈ V ,

(I−Π)G(φ+ f(φ, π, t), π, t) = 0, Π = L2-projection onto Ht0 .(1)

Note that the linear extension of f in the φ variable continues to satisfy (1)
so we may take V to be of the form Ht0 ×W , W a neighbourhood of x.
Because of (1) the injective/surjective properties of D(π, t), (π, t) ∈ W , are
completely determined by the finite-dimensional operator finite dimensional
operator Ht0 → Ht0 ,

T (π, t)φ = ΠG(φ+ f(φ, π, t), π, t).

We claim T (π, t) is self-adjoint with respect to the (real C-invariant) L2-
inner product on Ht0. We introduce the notation 〈·, ·〉Ht0

, ψ, φ ∈ Ht0 , to
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denote the L2 inner product on Ht0 and 〈·, ·〉Γ(S) the L2-inner product on
Γ(S). We compute:

〈T (π, t)φ, ψ〉Ht0
= 〈G(ψ + f(ψ, π, t), π, t), φ〉Γ(S)

= 〈G(ψ + f(ψ, π, t), π, t), φ+ f(φ, π, t)〉Γ(S)

since G(ψ + f(ψ, π, t), π, t) ∈ Ht0 , f(φ, π, t) ∈ H⊥
t0

= 〈ψ + f(ψ, π, t), G(φ+ f(φ, π, t), π, t)〉Γ(S)

by self-adjointness of D(π, t)
= 〈ψ, T (π, t)φ〉Ht0

.

This proves the claim.
Since T (π, t) is complex linear and self-adjoint with respect to the real

inner product, it is Hermitian with respect to the natural complex extension
of the L2-inner product on Ht0 . Let Herm(Ht0) denote the (real) vector
space of Hermitian transformations on Ht0 . The determinant function det :
Herm(Ht0) → R ⊂ C and det−1(0) is a closed subvariety of codimension 1
in Herm(Ht0). Introduce the notation

N (k) = {l ∈ Herm(Ht0) |dim ker(l) ≥ k}.

Lemma 12. Suppose dimC(Ht0) > 0. The derivative (dT )π0,t0 |Q of T re-
stricted to Q has non-trivial image in Herm(Ht0). If dimCHt0 ≥ 2 then this
image is of dimension ≥ 2.

First let us show that the image of (dT )π0,t0 is non-trivial. The derivative
at (π0, t0) is computed to be

dTπ0,t0(δ α, δt)φ = Π(δα+ d−1δω) ·t0 φ, π = (α, ω).

Suppose that 〈dTπ0,t0(δα)φ, φ〉L2 = 0 for all δα ∈ Q. Since

〈δα ·t0 φ, φ〉L2 =
∫

bY 〈δα, σt0(φ, φ)〉.

This implies σt0(φ(y), φ(y)) = 0 for all y ∈ Y and thus φ = 0. Thus the
image of dTπ0,t0 is non-trivial.

Assume now that dimC(Ht0) ≥ 2. Let δα be such that dTπ0,t0(δα) 6= 0.
Let φ1, . . . , φn be an complex orthonormal basis for Herm(Ht0) such that
dTπ0,t0(δα) is diagonal with respect to this basis. Thus 〈δα · φi, φj〉L2,C = 0
for i 6= j. Since the φk are harmonic spinors, unique continuation implies
that there is a open set in Y on which φi 6= φj , i 6= j on this open set, in
particular say at the point y ∈ Y . We can find a δα′ with support in an
arbitarily small neighbourhood of y such that

∫bY 〈δα′ · φi, φj〉C 6= 0, i 6= j.
Thus dTπ0,t0(δα

′) is independent of dTπ0,t0(δα). This shows that the image
is at least 2-dimensional. This proves the Lemma.
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Consider for each (α, ω) ∈W ,

τα,ω(t) = T (α, ω, t), |t− t0| < ε

where ε > 0 is chosen so that (α, ω, t) ∈ W . Clearly τα,ω defines a path in
Herm(Ht0).

By an open cover argument the following exists: (1) a finite set {t1, . . . , tn}
⊂ [0, 1] together with open neighbourhoods Vi of ti in R such that {Vi}n

i
covers [0, 1] (2) an open neighbourhood W ′ ⊂ W of 0 ∈ P (3) maps
T i : W ′ × Ii → Herm(Ht0) as in the preceding which preserves the in-
jectivity/surjectivity properties of D(α, ω, t), (α, ω, t) ∈W ′× Ii. We denote
the corresponding paths by τ i

α,ω(t).
Let N = maxi{dimC(Hti)}. Suppose N > 1. Let j be such that

dim(Htj ) = N . Note that N (N) = {0} ⊂ Herm(Htj ). Thus any non-
zero element in Herm(Ht0) lies in N (k), 0 ≤ k < N . Then by the above
Lemma we can find a sufficiently small perturbation (α, 0) ∈ W ′ so that
τ i
α,0(t) ∈ N (k′), 0 ≤ k′ < N , t ∈ Ii and for i 6= j, τ i

α,0(t) ∈ Herm(Hti)
for all t ∈ Ii. Thus we establish that there is an arbitarily small α so that
τ i
α,0(t) ∈ N (k) with 0 ≤ k < N for every i. Repeating the above con-

struction over but with W ′ taken to be an open neighbourhood of (α, 0)
instead, we inductively prove that we can find an arbitarily small α′ so that
we have N = 1. The perturbation argument in this case makes each path
τ i
α′,0 transverse to N (1) = {0} ⊂ Herm(Ht0) ∼= R.
Let us show that {Dα′,0(t)} is a transverse family. Suppose at s, τ i

α′,0(s) =
0. Let φ ∈ Hti be unit length. Let λ(t) be the 1-parameter family of
eigenvalues satisfying Dα′,0(t)φ = λ(t)φ for t close to s. Thus we have

〈Dα′,0(t)φ, φ〉L2 = λ(t)〈φ, φ〉L2 .

Differentiating this equation with respect to t and evaluating at t = s gives

〈dTπ0,t0(0, 0, 1)φ, φ〉L2 = λ′(s).

The left hand term is simply the velocity of τ i
α′,0 at t = s and transversality

means this is non-zero. Thus λ′(s) 6= 0 and we have transverse spectral flow
at t = s. �

3.2. The Parameterized Moduli Space.
As before we assume the 1-parameter families {g(t)}, t ∈ Iε. Define the

parametrized Seiberg-Witten section to be the map

s̃ : Ω0
2(iR)× C(P )× P × Iε → Ω1

1(iR)⊕ Γ1(S),

s̃(η,A,Φ, π, t) = sπ,g(t)(η,A,Φ).

Then the parameterized moduli space is Z(P ) = s̃−1(0)/G (with G acting
only on the C(P ) factor). There is the projection map p : Z(P ) → P × Iε
and clearly p−1(π, t) = Zπ(P ; g(t)).
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Proposition 13. The irreducible part Z∗(P ) of the parameterized moduli
space is smooth Hilbert space manifold and the projection map p|Z∗(P ) :
Z∗(P ) → P × Iε is a smooth Fredhom map of index zero.

If b1(Y ) = 0 we determined in Prop. 10 that p−1(π) contains no reducibles
if we are off the set N ⊂ P × Iε. If b1(Y ) > 0 we observed in Lemma 7 that
there are no reducibles in p−1(α, ω) if and only if [ i

πω] is not an integral
class in cohomology. Thus:

Lemma 14. Let q : Pk × Iε → H2(Y ;R), q(α, ω, t) = [ i
2πω] and set W =

q−1(c1(LR)). Then p−1(π, t) has reducibles if and only if (π, t) ∈ W. W is
a closed nowhere dense subset of of codimension equal to b1(Y ).

We remark that in the case b1(Y ) > 0 the condition of regularity (i.e.,
H2

A,Φ = {0}) for reducible solutions can never be satisfied. This is because
when Φ = 0, H2

A,Φ reduces to H2(iR)⊕HA. So regularity implies the absence
of reducibles in this case.

Corollary 15. p|Z∗(P ) : Z∗(P ) → P × Iε is proper over P × Iε\W where
(i) W = N if b1(Y ) = 0 (ii) W = W if b1(Y ) > 0. Therefore for an open
dense set O ⊂ P × Iε, p−1(z), z ∈ O, is a finite set of regular points.

Proof. The properness assertion is the content of Proposition 6 and the
fact that a regular reducible point in the case b1(Y ) = 0 is necessarily
isolated, by the Kuranishi local model. The Sard-Smale theorem then gives
the ‘open dense set’ statement since regularity of an irreducible solution
(A,Φ) is equivalent to the derivative ds̃ at (0, A,Φ) being surjective. (Note:
without the properness assertion we can only conclude regularity on a Baire
set.) �

Proof of Proposition 13. We have to show that the derivative ds̃ is surjective
at every point (0, A0,Φ0, π0, t0) ∈ s̃−1(0) for which Φ0 6= 0. Let (b, ψ) lie in
the cokernel of ds0,A0,Φ0 , i.e., (b, ψ) ∈ H1

A,Φ, thus

(i) db = 1
2σ(Φ, ψ), (ii)DAψ + b

2 · Φ = 0, (iii) 2d∗b = i〈iΦ, ψ〉.(2)

Suppose (b, ψ) is L2-orthogonal to the image of ds̃. The Proposition is proven
as soon as we can show (b, ψ) = 0. If δω ∈ Ωk, then ds̃(δω) = (∗δω, 0). Thus
b must be L2 orthogonal to all the co-closed forms; this implies that b must
be closed. Then from (i) we obtain the condition σt0(Φ0, ψ) = 0. Working
at a point, the kernel of the transformation v 7→ σt0(w, v) is of dimension 1
and it is easy to check that σt0(w, iw) = 0. Therefore ψ = ifΦ0 for some
real valued function f . Putting this into (ii) of (2) we obtain

0 = D
g(t0)
A0

(ifΦ) + b
2 ·t0 Φ

= (idf + b
2) · Φ (since Dg(t0)

A0
Φ0 = 0).
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Hence we obtain the pointwise condition idf + b
2 = 0 on the open dense set

O where Φ0 6= 0. By continuity it holds on all of Y . Substituting into (iii)
of (2) we get the equation

4∆f = −|Φ|2f.

Taking the product with f and integrating we obtain:∫
Y

4|df |2 + |Φ|2|f |2 = 0.

Thus f = 0 on O and therefore Y and we finally obtain (b, ψ) = 0. Finally
the index zero assertion follows directly from Lemma 4. �

4. Proof of Theorem 1.

Y is assumed to be a closed oriented 3-manifold with Riemannian metric
g and spin-c structure P → Y . According to Corollary 15 applied to the
constant family {g(t) = g}, we may choose a perturbation π from an open
dense set in Pk (k ≥ 3) such that Zπ,g(P ) consists of a finite set of regular
points, i.e., the cohomology H2

A,φ is trivial at these points. For this π, if
b1(Y ) = 0 there is a unique isolated reducible (up to gauge equivalence) and
if b1(Y ) > 0 there are no reducibles. Z∗π,g(P ) is then naturally oriented by
our conventions (Proposition 9) and we can form the algebraic sum

#Zπ,g(P ).

To prove the claimed invariance properties of #Zπ,g(P ), let g0, g1 be two
metrics on Y and let πi be two perturbations which satisfy the above with
respect to gi. We want to relate #Zπ0,g0(P ) and #Zπ1,g1(P ). Consider
the 1-parameter family of metrics {g(t)} = {(1 − t)g0 + tg1} defined for
t ∈ Iε = (−ε, 1 + ε). Thus as in Section 3 we have a parameterized moduli
space Z(P ) and projection map p : Z(P ) → Pk × Iε.

We consider a smooth path σ : [0, 1] → Pk × Iε, σ(0) = (π0, g0), σ(1) =
(π1, g1). We introduce the notation Zσ(P ) for the σ-parametrized moduli
space {(x, t) |x ∈ p−1(σ(t))}. If a portion of σ misses the ‘singular’ sets N
or W of Sec.3.1 and is transverse p, then that portion of Z∗σ(P ) consists
purely of regular points and therefore is a smooth arc. This is oriented in
the following way. The local deformation theory of Zσ(P ) is described by
an elliptic complex of the form

Ω0
3(iR) → Ω0

2(iR)⊕ Ω1
2(iR)⊕ Γ2(S)⊕R → Ω1

1(iR)⊕ Γ1(S).

Therefore the orientation is determined by looking at the ‘wrapped up’ op-
erator

Lη,A,Φ,t : Ω0
2(iR)⊕ Ω1

2(iR)⊕ Γ2(S)⊕R → Ω0
1(iR)⊕ Ω1

1(iR)⊕ Γ1(S).
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The orientation of the regular irreducible points of Zσ(P ) is determined by
an orientation of the determinant of the index of the family {Lη,A,Φ,t}. We
have the short exact sequence of 2-step complexes:

0 −−−−→ Ω0
2(iR)⊕ Ω1

2(iR)⊕ Γ2(S)
Lη,A,Φ−−−−→ Ω0

1(iR)⊕ Ω1
1(iR)⊕ Γ1(S) −−−−→ 0??y ??y

0 −−−−→ Ω0
2(iR)⊕ Ω1

2(iR)⊕ Γ2(S)⊕R
Lη,A,Φ,t−−−−−→ Ω0

1(iR)⊕ Ω1
1(iR)⊕ Γ1(S) −−−−→ 0??y ??y

0 −−−−→ R −−−−→ 0 −−−−→ 0.

This gives rise to a canonical isomorphism

h : kerLη,A,Φ,t ⊕ cokerLη,A,Φ → kerLη,A,Φ ⊕R⊕ cokerLη,A,Φ,t.(3)

An orientation for det Ind{Lη,A,Φ} defines an orientation for det Ind{Lη,A,Φ,t}
according to this rule: Choose an orientation for cokerLη,A,Φ. Then an ori-
entation of kerLη,A,Φ is determined, since det Ind{Lη,A,Φ} is oriented. Now
given an orientation of cokerLη,A,Φ,t, then kerLη,A,Φ,t is oriented so that h is
an orientation-preserving isomorphism, where the domain and range spaces
are given the product orientation in the order written in (3). With this ori-
entation convention, if Zσ consists entirely of regular irreducible points and
if compact then its boundary is precisely Zσ(1)(P ) − Zσ(0)(P ), as oriented
spaces.

The proof of Theorem 1 in the case b1(Y ) > 1 can now be easily estab-
lished. By Lemma 14 σ may be chosen to be disjoint from the subset of W
for which Zσ(P ) has reducibles. Furthermore σ can be assume to be trans-
verse to the projection p : Z(P ) → Pk × Iε. Thus Zσ(P ) defines a smooth
compact oriented cobordism between Zπ0,g0(P ) and Zπ1,g1(P ). This proves
the invariance of #Zπ,g(P ) in this case.

This argument extends to the cases b1(Y ) = 0, 1 provided (π0, 0) and
(π1, 1) can be connected by a path which missed the ‘bad’ sets N , W of
Sect. 3.1, Lemmma 14 respectively. However this is not generally true, as
we shall describe below.

4.1. The case b1(Y ) = 0.
The argument in the case b1(Y ) > 1 may fail here due to the presence of

a reducible (unique up to gauge) solution in each Zσ(t)(P ). The reducible
stratum of Zσ(P ) is an arc which under p projects diffeomorphically onto Iε.
The path σ may meet the subset N of Prop. 10 and singularities may occur
in Zσ. Choose σ to be the path defined by the family {g(t)} and the family of
perturbations {π(t)} = {(t−1)π0+tπ1}, t ∈ Iε. Fix θ a flat connection on L.
Writing π(t) = (α(t), ω(t)), in the notation of Sec. 3.1, the reducible solution
up to equivalence in Zσ(t)(P ) is given by θ(t) = θ+ d−1(ω(t)). Furthermore
the associated family of Dirac operators {D0(t)} determine the cohomology
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group H2
θ(t). According to Prop. 11, by an arbitarily small perturbation π we

can make this a transverse family {Dπ(t)}. This corresponds to deformation
of σ as σ + π which in turn is induced by perturbations (π0 + π, 0) and
(π1 + π, 0) of the end-points of σ. If π is sufficiently small then #Zπi+π(P )
coincides with #Zπi(P ); thus without loss we may absorb π and simply
assume transversality for π = 0. Then spectral flow for {D(t)} = {D0(t)}
occurs at exactly the values of t where σ(t) meets N .

Proposition 16. Assume {D(t)} is a transverse family and σ is transverse
to the projection p : Zσ(P ) → Pk×Iε away from N . Let σ∩N = {σ(ti)}n

i=1.
Then for each ti there is a open neighbourhood Ni of θ(ti) such that:

(i) Zσ(P )\ ∪Ni is a smooth compact 1-manifold with boundary
(ii) Zσ(P ) ∩ Ni is diffeomorphic to the zeros of the map R × R+ → R,

(t, ξ) 7→ tξ
(iii) Z∗σ+π(P )∩Ni = 0×R+ and the orientation of 0×R+ is −εi ∂

∂ξ where
εi is the sign of the spectral flow of {D(t)} at ti.

An immediate consequence of this is the formula

#Zσ(1)(P )−#Zσ(0)(P ) = −SF{D(t)}

where ‘SF’ on the right denotes the total spectral flow as t varies from 0 to
1. Notice that the left-hand term is actually independent of choice of path,
therefore the spectral-flow term only depends on the end-points of the path.
(In fact, it is possible to verify this directly as well.)

To define an invariant in this case it is necessary to introduce a counter-
term which should be a function of ω and g which has the same change
as #Zπ,g(P ) as we cross from one connected component of Pk × Iε\N to
another. Such a function can be obtained from the spectral invariants of
[APS].

Proposition 17. Assume b1(Y ) = 0. Let (α, ω, g) be given. Let θ be the
unique (up to gauge) flat connection on L and let a be defined by the condi-
tion d∗a = 0, da = ω. Define

ζ(α, ω, g) =
1
8
η (d ∗ − ∗ d|Ωeven , g)

+
1
2

(
dimCkerDg

θ+a+α + η
(
Dg

θ+a+α

))
+

1
32π2

∫
Y

(a+ α) ∧ d(a+ α)

where η denotes the Atiyah-Patodi-Singer spectral invariant of the associated
operator. Then:

(i) ζ(ω, g) lies in Z
[

1
8|H1(Y ;Z)|

]
; if in addition H1(Y,Z) = 0 it lies in Z

(ii) given the path σ as Prop. 16, we have ζ(σ(1))− ζ(σ(0)) = SF{D(t)}.
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Thus we see that the combination

#Zπ,g(P ) + ζ(π, g)

defines a topological invariant in the case b1(Y ) = 0.

Proof of Proposition 17. Every spin-c structure on Y is obtained by ten-
soring a spin structure on Y with a complex line bundle. By a Theorem
of Milnor every spin Y is the oriented spin boundary of an oriented spin
4-manifold X with b1(X) = 0. Every complex line bundle over Y can be
extended over X; therefore we may assume a spin-c structure P ′ → X which
induces the given P → Y . We may also assume X to have a metric which
near the boundary which is a product Y × [0, ε) of an interval and the metric
on Y and with orientation dy ∧ dt.

We may extend the connection θ over L(P ′) = det(P ′) as the connection
Θ, a as â and α as α̂ over X. These extensions can be taken to be products
over Y × [0, ε). The index theorem of [APS] applied to the Dirac operator
Dg

Θ+â+α̂ over X associated to P ′ gives:

IndexDg
Θ+â+α̂ =

∫
X

exp
(

1
2
c1(Θ + â+ α̂)

)
Â

− 1
2

(
dimCkerDg

θ+a+α + η
(
Dg

θ+a+α

))
.

Here

c1(Θ + â+ α̂) =
i

2π
FΘ+â+α̂

and Â is the Â-polynomial in the Pontrjagin classes. On the other hand
consider the signature operator on X. This has index

sig(X) =
∫

X
L− η(d ∗ − ∗ d|Ωeven , g).

L is the Hirzebruch L-polynomial in the Pontrjagin classes. Since

exp
(

1
2
c1(B)

)
= 1 +

1
2
c1(B) +

1
8
c1(B) ∧ c1(B) + . . . ,

Â = 1− 1
24
p1 + . . . ,

L = 1 +
1
3
p1 + . . . ,

the above index formulas give
1
8
η(d ∗ − ∗ d|Ωeven , g) +

1
2

(
dimCkerDg

θ+a + η(Dg
θ+a)

)
+

1
32π2

∫
Y

(a+ α) ∧ d(a+ α)
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=
1
8

∫
X
c1(Θ) ∧ c1(Θ)− 1

8
sig(X)− IndexDg

Θ+â+α̂.

If Y is an integral homology sphere then L is trivial and we may choose
its extension over X as the trivial bundle; therefore Θ in this case may be
assumed trivial. Furthermore the intersection form on X is then unimodular
so sig(X) is divisible by 8. Thus ζ is an integer. When Y is not an inte-
gral homology sphere then the term

∫
X c1(Θ) ∧ c1(Θ) depends only on the

topological type of the extension of L over X. It can be identified with the
Z

[
1

|H1(Y ;Z)|

]
-intersection product of the class [c1(Θ)] ∈ H2(X;Z)/torsion

with itself. Therefore ζ takes values in Z
[

1
8|H1(Y ;Z)|

]
.

The term η(d∗−∗d|Ωeven , g) depends continuously on g whereas according
to [APS] 1

2η(D
g
θ+a+α) jumps by the spectral flow. Thus ζ has the correct

behaviour as we cross components of Pk × Iε\N , as claimed. �

Proof of Proposition 16. The proof of the proposition relies on a detailed
understanding of the Kuranishi local model at the singular points [θ(ti)].
Without loss of generality we assume that there is only one value t = t1
where {D(t)} is singular. The Seiberg-Witten section which gives Zσ(P ) is
of the form ŝ : Ω0

2(iR)× C(P )×R → Ω1
1(iR)⊕ Γ1(S),

ŝ(η,A,Φ, t) =
(
∗t(FA − 1

4σt(Φ,Φ)− ω(t)), Dg(t)
A+α(t)Φ− ηΦ

)
where the ‘t’ in the notation denotes a dependence on t. (Note: just as in
Sec. 3 we work with a fixed P → Y with respect to a basepoint metric.)
The linearization of ŝ at η = 0, A = θ(t1), Φ = 0, t = t1 is given by

dŝ(δη, δa, δφ, δt) =
(
∗t1(d(δa) + ω′(t1)δt),D(t1)δφ

)
.

Let Xθ(t1),0 be the slice of the gauge group action on C(P ) at (0, θ(t1), 0)
(Sec. 2). Then

ker (dŝ) ∩ (Ω0
2(iR)×Xθ(t1),0 ×R) = H0(iR)⊕Hθ(t1) ⊕Rt

coker (dŝ) = Hθ(t1).

Here Rt = span{(d−1(ω′(t1)), 1)} in the Ω1
2(iR)⊕R factor. The Kuranishi

obstruction map then takes the form

Ξ : iR×Hθ(t1) ×Rt ⊃ U → Hθ(t1).

This gives ŝ−1(0)/G near (0, θ(t1), 0, t1) as Ξ−1(0)/S1. A direct verification
shows that Ξ−1(0) ⊃ (iR×0×Rt)∩U . The subset (iR×0×0)∩U consists
of ‘virtual’ Seiberg-Witten solutions and thus should be ignored to get the
Seiberg-Witten moduli space proper (Lemma 3). The subset (0×0×Rt)∩U
are the reducible solutions near (0, θ(t1), 0, t1). Our assumption on σ being
transverse to p away from W means that the closure of the irreducible part
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of Ξ−1(0)/S1, is a compact 1-manifold with boundary except possibly at
(0, 0, 0). Furthermore Ξ−1(0) ∩ U ∩ (R× 0×Rt − (0, 0, 0)) = ∅.

By construction the derivative of Ξ at (0, 0, 0) is the zero map. We aim
to compute the second derivative: This will give us the quadratic approxi-
mation to Ξ which will be sufficient for our purposes. In the following, we
identify Rt with R via t 7→ (d−1(ω′(t1)), 1)t.

Claim 18. The second derivative of Ξ at (0, 0, 0) is given by

D2Ξ(δη, δφ, δt) = cδtδφ− δηδφ

where c is a non-zero real constant and has the same sign as that of the
spectral flow of {D(t)} at t = t1.

To prove the claim: the obstruction map Ξ is constructed as a composition
of the form x 7→ Π ◦ ŝ(x + f(x)) where x ∈ O ⊂ iR × Hθ(t1) × Rt and
f : O → (iR×Hθ(t1) ×Rt)⊥ is given by the implicit function theorem. As
such its derivative at 0 is the zero map. It is then seen that D2Ξ is given
by Π ◦D2ŝ. This is given by the expression

D2Ξ(δη, δφ, δt) = Π
(
D′(t1)(δtδφ)

)
− δηδφ.

The map δφ 7→ Π(D′(t1)δφ) defines a Hermitian transformation on Hθ(t1)
∼=

C with respect to the complex L2-inner product. Thus it is multiplication
by a real constant c = 〈D′(t)v, v〉, v being of unit length. Our assumption
on σ was that at t = t1 a single eigenvalue λ(t), |t−t1| < δ, for D(t) changed
from negative to positive or vice-versa. In the first case the spectral flow is
+1 and in the latter −1. We have a 1-parameter family of unit eigenvectors
v(t), |t− t1| < δ, such that

D(t)v(t) = λ(t)v(t).

Differentiating this equation at t = t1 and taking the inner product with
v(t1) we obtain using self-adjointness of D(t),

〈D′(t1)v(t1), v(t1)〉 = λ′(t1).

Thus the sign of the spectral flow is seen to be same as that of λ′(t1). This
proves the Claim.

To continue the proof of Proposition 16: by the Claim, Ξ(η, φ, t) is ap-
proximated up to second order by

(ct− η)φ.

The zeros of the quadratic approximation fall into two branches: 0× 0×Rt

and 0 × Hθ(t1) × 0. We claim that these two branches gives a complete
picture of the zeros of Ξ near (0, 0, 0). To get a clearer picture, consider
restricting the φ variable to the real span of a fixed non-zero vector in Hθ0 .
Call this map Ξ̃. Then Ξ−1(0)/S1 = Ξ̃−1(0)/ ± 1. Since Ξ̃(η, 0, t) = 0 we
may factor out the branch {φ = 0} by setting Ξ̃(η, φ, t) = φ.Θ(η, φ, t). Using
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Claim 18 the linearization of Θ is seen to be dΘ(δη, δt, δφ) = (cδt− δη). We
have ker dΘ = {δt = δη = 0}. Invoking the Implicit Function Theorem
we see that near (0, 0, 0), Θ−1(0) is a smooth arc tangent to {φ = 0} at
(0, 0, 0). This demonstrates the claimed local structure near the singular
point. For later we note the following: the implicit function theorem gives
a map G : Hθ(t1) → Rt = {0} ×Rt ⊂ iR×Rt such that the closure of the
irreducible part of Ξ−1(0) is given by graph(G) = {(0, φ,G(φ)) |φ ∈ Hθ(t1)}.

What remains is to determine the orientation of the above arc of irre-
ducible solutions. We have an orientation of det Ind{Lη,A,Φ,t} determined
by that of det Ind{Lη,A,Φ} according to the map h of (3). (See discussion
following there.) Since we are working at a point where Φ = 0, the orienta-
tion of det Ind{Lη,A,Φ} is determined by the kernel and cokernel of Lθ(t1),0;
namely H0(iR)⊕Hθ(t1). The long exact sequence inducing h takes the form

0 → H0(iR)⊕Hθ(t1) → kerLθ(t1),0,t1
κ→ R → H0(iR)⊕Hθ(t1)

β→ cokerLθ(t1),0,t1 → 0.

The map κ in the sequence sends the subspace Rt isomorphically onto the
the target space. This isomorphism sends (1, d−1(ω′(t1)))r 7→ r, r ∈ R.
Choose an orientation of cokerLθ(t1),0 = H0(iR) ⊕ Hθ(t1); then since β in
the sequence is an isomorphism, our orientation convention dictates that
cokerLθ(t1),0,t1 has the orientation induced by β, and the orientation on
kerLθ(t1),0,t1 is the product orientation kerLθ(t1),0⊕Rt, where Rt is oriented
via κ.

In order to determined orientations in the local Kuranishi picture cor-
rectly we shall need to combine the obstruction map Ξ with a local slice
condition coming from the S1-action, which is the inverse of complex mul-
tiplication on the Hθ(t1) factor. The set graph(G) ⊂ Ξ−1(0) represents
the closure of the S1-orbits of the irreducible solutions near (0, 0, 0). Let
0 6= v ∈ Hθ(t1). Then the linearization of the S1-action at (0, v,G(v)) is
a map iR → iR × Hθ(t1) × Rt, δγ 7→ (0,−(δγ)v, 0). The adjoint of this
map sends (δη, δφ, δt) 7→ −i〈iv, δφ〉. Therefore a further local description
for Ξ−1(0)/S1 near (0, v,G(v)) is the zeros of the map

χ : iR×Hθ(t1) ×Rt → iR×Hθ(t1), χ(η, φ, t) = (−i〈iv, φ〉,Ξ(η, φ, t)).

In what follows, we may for simplicity assume G = 0; the result for general
G is obtained by working sufficiently close to (0, 0, 0) where graph(G) is
approximated to arbitarily high order by 0×Hθ(t1)× 0. With this assumed,
the irreducible zeros of χ is the set of positive multiples of (0, v, 0). The
normal bundle to 0×Hθ(t1)×0 at (0, 0, 0) is iR×0×Rt. This is mapped via
dΘ isomorphically onto Hθ(t1). If we pull-back the complex orientation by
dΘ, then the induced orientation on iR×0×Rt is cδη∧δt. By continuity this
is carried to the point v as the same orientation. The last remaining direction
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to the normal bundle of χ−1(0) at v is given by (0, iv, 0). This is mapped by
dχ to (−i〈iv, iv〉, 0) = (−i, 0). Let us take the product orientation on iR×
Hθ(t1) for the range space of χ, in this order (the final answer is independent
of this choice); then our orientation convention dictates that the domain
space of χ is oriented in the order iR × Hθ(t1) × Rt. Then the pull-back
of the orientation on iR × Hθ(t1) to the normal bundle of χ−1(0) at v is
−δθ ∧ cδη ∧ δt, where δθ is the (0, iv, 0) direction. Let δr be the direction
given by v, and εδr the induced orientation of χ−1(0) near v. Then we
require that the orientation on χ−1(0) followed by the orientation in the
normal direction equals the orientation on iR×Hθ(t1) ×Rt, that is

εδr ∧ (−δθ ∧ cδη ∧ δt) = δη ∧ δr ∧ δθ ∧ δt.
This shows the induced orientation on χ−1(0) as −cδr, as claimed.

4.2. The case b1(Y ) = 1.
This case is similiar but with some slight differences to b1(Y ) = 0. Any

path σ which connects (π0, g0) to (π1, g1) in Pk × Iε may cross the codi-
mension 1 subset W. At the points where σ meets W the corresponding
Zσ(t)(P ) will admit an S1’s worth of reducibles, otherwise Zσ(t)(P ) contains
no reducibles. As following our notation conventions, σ(t) in components is
(π(t), g(t)) or (α(t), ω(t), g(t)).

We may by general transversality arguments assume that σ meets W
transversely and orthogonally and transverse to the projection p : Z∗(P ) →
Pk×Iε away fromW. Let {ti} be the finite set of values for which σ(ti) ∈ W.
To simplify matters even more, since W the preimage of a set in Pk we may
assume near W that σ lies in the subset Pk ×{ti}. Hence for values near ti,
the metric represented by σ is unchanging.

We can always find connections Ai such that FAi = ω(ti). Using the
value α(ti), we can as in Sec. 3.1 form the 1-parameter family of operators
{Di

πi
(s)}. By Prop. 11 we can make this family transverse by an arbitarily

small perturbation πi. This perturbation can be achieved by a perturbation
of σ, supported for values of t near ti, and maintaining the original properties
of σ. Thus we can assume {Di

0(s)} is a transverse family and we drop the
‘0’ subscript notation. Finally let si,j be the values of s for which {Di(s)}
has spectral flow. Denote by Ai,j the connection Ai + si,ja0.

A technical issue which will be significant is the orientation of the family
{Di(s)}. Looking back at the definition in Sec. 3.1 we see that this involved
a certain choice of a non-zero element a0 in H1(iR). We shall make a
specific choice for each i. The assumption that σ meets W orthogonally
means in particular that the derivative ω′(ti) is L2-orthogonal to the exacts.
Thus d∗(ω′(ti)) = 0 so ∗ω′(ti) is closed. For a chosen i we now make the
convention that the a0 should be a positive multiple of [− ∗ ω′(ti)].
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Proposition 19. For each (i, j) there is a open neighbourhood Ni,j of [Ai,j ]
such that (i) Zσ(P )\ ∪Ni,j is a smooth compact 1-manifold with boundary
(ii) Ni,j is diffeomorphic to the zeros of the map R×R+ → R, (s, ξ) 7→ sξ

with Z∗σ(P ) ∩Ni,j = 0 ×R+ (iii) the orientation of 0 ×R+ is εi,j ∂
∂ξ where

εi,j is the sign of the spectral flow of {Di(s)} at si,j, as s varies from 0 to 1.

Proof. This largely proceeds in the manner of the case b1(Y ) = 0. We
continue to use notation introduced there. Again, without loss, we may
assume σ meets W exactly once, at t = t1. We consider again the map ŝ of
the case b1(Y ) = 0. Computed at η = 0, A = A1,j , Φ = 0, this time we find

ker (dŝ) ∩ (Ω0
2(iR)×XA1,j ×R) = iR⊕H1(iR)⊕HA1,j

coker (dŝ) = HA1,j .

We have the obstruction map Ξ : iR × H1(iR) × HA1,j → HA1,j whose
second derivative at (0, 0, 0) is

D2Ξ(δη, δa, δφ) =
1
2
Π(δa · δφ)− δηδφ.

Then if we let δa = − ∗ ω′(t1)δt, the term

1
2
Π(δa · δφ) =

1
2
δtΠ(− ∗ ω′(t1) · δφ) = cδtδφ

where c is a non-zero real constant with the same sign of the spectral flow
{Di(s)} at s1,j . As in the b1 = 0 case, the irreducible zeros of Ξ are modelled
by the subset 0× 0×HA1,j and the reducible zeros by 0×H1(iR)× 0.

Let us now deal with the orientations in this case. Looking at the long
exact sequence inducing h of (3) we see

0 → H0(iR)⊕H1(iR)⊕HA1,j

=→ kerLA1,j ,0,t1 → R κ→

H0(iR)⊕H1(iR)⊕HA1,j

β→ cokerLA1,j ,0,t1 → 0.

We note that κ(t) = −ω′(t1)t maps isomorphically onto the H1(iR) factor,
and cokerLA1,j ,0,t1 is H0(iR)⊕H1(iR). β is the obvious projection. Let us
assume the canonical orientations on H0(iR), HA1,j , and the orientation on
H1(iR) induced by κ, which is given by −∗ω′(t1). Finally choose the product
orientation (in the order indicated) on H0(iR) ⊕ H1(iR) ⊕ HA1,j . Then
kerLA1,j ,0,t1 is identically oriented and cokerLA1,j ,0,t1 is oriented according
to the order H0(iR)⊕HA1,j .

Let v ∈ HA1,j . Then combining the slice condition with Ξ gives the moduli
space near (0, 0, v) (as before we may assume G = 0) as the zeros of the map

χ : iR×H1(iR)×HA1,j → iR×HA1,j ,

χ(η, a, φ) = (−i〈iv, φ〉,Ξ(η, a, φ)).
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As before the zeros of χ are the positive multiples of (0, 0, v). The pull-back
of the orientation on the target space onto the normal bundle of χ−1(0) is
given by −δθ∧cδη∧δa where δθ is the angular coordinate on HA1,j . Letting
r be the direction determined by v and εδr the induced orientation, then we
require

εδr ∧ (−cδθ ∧ δη ∧ δa) = δη ∧ δa ∧ δr ∧ δθ

which gives the induced orientation on χ−1(0) as −cδr. �

As mentioned before, Zσ(t)(P ) admits reducible solutions exactly σ(t) ∈
W. This corresponds to when [ i

2πω(t)] coincides with the class c1(L)R. Let
U denote a connected component of H1(Y ;R)−{c1(L)R}. Then if our path
σ has the property that [ i

2πω(t)] ∈ U for all t, then #Zσ(0)(P ) = #Zσ(0).
Therefore #Zα,ω,g(P ) is an integer-valued function depending only on the
choice of U . Denote this function as τ(U).

We think of {c1(L)R} as a ‘wall’ in H2(Y ;R). Then as we cross this wall
τ changes. This change can be determined from the previous proposition to
give a ‘wall-crossing’ formula.

Corollary 20. Let a ∈ H2(Y ;Z)/torsion be an indivisible class and let
c1(L)R = 2na. Let U± be the component of H2(Y ;R)−{c1(L)R} containing
(2n± 1/2)a. Then

τ(U+)− τ(U−) = n.

Proof. Take (π0, g0) and (π1, g1) which define the values τ(U+) and τ(U−)
respectively. Choose our connecting path σ with properties as used for as
for Prop. 19. Without loss, We may suppose that σ crosses W exactly once,
say at t = t1. We now follow the notation and ideas in the proof of Prop. 19.
According to Prop. 19 We need then to compute the total spectral flow of
the family {D1(s)} as s varies from 0 to 1. The orientation of this family
is determined by − ∗ ω′(t1). We shall choose a to be consistent with this
orientation, but the statement of the corollary is actually independent of
this choice. Take a positive multiple ω of ω′(t) such that with [ i

2πω] = 2a.
Thus A1 − ∗ωs, 0 ≤ s < 1 parameterizes all the reducibles in Zσ(t1)(P ).

We may deform the family {D1(s)} preserving self-adjointness to the family
{Dg(t1)

A1−∗ωs}, s ∈ [0, 1]. Thus it suffices to compute the spectral flow for this
family. Notice that there is a gauge transformation g such that g(A1) = A1−
∗ω, or equivalently g−1dg = −∗ω. A theorem of [APS] says that the spectral
flow of the Dirac operators {Dg(t1)

A1−∗ωs} is equivalent to computing the index

of a Dirac operator D(4)
A on Y ×S1 with a spin-c structure obtained by taking

the product P×[0, 1] over Y ×[0, 1] and identifying via g : P×{1} → P×{0}.
A is a connection which is in temporal gauge and coincides with A−∗ωs on
L× {s}. (Remark: We follow the orientation conventions of [APS] closely.
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In particular Y × S1 has the product orientation dy ∧ ds where dy is the
orientation form on Y and s the real coordinate on S1 thinking of it as
R/Z.) Denote the resulting determinant on Y × S1 by L′. The index of
D

(4)
A is given by

1
8
〈c21(L′), [Y × S1]〉+

1
8
sig(Y × S1).

To compute the first term, we notice FA = d(A1−∗ωs) = FA1−∗ωds. Then

〈c21(L′), [Y × S1]〉 =
∫

Y×[0,1]

i

2π
FA ∧

i

2π
FA

= − 1
4π2

∫
Y×[0,1]

(FA1 − ∗ωds) ∧ (FA1 − ∗ωds)

= − 1
4π2

(−2)
∫

Y×[0,1]
FA1 ∧ ∗ωds

= − 1
4π2

(−2)
∫

Y×[0,1]
nω ∧ ∗ωds

= − 1
4π2

(−2n)
∫

Y
ω ∧ ∗ω

∫ 1

0
ds

= − 1
4π2

(−2n)4πia · PD(4πia)

= 8n.

Here ‘PD’ denotes Poincare Duality. Since sig(Y × S1) = 0, the index of
D

(4)
A is n and the corollary follows. �
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