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When a finite group G acts faithfully on a graded integral
domain S which is an algebra over a field k, such as a poly-
nomial ring, we consider S as a kG-module. We show that S
is asymptotically mostly projective in each degree, and also
that it is in fact mostly free in an appropriate sense. Simi-
lar results also hold for filtered algebras, such as power series
rings.

1. Introduction.

Let S =
⊕∞

n=0 Sn be a graded algebra over a field k. We suppose that
S is finitely generated over k as a k-algebra and that the homogeneous
components Sn are finite dimensional vector spaces over k. Let G be a finite
group of grading preserving automorphisms of S (so G acts faithfully). We
are concerned with the structure of S as a kG-module.

The classical theory of Hilbert and Serre asserts that for large n, dimk Sn

is given by a function

φS(n) = cd−1(n)nd−1 + cd−2(n)nd−2 + · · ·+ c0(n),

where the ci(n) are rational valued functions periodic in n, i.e., φi(n +
p) = φi(n) for some integer p (see Section 2). If cd−1 is assumed not to be
identically zero then d is equal to the dimension of the ring in various senses.
If S is a polynomial ring then d is equal to the number of variables.

From now on, we assume that S is an integral domain. Let Pn denote the
maximal projective summand of Sn (defined up to isomorphism).

Theorem 1.1. dimk(Sn/Pn) is bounded by a polynomial in n of degree d−2.

Thus Sn is mostly projective, and if S is a polynomial ring then the
non-projective part grows like a polynomial ring in one fewer variables.

In fact S is mostly free, although the individual Sn do not have to contain
a free module at all; the different projectives can occur in different degrees.
To explain this let R = SG, the ring of invariants.
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Theorem 1.2. S contains a free kG-submodule F of rank 1, a sum of ho-
mogeneous pieces, such that the product map R ⊗k F → S is injective. De-
note its image by RF =

⊕
n(RF )n. Then RF is a free summand of S and

dimk(Sn/(RF )n) is bounded by a polynomial of degree d− 2.

Of course, the first theorem is a corollary to the second. Versions of these
theorems were proven by Howe [4] in characteristic 0 and by Bryant [2, 3]
for polynomial rings.

Section 2 contains the main proof, except for some technical details which
appear in Section 3. Section 4 proves similar results for filtered algebras.

2. Main Proof.

Proof. We can assume that k is a splitting field for G, since if a kG-module
contains a free or projective summand after extension of scalars then it did
so before. Let QS (resp. QR) denote the fields of fractions of S (resp. R),
so QS

∼= QR ⊗R S. By the Normal Basis Theorem, QS is a free module of
rank 1 over QRG; let e be a generator. Then, over kG, e generates a free
submodule E of rank 1 such that QS

∼= QR ⊗k E. Now there is an r ∈ R
such that re ∈ S. Let F be the kG-module generated by re, so F ⊂ S and
F = rE ∼= kG. Also the product map R⊗k F → RF ⊂ S is injective.

We claim that F can be assumed to be a sum of homogeneous pieces,
F =

⊕
i Fni . The proof of this plausible statement is somewhat delicate,

and we postpone it to the next section.
Let x1, . . . , xs be homogeneous generators for S as a k-algebra. Then

xi =
∑

j
aij

bij
ej , where ai,j , bi,j ∈ R and the ej form a homogeneous k-basis

for F . By writing bi,jxi =
∑

j ai,jej and taking the homogeneous component
of this equation in some degree where bi,jxi is non-zero, we see that we may
assume that the bi,j are homogeneous. Let α ∈ Ra be the product of all the
bi,j . Then each xi ∈ α−1RF , so S ⊂ α−1RF .

Thus

(RF )n ⊂ Sn ⊂ α−1(RF )n+a,

and so, identifying RF with R⊗k F , we have⊕
i

Rn−ni ⊗ Fni ⊂ Sn ⊂ α−1
⊕

i

Rn+a−ni ⊗ Fni .

In particular, the dimension of Sn/(RF )n is bounded by the difference in
the dimensions of the two sides, i.e., by∑

i

(φR(n + a− ni)− φR(n− ni)) dimk Fni .
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But

φR(n + a− ni)− φR(n− ni) = cd−1(n + a− ni)(n + a− ni)d−1

− cd−1(n− ni)(n− ni)d−1 + lower degree terms,

and cd−1 is periodic, with period dividing a (see 3.1), so the nd−1 term
cancels and we are done. �

3. Technical Details.

The form of φS(n) given above is not quite the standard one, although it is
quoted in [4]. The usual references deal with a module over a polynomial
ring which has all the variables in degree 1, and then all the coefficients of
φ are constants. To deduce the version given in the introduction, note that
if S is generated by x1, . . . , xs then it is a finitely generated module over
k[x1, . . . , xs]. By taking suitable powers yi of the xi we can get all the yi in
the same degree b, and S will still be finitely generated over k[y1, . . . , ys].
For 0 ≤ j ≤ b− 1, set Tj =

⊕∞
l=0 Sj+lb. Then R ∼=

⊕
j Tj as a k[y1, . . . , ys]-

module, and after regrading each Tj so that each yi can have degree 1, we
can apply the usual theory ([1] 11.2, [5] VII Theorem 41) to each Tj and
sum the results. It is the summation that leads to the periodic coefficients.

Lemma 3.1 ([4]). If R is an integral domain (as it always is for us), c =
gcd{r ∈ Z|Rr 6= 0} and φR(n) = cd−1(n)nd−1 + · · · + c0(n), then there is a
constant b such that

cd−1(n) =
{

b, if n|c,
0, otherwise.

Proof. If 0 6= α ∈ Ra, then multiplication by α embeds Rn in Rn+a, so
for large n, φR(n) ≤ φR(n + a). Now consider the limit of φR(n)/nd−1 as
n → ∞ through elements of the same residue class modulo the period of
cd−1 to see that cd−1(n) ≤ cd−1(n + a). This, together with the periodicity,
implies the result. �

Now we prove the claim made in Section 2.

Proposition 3.2. The free module F ⊂ S can be assumed to be a sum of
homogeneous pieces in such a way that the product map QR ⊗k F → QS is
still an isomorphism.

Proof. For each simple kG-module V , let TV = HomkG(V, S), a graded R-
module. Now soc F is a direct sum of simples. Let socV (F ) denote the sum
of those isomorphic to V , so socV (F ) = V 1⊕· · ·⊕V s, where V i ∼= V , and let
PV i be a projective summand of F with soc(PV i) = V i. The inclusions of the
V i in S give us s homomorphisms f i ∈ TV , which are linearly independent
over R.
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Lemma 3.3. Let f1, . . . , fs be elements of a graded R-module T which are
linearly independent over R. Write each f j as a sum of its homogeneous
components; f j =

∑
k f j

k , f j
k ∈ Tk. Then for each j there is an integer kj

such that f1
k1

, . . . , fs
ks

are linearly independent over R.

Proof. For each 0 ≤ t ≤ s, let Pt be the claim that there exist integers
k1, . . . , kt such that f1

k1
, . . . , f t

kt
, f t+1, . . . , fs are linearly independent over

R. P0 is true by hypothesis and we want Ps. We give a proof by induction
on t, so assume Pt.

If Pt+1 is false, then for each k ∈ Z we can find uk, r
i
k ∈ R, uk 6= 0, such

that
ukf

t+1
k = r1

kf
1
k1

+ · · ·+ rt
kf

t
kt

+ rt+2
k f t+2 + · · ·+ rs

kf
s.

Let u be the product of the uk for which f t+1
k 6= 0. Then uf t+1 =∑

k(
u
uk

)ukf
t+1
k , contradicting Pt. �

Applying this to the {f i} ⊂ TV we obtain homogeneous {f̄ i} ⊂ TV , f̄ i ∈
Tai , say, linearly independent over R.

Lemma 3.4. The evaluation map ev : TV ⊗k V → S is injective.

Proof. In fact ev : HomkG(V,M)⊗k V → M is injective for any kG-module
M . This is because it factors through socV (M), which is a direct sum
of V ’s, so we are reduced to proving the case M = V . But then ev is an
isomorphism, since HomkG(V, V ) ∼= k, by the assumption that k is a splitting
field. �

Corollary. The product map R⊗k (
⊕

i f̄
i(V )) → S is injective.

Now let P̄V i be the image of the projection of PV i to Sai . The projection
map is injective on soc(P i

V ), by the construction of ai, so P̄V i
∼= PV i and

soc(P̄V i) = f̄ i(V ). Let P̄V =
⊕

i P̄V i and consider the product map R ⊗k

P̄V → S. Since soc(R ⊗k P̄V ) = R ⊗
⊕

i f̄
i(V ), it is injective on the socle,

so is injective.
Finally, we sum the P̄V over the simples V to obtain F̄ , a free kG-module

of rank 1, which is a sum of homogeneous pieces, as required. �

Remark. If G is a p-group, where p is the characteristic of k, then the proof
is much simpler because soc(F ) ∼= k. Under at least one of the projections
of F onto its homogeneous components the image of soc(F ) must be non-
zero. Let F̄ be the image of F under this projection. Then F̄ ∼= kG and
QR ⊗k F → QS is an isomorphism because it is injective on the socle, and
both sides have the same dimension over QR.

This is enough to prove 1.1 for general G. For if P = Sylp(G) then S is a
direct summand of IndG

P ResG
P S.
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Remark. It is not hard to see that, given any degree m, the summands of
F̄ can be moved by multiplication by a scalar to lie in Tm+lc = Sm+lc⊕· · ·⊕
Sm+(l+1)c−1, for some l. The argument of the proof of 1.2 now shows that
the non-free part of Tn has dimension bounded by a polynomial of degree
d− 2 (cf. [2, 3]).

4. Filtered Rings.

The case of filtered rings is slightly different. Consider the power series ring
k[[x]] in characteristic 2 and let the group of order 2 act by x 7→ x/(x+1) =
x + x2 + x3 + · · · . The action on the associated graded ring is trivial, yet
the action on k[[x]] certainly contains free summands (the only alternative
is trivial).

We consider finitely generated k-algebras S which are integral domains
and have a filtration S = I0 ⊂ I1 ⊂ I2 ⊂ · · · . Each S/In is assumed to
be finite dimensional over k, and ∩In = {0}. There is a finite group G
of automorphisms of S, which preserves the filtration. The invariants are
R = SG with the induced filtration Jn = R ∩ In. Again there is a function

χS(n) = cd(n)nd + cd−1n
d−1 + · · · c0(n),

where the ci are periodic, such that dimk(S/In) = χS(n) for large n. If S is
a power series ring, then d is equal to the number of variables.

As before there is a free kG-module of rank 1 in S, and the product map
R⊗k F → S is injective. Since F is finite dimensional there is some integer
f such that F ∩ If = 0, so F injects into S/If .

For each n, let Kn be a vector space complement to Jn in R. Then the
product map Kn ⊗ F → S/If+n is injective, so its image, KnF is a free
summand of S/If+n.

Proceeding in the same way as before we can prove:

Theorem 4.1. dimk((S/If+n)/KnF ) is bounded by a polynomial of degree
d− 1.

So S is mostly free. Again, for a power series ring, the non-free part grows
like a power series ring in one fewer variables.
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