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When a finite group G acts faithfully on a graded integral
domain S which is an algebra over a field k, such as a poly-
nomial ring, we consider S as a kG-module. We show that S
is asymptotically mostly projective in each degree, and also
that it is in fact mostly free in an appropriate sense. Simi-
lar results also hold for filtered algebras, such as power series
rings.

1. Introduction.

Let S = @,”,Sn be a graded algebra over a field k. We suppose that
S is finitely generated over k as a k-algebra and that the homogeneous
components .S, are finite dimensional vector spaces over k. Let G be a finite
group of grading preserving automorphisms of S (so G acts faithfully). We
are concerned with the structure of S as a kG-module.

The classical theory of Hilbert and Serre asserts that for large n, dimy .S,
is given by a function

ds(n) = cg_1(n)n?t + cq_o(n)n® 2 + -+ 4 co(n),

where the ¢;(n) are rational valued functions periodic in n, ie., ¢;(n +
p) = ¢i(n) for some integer p (see Section 2). If ¢4 is assumed not to be
identically zero then d is equal to the dimension of the ring in various senses.
If S is a polynomial ring then d is equal to the number of variables.

From now on, we assume that S is an integral domain. Let P, denote the
maximal projective summand of S,, (defined up to isomorphism).

Theorem 1.1. dimg(S,/P,) is bounded by a polynomial in n of degree d—2.

Thus S, is mostly projective, and if S is a polynomial ring then the
non-projective part grows like a polynomial ring in one fewer variables.

In fact S is mostly free, although the individual S;, do not have to contain
a free module at all; the different projectives can occur in different degrees.
To explain this let R = S, the ring of invariants.
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Theorem 1.2. S contains a free kG-submodule F' of rank 1, a sum of ho-
mogeneous pieces, such that the product map R ®; ' — S is injective. De-
note its image by RF = @, (RF),. Then RF is a free summand of S and
dimg (S, /(RF)y) is bounded by a polynomial of degree d — 2.

Of course, the first theorem is a corollary to the second. Versions of these
theorems were proven by Howe [4] in characteristic 0 and by Bryant [2, 3]
for polynomial rings.

Section 2 contains the main proof, except for some technical details which
appear in Section 3. Section 4 proves similar results for filtered algebras.

2. Main Proof.

Proof. We can assume that k is a splitting field for G, since if a kG-module
contains a free or projective summand after extension of scalars then it did
so before. Let Qg (resp. Qr) denote the fields of fractions of S (resp. R),
S0 Qs = Qr ®r S. By the Normal Basis Theorem, Qg is a free module of
rank 1 over QrG; let e be a generator. Then, over kG, e generates a free
submodule E of rank 1 such that Qg = Qr ® E. Now there is an r € R
such that re € S. Let F' be the kG-module generated by re, so F' C S and
F=rFE =2 kG. Also the product map R ®; ' — RF C S is injective.

We claim that F' can be assumed to be a sum of homogeneous pieces,
F = @, F,,. The proof of this plausible statement is somewhat delicate,
and we postpone it to the next section.

Let z1,...,xs be homogeneous generators for S as a k-algebra. Then
T; = Zj %ej, where a; j,b; ; € R and the e; form a homogeneous k-basis
for F'. By writing b; jz; = ; @i j€; and taking the homogeneous component
of this equation in some degree where b; jz; is non-zero, we see that we may
assume that the b; ; are homogeneous. Let oo € R, be the product of all the
b; ;. Then each z; € a'RF,so S C a 'RF.

Thus

(RF), C Sy, C a Y (RF)pta,

and so, identifying RF with R ®j F', we have

PR @Fn CSuCoa ' P Ruvan @ Fn,.

(2 1

In particular, the dimension of S,,/(RF), is bounded by the difference in
the dimensions of the two sides, i.e., by

Z(¢R(n +a—n;) — ¢r(n —n;)) dimg Fp, .
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But

dr(n+a—n;) —odr(n—n;) =cg1(n+a—n;)(n+a— ni)d_l

— ¢cq_1(n —n;)(n —n;)*! 4 lower degree terms,

and c4_; is periodic, with period dividing a (see 3.1), so the n¢~! term
cancels and we are done. O

3. Technical Details.

The form of ¢g(n) given above is not quite the standard one, although it is
quoted in [4]. The usual references deal with a module over a polynomial
ring which has all the variables in degree 1, and then all the coefficients of
¢ are constants. To deduce the version given in the introduction, note that
if S is generated by x1,...,xs then it is a finitely generated module over
klx1,...,zs]. By taking suitable powers y; of the z; we can get all the y; in
the same degree b, and S will still be finitely generated over k[yi, ... ,ys].
For 0 <j <b—1,set Tj = @2, Sj1un- Then R= @, Tj as a klyr,. .. ,ys)-
module, and after regrading each T} so that each y; can have degree 1, we
can apply the usual theory ([1] 11.2, [5] VII Theorem 41) to each Tj and
sum the results. It is the summation that leads to the periodic coefficients.

Lemma 3.1 ([4]). If R is an integral domain (as it always is for us), ¢ =
ged{r € Z|R, # 0} and ¢r(n) = cq_1(n)n? +--- +co(n), then there is a

constant b such that
b, if nle,
ca-1(n) = { 0, otherwise.

Proof. If 0 # o € R,, then multiplication by « embeds R, in R,4q, SO
for large n, ¢r(n) < ¢r(n + a). Now consider the limit of ¢pr(n)/n?"! as
n — oo through elements of the same residue class modulo the period of
¢q—1 to see that c¢g_1(n) < cqg—1(n + a). This, together with the periodicity,
implies the result. O

Now we prove the claim made in Section 2.

Proposition 3.2. The free module F' C S can be assumed to be a sum of
homogeneous pieces in such a way that the product map Qr R F — Qg is
still an isomorphism.

Proof. For each simple kG-module V', let Tyy = Homyg(V, S), a graded R-
module. Now soc F' is a direct sum of simples. Let socy (F') denote the sum
of those isomorphic to V', so socy (F) = V@---@V*, where VI =V, and let
Py be a projective summand of F with soc(Py:) = V*. The inclusions of the
V¥ in S give us s homomorphisms f* € Ty, which are linearly independent
over R.
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Lemma 3.3. Let f',..., f* be elements of a graded R-module T which are
linearly independent over R. Write each f7 as a sum of its homogeneous
components; fI =3, fl, fl € Ti. Then for each j there is an integer k;
such that f,%l, - [, are linearly independent over R.

Proof. For each 0 < t < s, let P; be the claim that there exist integers
ki,... ks such that fi ..., fl, f"*1, ..., f* are linearly independent over
R. P, is true by hypothesis and we want Ps. We give a proof by induction
on t, so assume P;.

If P4, is false, then for each k € Z we can find uy, r}; € R, ug # 0, such
that

111 £ b2 pt2
uef T =S RS e ST

Let u be the product of the wg for which f,?rl # 0. Then uftt! =
Zk(ulk)ukf,iﬂ, contradicting P;. .

Applying this to the {f*} C Ty, we obtain homogeneous {f'} C Ty, f' €
T,,, say, linearly independent over R.

Lemma 3.4. The evaluation map ev : Ty ®p V — S is injective.

Proof. In fact ev : Homyg(V, M) ®, V — M is injective for any kG-module
M. This is because it factors through socy (M), which is a direct sum
of Vs, so we are reduced to proving the case M = V. But then ev is an
isomorphism, since Homy(V, V') = k, by the assumption that k& is a splitting
field. O

Corollary. The product map R ®y (B, f{(V)) — S is injective.

Now let P, be the image of the projection of Py to S,,. The projection
map is injective on soc(P},), by the construction of a;, so Py = Py and
soc(Pyi) = fY(V). Let Py = @, Py: and consider the product map R ®
Py — S. Since soc(R®y Py) = R@ @, f/(V), it is injective on the socle,
so is injective.

Finally, we sum the Py over the simples V to obtain F, a free kG-module
of rank 1, which is a sum of homogeneous pieces, as required. O

Remark. If G is a p-group, where p is the characteristic of k, then the proof
is much simpler because soc(F') = k. Under at least one of the projections
of F' onto its homogeneous components the image of soc(F') must be non-
zero. Let F be the image of F' under this projection. Then F = kG and
Qr ®r F — Qg is an isomorphism because it is injective on the socle, and
both sides have the same dimension over Qg.

This is enough to prove 1.1 for general G. For if P = Syl,(G) then S is a

direct summand of Ind% Res$ S.
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Remark. It is not hard to see that, given any degree m, the summands of
F can be moved by multiplication by a scalar to lie in 7, mtle = Om4lc®- D
Sm+(+1)e—1, for some . The argument of the proof of 1.2 now shows that
the non-free part of T;, has dimension bounded by a polynomial of degree
d—2 (cf. [2, 3]).

4. Filtered Rings.

The case of filtered rings is slightly different. Consider the power series ring
k[[x]] in characteristic 2 and let the group of order 2 act by z +— z/(z+1) =
x + 22 + 23+ ---. The action on the associated graded ring is trivial, yet
the action on k[[z]] certainly contains free summands (the only alternative
is trivial).

We consider finitely generated k-algebras S which are integral domains
and have a filtration S = Iy C I} C Iy C --- . Each S/I,, is assumed to
be finite dimensional over k, and NI, = {0}. There is a finite group G
of automorphisms of S, which preserves the filtration. The invariants are
R = S¢ with the induced filtration J,, = RN I,. Again there is a function

xs(n) = ca(n)n? + cq1n®t + -+ co(n),

where the ¢; are periodic, such that dimy(S/1,) = xs(n) for large n. If S is
a power series ring, then d is equal to the number of variables.

As before there is a free kG-module of rank 1 in S, and the product map
R ®y F' — S is injective. Since F' is finite dimensional there is some integer
f such that FN Iy =0, so F injects into S/ 1.

For each n, let K, be a vector space complement to J,, in R. Then the
product map K, ® F' — S/I;,, is injective, so its image, K, F' is a free
summand of S/T;p.

Proceeding in the same way as before we can prove:

Theorem 4.1. dimy((S/If+n)/KnF) is bounded by a polynomial of degree
d—1.

So S is mostly free. Again, for a power series ring, the non-free part grows
like a power series ring in one fewer variables.
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