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Jodie D. Novak

We consider a family of singular infinite dimensional uni-
tary representations of G = Sp(n, R) which are realized as
sheaf cohomology spaces on an open G-orbit D in a general-
ized flag variety for the complexification of G. By parametriz-
ing an appropriate space, MD, of maximal compact subvari-
eties in D, we identify a holomorphic double fibration between
D and MD which we use to define a map P , often referred to
as a double fibration or Penrose transform, from the represen-
tation into sections of a corresponding sheaf on MD. Analysis
of the construction of P shows that P is injective, the image
of P is the kernel of a differential operator on MD and P is
an intertwining map.

1. Introduction.

In this paper, we consider a family of singular infinite dimensional unitary
representations of G = Sp(n,R) which are realized on certain sheaf cohomol-
ogy spaces of D, an open G-orbit in a generalized flag variety for the com-
plexification of G. By parametrizing an appropriate space, MD, of maximal
compact subvarieties in D, we can identify a holomorphic double fibration
between D and MD, a well understood bounded symmetric domain. Using
standard constructions from sheaf theory and the fact that MD is Stein, we
define a map P , often referred to as a double fibration or Penrose transform,
from the representation into the space of sections of a corresponding sheaf
on MD. By analyzing the spectral sequences involved in the construction of
P and applying the Bott-Borel-Weil theorem, we show that P is injective.
Further analysis leads to the fact that the image of P is the kernel of a
differential operator on MD and that P is an intertwining map.

More generally, let G be a real semisimple Lie group and let X be a
generalized flag manifold for GC, the complexification of G. If D is an open
G-orbit in X, then D can be realized as G/H for some subgroup H of
G. Associated to each D is a family of representations of G given by the
Dolbeault cohomology spaces Hp(D,L) where L is the sheaf of holomorphic
sections of a homogeneous line bundle on D. Under certain conditions, these
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representations are non-zero, singular, irreducible, unitarizable and infinite
dimensional. They provide a construction of an important and mysterious
part of the unitary dual of G.

These representations can be studied using a double fibration transform
whose purpose is to embed the cohomology space in a space of holomorphic
sections of a vector bundle on MD as the kernel of a differential operator.
Although the technique was developed for open orbits G/H where H is
compact, some results of Wolf [Wo2, Wo3] allow the possibility of extending
this technique to any open G–orbit in a generalized flag manifold for GC.
This technique is related to Schmid’s [S] construction of discrete series for
G associated to an orbit G/H when H is a compact Cartan contained in a
maximal compact subgroup K of G.

Wells and Wolf [WW] studied G-orbits D = G/H where H is compact.
For these orbits, they showed the existence of a holomorphic double fibration
where

(1.1)

YD
µ↙ ↘ν

D MD.

MD is the space of GC-translates in D of the maximal compact subvariety
K/H ∩ K and YD is the incidence manifold YD = {(z,Q) ∈ D × MD :
z ∈ Q}. They show that MD is Stein in this case and use the double
fibration to show that Hs(D, E) embeds in H0(MD, R

s
νµ
∗(E)) where E is

the sheaf of holomorphic sections of a homogeneous bundle on D. This
work proves modified versions of conjectures made by Griffiths [Gr] while
studying automorphic cohomology.

Even if H is not compact, these ideas can be used for any open orbits D
if we know that MD is a Stein manifold. Fortunately, Wolf [Wo2, Wo3]
has shown that MD is Stein for all open G-orbits D. Eastwood, Penrose,
and Wells [EPW] used a holomorphic double fibration of this type for an
open orbit of U(2, 2) with isotropy U(1) × U(1, 2) to study the massless
field equations. In this case, MD is U(2, 2)/ (U(2)× U(2)). Patton and
Rossi [PR1, PR2], generalizing the work of Eastwood, Penrose and Wells,
studied special SU(p, q)-orbits.

The key to using the double fibration transform is understanding the
structure of MD. There are two basic cases and, as is expected, the struc-
ture of MD depends on the structure of D. An open orbit D is of holo-
morphic type if there exists a holomorphic double fibration between D and
G/K. In this case MD is G/K. An open orbit D is of nonholomorphic
type if no such holomorphic double fibration exists. In this case MD is
an open submanifold of GC/KC ([WW]). The U(2, 2) example studied by
Eastwood, Penrose and Wells is of holomorphic type and further examples
and generalizations of the holomorphic type are given in [BE]. In fact, open
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orbits of holomorphic type are well understood. Orbits of holomorphic type
correspond to highest weight representations and those of nonholomorphic
type correspond to representations which do not have a highest weight. The
representations are discrete series if and only if H is compact.

Not as much is known in the nonholomorphic case. This case splits use-
fully into two subcases: When G/K is Hermitian symmetric and when it is
not. When G/K is Hermitian symmetric, the structure ofMD has been com-
puted for two families of examples: For arbitrary U(p, q)-orbits [DZ, PR2]
and for the open Sp(n,R)-orbits in the flag variety of Lagrangian planes in
C2n [N]. In both familiesMD is G/K ×G/K where G/K denotes G/K with
the opposite complex structure. More recently, Wolf and Zierau [WZ] have
shown that MD is always G/K ×G/K in the nonholomorphic Hermitian
symmetric case.

When G/K is not Hermitian symmetric, Wells [We] and Dunne and
Zierau [DZ] determined MD for special SO(2m, r)-orbits. Akheizer and
Gindikin [AG] have also worked out a related example for this case and
have suggested that MD could be described as a particular Stein tubular
neighborhood of G/K in GC/KC. For these examples, it is not clear whether
MD can be realized as a homogeneous space or whether these results can
be generalized. No work has been done as yet on defining the transform for
these cases.

1.1. Results of Paper. In this paper we will define a double fibration
transform for the Sp(n,R)-representations Hs(Di,L). Here, Di is one of
r − 1 open orbits in the generalized flag variety X of isotropic i-planes in
C2n where r ≤ n (see Section 3.2). The dimension of a maximal compact
subvariety in Di is s and L is the sheaf of holomorphic sections of a suffi-
ciently negative line bundle on Di. These orbits are in the nonholomorphic
Hermitian symmetric case with noncompact H so we are studying represen-
tations which are not discrete series and which do not have a highest weight.
In this paper, we will construct a double fibration transform for Hs(Di,L)
and show that it is injective (Theorem 4.6 and 4.11). Finally, we will use
the transform to realize Hs(Di,L) as the kernel of a differential operator
on H0(MDi , R

s
νµ
∗L) (Theorem 4.11 and 5.26). Thus these representations

are Frechet spaces and are continuous, facts that also follow from work by
Wong [Wg].

Now we describe the results in more detail. Let C2n be endowed with a
symplectic form and a Hermitian form of signature (n, n). Let X be the set
of r-planes in C2n which are isotropic with respect to the symplectic form
where r ≤ n. For 1 ≤ i ≤ r− 1, let Di be planes in X of signature (i, r− i).
Then X is a generalized flag variety for the Lie group Sp(n,C) and Di is the
open Sp(n,R)-orbit G/Hi in X where Hi is U(i, r− i)×Sp(n− r,R). Let χ
be a unitary character on Hi which determines a homogeneous vector bundle
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Lχ on Di. Let Lχ be the sheaf of holomorphic sections of Lχ. When the
bundle satisfies a suitable negativity condition and s is the dimension of a
maximal compact subvariety ofDi, thenHs(Di,Lχ) is a non-zero irreducible
infinite-dimensional singular unitarizable representation of Sp(n,R). In this
paper we give another realization of this representation via a double fibration
transform.

In Section 2, we outline the construction of the double fibration transform
for complex manifolds D, Y and M which are related by the holomorphic
double fibration (1.1). When L is a line bundle on D, the transform is a map
from Hp(D,O(L)) to H0(M,Rp

νO(µ∗L)) which is defined using standard
constructions from sheaf theory. We establish the conditions necessary for
this map to be injective and for the image of Hp(D,O(L)) to be the kernel
of a map from H0

(
M,Rp

νO(µ∗L)
)

to H0
(
M,Rp

νΩ1
µ(µ∗L)

)
where Ω1

µ is the
sheaf of relative holomorphic 1–forms on Y .

In Section 3, we analyze the geometry of the holomorphic double fibration
used in the construction of the transform.

In Section 4, we construct the transform for Hs(Di,Lχ). This involves
analyzing the sheaves and vector bundles which are in the construction. In
particular, we show that each of Rs

νO(µ∗Lχ) and Rs
νΩ

1
µ(µ∗Lχ) is the sheaf

of holomorphic sections of a homogeneous vector bundle. These facts, which
are crucial in determining when the transform is injective, are not immediate
because µ is a G-equivariant map from a (G×G)-homogeneous manifold to
a G-homogeneous manifold.

Next, we show that the transform is injective by analyzing the Leray spec-
tral sequences involved in the construction of the map and by reducing the
problem to an application of the Borel-Bott-Weil theorem. An abbreviated
version of the main result of Section 4 is the following theorem.

Theorem 4.11. The double fibration transform

P : Hs(Di,Lχ) → H0(MDi , R
s
νO(µ∗Lχ))

is an injection and the image of P is the kernel of a map D from
H0

(
MDi , R

s
νO(µ∗Lχ)

)
to H0

(
MDi , R

s
νΩ

1
µ(µ∗Lχ)

)
.

Since Rs
νO(µ∗Lχ) and Rs

νΩ
1
µ(µ∗Lχ) are each the sheaf of sections of a ho-

mogeneous bundle, the transform realizes Hs
(
Di,Lχ

)
as a space of functions

on MDi with values in a homogeneous vector bundle.
In Section 5, we analyze the map D in Theorem 4.11. By construction,

D is determined by the map from Hs
(
YDi ,O(µ∗Lχ)

)
to Hs

(
YDi ,Ω

1
µ(µ∗Lχ)

)
and the kernel of D is the image of P . The main result of Section 5 is the
following theorem.

Theorem 5.26. D is a G-equivariant differential operator.
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In Appendix A we consider the situation where the line bundle Lχ is
replaced with a finite dimensional vector bundle although it is the line bundle
case that corresponds to unitarizable representations.

This paper incorporates the results of my thesis which was done at Ok-
lahoma State University. More specifically, my thesis contains these results
when r = n along with the contents of [N]. The case when r < n is not a
part of my thesis. I wish to thank my advisor, Roger Zierau, and Joe Wolf
and Anthony Kable for many useful conversations while I was working on
these results. Thanks also to the referee for suggesting the extension to the
vector bundle case.

2. The general double fibration transform.

Let D, Y , and M be complex manifolds. Then we refer to (2.1) as a holo-
morphic double fibration for D when µ and ν are holomorphic fibrations.

(2.1)

Y
µ↙ ↘ν

D M.

Let L → D be a holomorphic line bundle on D and L the sheaf of holo-
morphic sections of L. In this setting, it is sometimes possible to define a
double fibration transform from the Dolbeault cohomology space Hs

(
D,L

)
to H0

(
M,Rs

νO(µ∗L)
)

where Rs
νO(µ∗L) is the sth higher direct image of

O(µ∗L) by ν. In this paper, we will define a double fibration transform for a
family of open Sp(n,R)-orbits D in the generalized flag of isotropic r-planes
in C2n when r ≤ n.

Although the construction of the transform is described in a variety of
places [see [BE, EPW, PR2, WW], for example], we include a brief dis-
cussion here, adapted to our situation, for the convenience of the reader.

The first step in the construction is to determine when Hs(D,L) is iso-
morphic to Hs(Y, µ−1L). In the setting of this paper, the fiber of µ is
contractible (Proposition 3.13) and this is sufficient to guarantee, by a theo-
rem of Buchdahl [Bu], that the isomorphism exists. We note, however, that
the contractibility of the fiber of µ is a stronger condition than that required
by Buchdahl.

The second step is to construct a resolution of µ−1L to which we can
apply the following lemma.

Lemma 2.2. Let

0 → S → S0 → S1 → · · · → SN → 0

be an exact sequence of sheaves on a manifold Y and suppose Hp(Y,St) = 0
for p < q and 1 ≤ t ≤ N . Then there is an injection from Hq(Y,S) →
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Hq(Y,S0). Furthermore, Hq(Y,S) is the kernel of the induced map from
Hq(Y,S0) to Hq(Y,S1).

To find an appropriate resolution of µ−1L, we begin by constructing a
resolution of µ−1OD. We denote by Ωp

Z the sheaf of holomorphic p-forms
on a complex manifold Z.

Definition 2.3.
(1) The sheaf of relative 1-forms on Y , denoted by Ω1

µ, is defined by the
exact sequence

µ∗Ω1
D → Ω1

Y → Ω1
µ → 0

where µ∗Ω1
D = OY ⊗ µ−1Ω1

D and we tensor over µ−1OD.
(2) The relative p–forms Ωp

µ are defined by ∧pΩ1
µ.

We can think of Ωp
µ as p-forms on Y in the direction of the fiber of µ

with coefficients in OY and dµ : ∧pΩ1
µ → ∧p+1Ω1

µ as differentiation along
the fiber.

We have the following lemma about relative p-forms.

Lemma 2.4. Let m = dimY − dimD.
(1) Then

0 → µ−1OD → OY
dµ−→ Ω1

µ → · · · → Ωm
µ → 0(2.5)

is an exact sequence of sheaves on Y .
(2) The sequence (2.6) is a resolution of µ−1L.

0 → µ−1L → µ∗L → Ω1
µ(µ∗L) → · · · → Ωm

µ (µ∗L) → 0.(2.6)

The proof of (1) is the usual Poincaré lemma. To prove (2) we tensor
(2.5) by µ−1L and observe that µ∗L = O(µ∗L) and

Ωp
µ ⊗µ−1OD

µ−1L = Ωp
µ ⊗OY

O(µ∗L).

To simplify notation we denote Ωp
µ ⊗µ−1OD

µ−1L by let Ωp
µ(µ∗L).

Applying Lemma 2.2 to (2.6) yields the following lemma.

Lemma 2.7. If Hp
(
Y,Ωt

µ(µ∗L)
)

= 0 for all p < q and all t, then
Hq

(
Y, µ−1L

)
embeds in Hq(Y,O(µ∗L)) as the kernel of the induced map

from Hq
(
Y,O(µ∗L)

)
to Hq

(
Y,Ω1

µ(µ∗L)
)
.

For the third and final step in the construction of the transform, we must
assume that M is Stein, that ν is proper, and that S is a coherent sheaf on
Y . With these assumptions, the following theorem is the key to this final
step.

Theorem 2.8. Hp(Y,S) is isomorphic to H0(M,Rp
νS).
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Proof. There exists a Leray spectral sequence which abuts to H∗(Y,S)
and

whose E2-term is given by Ep,q
2 = Hp

(
M,Rq

νS
)
. The direct image theorem

[GR] implies that Rq
νS is coherent so Ep,q

2 = 0 for all nonzero p. That is,
the spectral sequence collapses and the result follows. �

If O(µ∗L) and Ω1
µ(µ∗L) are coherent, then Theorem 2.8 implies that

Hq
(
Y,O(µ∗L)

)
is isomorphic to H0

(
M,Rq

νO(µ∗L)
)

and also that
Hq

(
Y,Ω1

µ(µ∗L)
)

is isomorphic to H0
(
M,Rq

νΩ1
µ(µ∗L)

)
. These isomorphisms,

along with the isomorphism in Lemma 2.7, determine a map D from
H0

(
M,Rq

νO(µ∗L)
)

to H0
(
M,Rq

νΩ1
µ(µ∗L)

)
.

In the following theorem, we combine these constructions to define the
Penrose transform.

Theorem 2.9. The Penrose tranform is the map

P : Hq(D,L) → H0
(
M,Rq

νO(µ∗L)
)
.

The map P is an injection and the image of P is the kernel of D which is
defined below.

More explicitly, Hq(D,L) is isomorphic to Hq
(
Y, µ−1L

)
by Buchdahl’s

theorem. Then dµ : OY → Ω1
µ determines a map dµ

∗ : O(µ∗Lχ) → Ω1
µ(µ∗L)

whose kernel is µ−1L. By Lemma 2.7, dµ
∗ determines an injection Dµ from

Hq(Y,O(µ∗L)) to Hq
(
Y,Ω1

µ(µ∗L)
)

whose kernel is Hq
(
Y, µ−1L

)
. Then,

Theorem 2.8 gives an isomorphism between Hq
(
Y,O(µ∗L)

)
and

H0
(
M,Rq

νO(µ∗L)
)

and one between Hq
(
Y,Ω1

µ(µ∗L)
)

and
H0

(
M,Rq

νΩ1
µ(µ∗L)

)
. As a result, Dµ determines a differential operator D

such that the following diagram commutes.

Hq
(
Y,O(µ∗L)

)
−−−→ H0

(
M,Rq

νO(µ∗L)
)

Dµ

y yD
Hq

(
Y,Ω1

µ(µ∗L)
)
−−−→ H0

(
M,Rq

νΩ1
µ(µ∗L)

) .
In this way, the map P and D are defined and P embeds Hq(D,L) is

H0(M,Rq
νO(µ∗L)) as the kernel of D.

3. The geometry underlying the double fibration transform.

The purpose of this section is to understand the geometry of the holomorphic
double fibrations (3.1) and (3.2) which we will use to define a double fibration
transform for a family of Sp(n,R)-representations. Let Di be the open
Sp(n,R)-orbit of isotropic r-planes of signature (i, r − i) in the generalized
flag manifold X of isotropic r-planes in C2n. Then Di is G/Hi where Hi '
U(i, r − i) × Sp(n − r,R) and K/Hi ∩K is a maximal compact subvariety
in Di. Here, K is a maximal compact subgroup of G isomorphic to U(n).
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Let MXi be the Sp(n,C)-translates of K/Hi ∩K in X. Let M̃Di be the
translates contained in Di and let MDi be the connected component of M̃Di

containing K/Hi ∩K. Let YDi and YXi be the incidence spaces

YDi = {(z,Q) ∈ Di ×MDi : z ∈ Q}
and YXi = {(z,Q) ∈ X ×MXi : z ∈ Q}.

Then we have the following holomorphic double fibrations

(3.1)

YDi
µ↙ ↘ν

Di MDi

and

(3.2)

YXi
µ̃↙ ↘ν̃

X MXi

with the natural projection maps.

3.1. Preliminaries. In this section, we define the bilinear forms and the
Lie groups we will use to describe the manifolds in the double fibrations.
In addition, we describe various Lie algebras and root systems that will be
used later.

Let 〈· , ·〉H denote the Hermitian form on C2n corresponding to the ma-

trix In,n =
(
In 0
0 −In

)
and let ω(· , ·) denote the symplectic form on C2n

corresponding to J =
(

0 −In
In 0

)
. We call a subspace y of C2n isotropic if

ω(u , v) = 0 for all u, v ∈ y and Lagrangian if y = y⊥ω . We denote the sig-
nature of a subspace y by sgn(y) = (a, b, c) if y has a Hermitian orthogonal
basis of a positive vectors, b negative vectors and c null vectors. If c = 0,
we write sgn(y) = (a, b).

We will use these forms to describe certain subgroups of GL(2n,C). The
complex symplectic group Sp(n,C) is the set of matrices that preserve the
symplectic form, and U(n, n) is the subgroup that preserves the Hermitian
form. Then Sp(n,C) ∩ U(n, n) is a real form of Sp(n,C) which preserves
both the symplectic and Hermitian forms. We denote Sp(n,C) by GC and
the real form by G. We note that G ' Sp(n,R).

Let gC denote the Lie algebra of GC and g the Lie algebra of G. Fix the
Cartan subalgebra

tC = {diag(t1, t2, . . . , tn,−t1,−t2, . . . ,−tn) : tj ∈ C}
of gC where an element of tC is a diagonal matrix with the indicated en-
tries. Elements of t∗C will be identified with points in Cn as follows. For
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γ = (γ1, . . . , γn) in Cn, define

γ
(
diag(t1, . . . , tn,−t1, . . . ,−tn)

)
=

∑
γjtj .

Let ej be the element of t∗C which corresponds to the jth standard basis
vector in C2n.

The element λi = (−1, . . . ,−1 | 0, . . . , 0| 1, . . . , 1) in t∗C, with i-entries be-
fore the first vertical bar, (n − r)-entries between the vertical bars, and
(r − i)-entries after the last vertical bar, will be used to determine a posi-
tive system for gC. Although these objects depend on i and r, we will only
indicate the dependence on i. If 4(gC) denotes the roots of gC, then

4(gC) = 4(hi,C) ∪4(qi,+) ∪4(qi,−)

where 4(hi,C) is the set of roots of gC whose inner product with λi is 0 and
4(qi,+) (respectively, 4(qi,−)) is the roots of gC whose inner product with
λi is positive (respectively, negative).

We fix a positive system

4+(hi,C) = {(ej − ek) : 1 ≤ k < j ≤ i or i+ n− r + 1 ≤ k < j ≤ n}
∪ {(ej + ek) : 1 ≤ j ≤ i, i+ n− r + 1 ≤ k ≤ n}
∪ {(ej − ek) : i+ 1 ≤ j < k ≤ i+ n− r}
∪ {(ej + ek) : i+ 1 ≤ j ≤ k ≤ i+ n− r}.

for hi,C and note that the first two subsets are all the positive roots for
U(i, r− i) and the last two for Sp(n− r,R). If r = n, the Sp(n− r,R) piece
does not appear. The corresponding simple system is

Πi = {e2 − e1, e3 − e2, . . . , ei − ei−1, e1 + ei+n−r+1}
∪ {ei+n−r+2 − ei+n−r+1, ei+n−r+3 − ei+n−r+2, . . . , en − en−1}
∪ {ei+1 − ei+2, ei+2 − ei+3, . . . , ei+n−r−1 − ei+n−r, 2ei+n−r}.

Again we note that the first two subsets are the simple roots for U(i, r − i)
and the last for Sp(n−r,R). Now4+(hi,C)∪4(qi,+) forms a positive system
for 4(gC) and this is the system that we shall use throughout.

Let hi,C = tC +
∑

α∈4(hi,C)

gα and let Hi,C be the analytic subgroup associ-

ated to hi,C. Let hi = hi,C∩g; then hi is isomorphic to u(i, n−i)⊕sp(n−r,R)
and Hi ' U(i, n−i)×Sp(n−r,R) is the analytic subgroup for hi. For r = n,
Hi is the fixed points of the involution Ad ζi on G where

ζi =


−Ii 0 0 0
0 In−i 0 0
0 0 Ii 0
0 0 0 −In−i

 .
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Let qi,+ =
∑

α∈4(qi,+)

gα and let Qi,+ denote the analytic subgroup of qi,+

in GC. Let qi,− =
∑

α∈4(qi,−)

gα and let Qi,− denote the analytic subgroup of

qi,− in GC.
Let Θ be the Cartan involution on gC given by Θ(X) = −tX. Denote by

KC the analytic subgroup of GC corresponding to the (+1)-eigenspace of Θ.
The (−1)-eigenspace pC of Θ decomposes into the KC-invariant subspaces
p+ and p−. Let P+ = exp(p+) and P− = exp(p−). In this case K, the real
form of KC, is isomorphic to U(n).

3.2. The Double Fibration for Sp(n,R). The geometry of C2n induced
by the Hermitian and symplectic forms provides a useful tool for describing
the spaces Di, YDi , and MDi in the double fibration (3.1), for realizing them
as homogeneous manifolds, and for examining the relationship between the
double fibrations (3.1) and (3.2).

We begin by observing that GC acts transitively on X, the set of isotropic
r-planes in C2n, by Witt’s theorem (see, for example, [A]). If we choose
xi = span{e1 , . . . , ei , e2n−r+i+1 , . . . , e2n} as a basepoint in X, then GC acts
with isotropy subgroup Hi,CQi,−. Then X, as a generalized flag manifold for
GC, can be realized in several ways; if it is important to specify a realization
we will use the convention Xi = GC/Hi,CQi,−. We also note that if r = n
and i = 0 or n, then the isotropy subgroup is KCP+ or KCP−, respectively.

The relationship between X and Di, the set of isotropic (i, r − i)-planes,
is given in the following proposition.

Proposition 3.3. Di is an open G-orbit in X.

This can be seen in two ways. First, for a fixed r, the open G-orbits in X
are parametrized by the signatures (i, r−i) [Wo1]. Second, a generalization
of Witt’s theorem (see [A], for example) implies that G acts transitively on
Di. For the basepoint xi, the stabilizer of this action is Hi and a dimension
count shows that Di is open.

Thus Di is a complex manifold. If r = n and i = 0 or n, then Di is the
Hermitian symmetric space G/K and is of holomorphic type. If r = n and
i 6= 0 or n, then Di is the indefinite Kähler symmetric space G/Hi and is of
non-holomorphic type. If r < n, then Di is G/Hi which is not a symmetric
space. In this case, if i = 0 or r, then Di is of holomorphic type and if i 6= 0
or r then Di is of nonholomorphic type as described in Section 1.

We now define two other members of the double fibrations: MDi and MXi .

Definition 3.4. The space MXi is the set of GC-translates of Kxi. Let M̃Di

be the GC-translates of Kxi contained in Di and let MDi be the connected
component of M̃Di containing Kxi.
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To analyze the structure of MDi and MXi , we need to understand the
structure of the K-orbit of xi in Di. First, work of Schmid and Wolf [SW]
implies that Kxi is a maximal compact subvariety of Di.

If r = n and i = 0 or n, then Kxi = xi and MDi is Di. If r = n with
i 6= 0 or n and if r < n with i = 0 or r, then Kxi is biholomorphic to the
Grassmanian of i-planes in Cn in the first case and to the Grassmanian of r-
planes in Cn in the second. In all cases, Kxi is realized as the homogeneous
space K/Hi ∩K. The parametrization of MDi is given in the following
theorem for r = n with i 6= 0 or n and for all r < n with i 6= 0 or r.

Theorem 3.5. The manifold MDi is biholomorphic to G/K ×G/K, where
G/K denotes G/K with the opposite complex structure.

For r = n and i 6= 0 or n, the proof of this theorem is the main result of
[N]. More recently, Wolf and Zierau [WZ] have proven this theorem for all
open orbits of nonholomorphic type when G/K is a Hermitian symmetric
space and G is a classical group. We will outline the idea of the proof in [N]
so that we can use the explicit description of MD given there in the proof
of the contractibility of the fiber.

First, we describe how to associate a pair of transverse Lagrangian planes
in C2n to a GC-translate of Kxi. The difficulty here is showing that the
association is unique. Once this is complete, we have the parametrization
of MXi given below.

Lemma 3.6. MXi is the manifold GC/KC when 2i 6= r and GC/L when
2i = r.

This is another result of [N] where L is the subgroup of GC generated by
KC and the matrix J which defines the symplectic form.

To describe the association, we observe that Kxi is the set of isotropic
r-planes of signature (i, r − i) which meet y0 = span{e1 , . . . , en} in an i-
plane and w0 = span{en+1 , . . . , e2n} in an (r − i)-plane. More specifically,
each i-plane u in y0 together with any (r− i)-plane u′ in u⊥ω ∩w0 forms an
isotropic (i, r− i)-plane in Kxi and each element of Kxi can be described in
this fashion. We make two observations. First, when r = n, the dimension
of u⊥ω ∩w0 is n− i so for each i-plane in y0 there exists exactly one (n− i)-
plane u′ in u⊥ω ∩ w0 such that u ⊕ u′ is an element of Kxi. Second, the
above description of Kxi does not depend on the signature of the planes y0

and w0, only that the planes are transverse and Lagrangian. In light of this,
translating Kxi by g ∈ GC element by element is equivalent to translating
y0 and w0 by g and creating gKxi from the translated planes.

To reflect the relationship betweenKxi and the two transverse Lagrangian
planes y0 and w0, we denote Kxi by V i(y0,w0). Then gKxi will be denoted
by V i(gy0,gw0) and MXi is the set of maximal compact subvarieties V i(y,w)
for any pair of transverse Lagrangian planes y and w. The main difficulty
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in parametrizing MXi is determining the stabilizer of the action of GC on
MXi . That is, showing the level of uniqueness of the representation of a
maximal compact subvariety by V i(y,w). When 2i 6= r, V i(y,w) = V i(y′,w′)
if and only if y = y′ and w = w′. When 2i = r , it is also the case that
V i(y,w) = V i(y′,w′) when y = w′ and w = y′. This happens because
switching the position of y and w in V i(y,w) does not change the maximal
compact subvariety.

To parametrize MDi , we must identify which pairs of transverse La-
grangian planes are asociated to elements of MDi . Clearly, if y is positive
and w is negative, then V i(y,w) is in Di and hence in M̃Di . The difficulty
lies in showing that such V i(y,w) are in MDi and that only V i(y,w) of this
type are in MDi . See [N] for details.

The descriptions of MDi and MXi are useful for determining the structure
of

YDi =
{
(z, V i(y,w)) ∈ Di ×MDi : z ∈ V i(y,w)

}
(3.7)

and YXi =
{
(z, V i(y,w)) ∈ X ×MXi : z ∈ V i(y,w)

}
.

It is not too difficult to show that GC acts transitively on YXi by
g · (z, V i(y,w)) = (gz, V i(gy,gw)). Making use of the parametrization of
MXi and Xi, we have the following theorem.

Theorem 3.8. When 2i 6= r the manifold YXi is GC6 Hi,CQi,− ∩KC and

when 2i = r the manifold YXi is GC6 Hi,CQi,− ∩ L

We now turn our attention to analyzing the structure of YDi . Although
G acts on YDi as GC acts on YXi , this action is not transitive. Fortunately,
G×G acts transitively on YDi . First, we define the action of G×G on the
basepoint (xi, V

i(y0,w0)) by

(g1, g2) ·
(
xi, V

i(y0,w0)
)

=
(
(g1 exp(X+)xi, V

i(g1 exp(X+)y0, g1 exp(X+)w0))
)
.

where exp(X+)k exp(X−) is the Harish-Chandra decomposition (see [K], for
example) of g−1

1 g2. We note that the action in the second factor simplifies
to V i(g1y0, g2w0). This action of G×G maps (xi, V

i(y0,w0)) onto YDi as
follows. Since G×G acts transitively on MDi , there exists g1, g2 ∈ G such
that (g1, g2)V i(y0,w0) = V i(y,w) for any V i(y,w) in MDi . Since K×K fixes
V i(y0,w0), as k1 and k2 run through K, (g1k1, g2k2) acting on xi run through
every element of V i(g1y0,g2w0). Thus each (z, V i(y,w)) is a translate of
(xi, V

i(y0,w0)). Then G×G acts on (z, V i(y,w)) by first writing (z, V i(y,w))
as (g3, g4)(xi, V

i(y0,w0)) and letting (g1g3, g2g4) act on (xi, V
i(y0,w0)).

We have the following theorem.
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Theorem 3.9. YDi is biholomorphic to G6 Hi ∩K ×G6 K.

Proof. As shown above, G×G acts transitively on YDi . Then the stabilizer of
(xi, V

i(y0,w0)) is (Hi ∩K)×K so there is an isomorphism between YDi and
G/Hi ∩K ×G/K which endows YDi with a differentiable structure. The
complex structure comes from using the Harish-Chandra decomposition to
embed G/Hi ∩K into GC/(Hi,CQi,− ∩KC)P+ and G/K in GC/KCP−. The
opposite complex structure is needed in the second factor since P+ is replaced
with P−. �

We have the following two observations about the action of G×G on YDi .
First, if we had decomposed g−1

2 g1 as exp(X−)k exp(X+) instead of decom-
posing g−1

1 g2, then (g1, g2)(xi, V
i(y0,w0)) = (g2 exp(X−)xi, V

i(g1y0,g2w0))
determines another action of G×G on YDi . In this case, the space YDi

would have been realized as G/K × G/Hi ∩K. If this action were chosen,
the factors would be switched throughout the construction.

Second, when r = n we can describe the action of G×G on the first
component of (xi, V

i(y0,w0)) geometrically. This is possible because, as de-
scribed after Lemma 3.6, each element of Kxi is of the form u ⊕ u′ with u
an i-plane in y0 and u′ an (n− i)-plane in u⊥ω ∩ w0. When r = n, we have
u′ = u⊥ω ∩ w0. That is, each element of Kxi is completely determined by
its intersection with y0. So, if we move xi ∩ y0 by g1 to g1(xi ∩ y0), then
g1(xi ∩ y0) meets g1y0 in an i-plane and the image of xi under (g1, g2) is
z′ = g1(xi ∩ yo) ⊕ [{g1(xi ∩ yo)}⊥ω ∩ (g2wo)] which is an element of
V i(g1y0,g2w0). Using the Harish-Chandra decompostition of g−1

1 g2, we have
z′ = g1 exp(X+)xi. Thus, the action of G×G on YDi can be interpreted in
terms of planes.

3.3. Relating the two double fibrations. A good understanding of the
relationship between the double fibrations (3.1) and (3.2) is crucial for giving
an explicit realization of the differential operator in Theorem 2.9. We have
already discussed the relationship between Di and Xi in Proposition 3.3. In
this section, we consider the relationship between the other pairs.

From the descriptions of YDi and YXi in (3.7) as certain pairs of isotropic
r-planes and maximal compact subvarieties, it is clear that YDi is contained
in YXi . When these spaces are realized as homogeneous manifolds, the em-
bedding of YDi in YXi is given by the following theorem.

Theorem 3.10. The map

ϕ : G6 Hi ∩K ×G6 K → GC6 Hi,CQi,− ∩KC

defined by ϕ(g1, g2) = g1 exp(X+) is a holomorphic injection where the
Harish-Chandra decomposition of g−1

1 g2 is exp(X+)k exp(X−) with X+ ∈
p+, k ∈ KC and X− ∈ p−.
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Proof. In the following diagram

G6 Hi ∩K ×G6 K ϕ−−−−→ GC6 Hi,CQi,− ∩KC

α

y yβ

GC6 (Hi,CQi,− ∩KC)P+
×GC6 KCP−

i−−−−→ GC6 (Hi,CQi,− ∩KC)P+
×GC6 KCP−

the embeddings α and β are given by α(g1, g2) = (g1, g2) and β(g) = (g, g)
and i is the identity map. The following calculation shows that the image
of α is contained in the image of β:

α(g1, g2) = (g1, g2)

= g1 · (e, g−1
1 g2)

= g1 · (e, exp(X+)k exp(X−))

= g1 · (exp(X+), exp(X+))

= β(g1 exp(X+)).

Thus this a commutative diagram and the result follows. �

For 2i 6= r, the map ϕ embeds YDi in YXi . For 2i = r, the realization
of YXi accounts for the fact that, in this case, V i(y,w) and V i(w, y) are the
same maximal compact subvariety. The natural projection map

π : GC6 Hi,CQi,− ∩KC →
GC6 Hi,CQi,− ∩ L

reflects this identification. Since only one of these realizations occurs in the
parametrization of YDi , the map π◦ϕ is an injection and gives the embedding
of YDi in YXi in this case.

The situation forMDi andMXi is similar and we use the following theorem
to embed MDi in MXi .

Theorem 3.11. The map

ψ : G6 K ×G6 K → GC6 KC

defined by ψ(g1, g2) = g1 exp(X+) is a holomorphic injection where
exp(X+)k exp(X−) is the Harish-Chandra decomposition of g−1

1 g2.

Proof. We embed G/K ×G/K and GC/KC in GC/KCP+ ×GC/KCP− and
proceed as in Theorem 3.10. �

For 2i 6= r, the map ψ embeds MDi in MXi . For 2i = r, let π : GC/KC →
GC/L be the natural projection map. Then, as before, π ◦ψ embeds MDi in
MXi .
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3.4. The fiber of µ. The geometry of the fiber of µ plays an important role
in the first step of the construction of the Penrose transform. In particular,
we need the fiber of µ to be contractible to apply Buchdahl’s condition [Bu]
to conclude that Hs

(
Di,Lχ

)
is isomorphic to Hs

(
YDi , µ

−1Lχ

)
. Since µ is

a G-equivariant map, it suffices to consider the geometry of µ−1(xi) where,
as before, we have xi = span{e1 , . . . , ei , e2n−r+i+1 , . . . , e2n}. We will show
that µ−1(xi) is contractible by showing that it fibers over a contractible
space with contractible fiber. Let G(j) = Sp(j,C) ∩ U(j, j).

Theorem 3.12. Let

π : µ−1(xi) →
Hi6 U(i)×G(n− r)× U(r − i)×

Hi6 U(i)×G(n− r)× U(r − i)

be the map defined by π(xi, V
i(y,w)) = (h1, h2) where h1(xi ∩ y0) = xi ∩ y

and h2(xi ∩ w0) = xi ∩ w. Then µ−1(xi) fibers over
Hi6 U(i)×G(n− r)× U(r − i)×

Hi6 U(i)×G(n− r)× U(r − i)
with fiber

G(n− i)6 U(n− i)×
G(i+ n− r)6 U(i+ n− r).

This theorem together with the observation that both the base space and
the fiber of π are contractible give us the following proposition.

Proposition 3.13. µ−1(xi) is contractible.

Proof of Theorem 3.12. To understand the geometry of µ−1(xi), we must
identify all maximal compact subvarieties V i(y,w) in MDi containing xi.
Given the parametrization of MDi , this is equivalent to finding all positive
Lagrangain planes y and all negative Lagrangian planes w such that y meets
xi is an i-plane and w meets xi is an (r − i)-plane.

We begin by looking at a special case: The positive i-plane ui =
span{e1, . . . , ei} in xi. We can extend ui to a positive Lagrangian plane by
any positive (n−i)-plane in u⊥ω

i ∩u⊥H
i = span{ei+1, . . . , en, en+i+1, . . . , e2n}.

One such plane is vi = span{ei+1, . . . , en}. To find the others we observe
that, in G, the plane u⊥ω

i ∩u⊥H
i is fixed by G(i)×G(n− i) and the stabilizer

of vi in G(i) × G(n − i) is G(i) × U(n − i). Thus, all positive Lagrangian
planes containing ui are of the form ui ⊕ gvi where g ∈ G(n− i)/U(n− i).

More generally, any positive i-plane u in xi is an Hi-translate of ui and
the stabilizer of ui in Hi is U(i) × G(n − r) × U(r − i). Thus the positive
i-planes in xi are parametrized by Hi/(U(i)×G(n− r)× U(r − i)) and for
each positive i-plane in xi the set of positive Lagrangian planes containing
it is parametrized by G(n− i)/U(n− i).

In a similar fashion, one can show that the negative (r − i)-planes in xi

are parametrized by Hi/U(i) × G(n − r) × U(r − i) and for each negative
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(r − i)-plane in xi, the set of negative Lagrangain planes containing it is
parametrized by G(i+ n− r)/U(i+ n− r). �

4. Constructing the double fibration transform for Hs(Di,Lχ).

In this section we will define a double fibration transform for the Sp(n,R)-
representationsHs(Di,Lχ) where s is the dimension of the maximal compact
subvariety K/Hi ∩K in Di and χ is the character on Hi whose differential

is given by χ = (−a, . . . ,−a | 0, . . . , 0 |a, . . . , a). That is, χ =
i∑

j=1
−aej +

n∑
p=i+n−r+1

aep in h∗i,C. In this case Hs(Di,Lχ) is an irreducible, unitarizable

nonzero infinite dimensional representation of Sp(n,R) if a < −2n+r [Wg].
In the process of defining the transform, it will be necessary to impose
additional restrictions on χ so that the transform will be injective.

4.1. Pulling up Hs(Di,Lχ) by µ to YDi. The first step in defining the
transform is transferring Hs(Di,Lχ) to YDi . Since the fiber of µ is con-
tractible (Proposition 3.13), a theorem of Buchdahl [Bu] implies the follow-
ing theorem.

Theorem 4.1. Hs
(
Di,Lχ

)
is isomorphic to Hs

(
YDi , µ

−1Lχ

)
.

Now Lemma 2.4 implies that

0 → µ−1Lχ → O(µ∗Lχ) → Ω1
µ(µ∗Lχ) → · · · → Ωm

µ (µ∗Lχ) → 0(4.2)

is a resolution of µ−1Lχ where Ωp
µ(µ∗Lχ) is the sheaf of relative p-forms on

YDi with values in the bundle µ∗Lχ and m = dimYDi − dimDi.
Upon first inspection, the sheaves in the resolution of µ−1Lχ do not appear

to be sheaves of holomorphic sections of homogeneous vector bundles due
to the fact that µ is a G–equivariant map, not G×G–equivariant, from the
G×G-homogeneous space YDi to the G-homogeneous space Di. We will
show, using the natural projection map µ̃ : YXi → Xi, that these sheaves are
holomorphic sections of a homogeneous vector bundle. We begin with the
sheaf O(µ∗Lχ).

Theorem 4.3. The bundle µ∗Lχ on YDi is a homogeneous bundle with fiber
Cχ where (Hi ∩K)×K acts by χ⊗ 1.

Proof. Let χ̃ be the extension of χ to Hi,CQi,− with χ̃ trivial on Qi,−. Then
µ̃?Lχ̃ is the homogeneous line bundle on YXi with fiber Cχ̃ and its restriction
to ϕ(YDi) is isomorphic to µ∗Lχ on YDi where ϕ is the embedding of YDi

in YXi in Theorem 3.10. This isomorphism allows us to show that µ∗Lχ is
a G×G-homogeneous bundle once we have an explicit expression for the
action of G×G on ϕ(YDi).
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Let g ∈ ϕ(YDi) and g1, g2 ∈ G. Assume, for the moment, that the Harish-
Chandra decomposition of (g1g)−1g2g as exp(X+)k exp(X−) exists. The key
to seeing that (g1, g2) ·g = g1g exp(X+) defines an action of G×G on ϕ(YDi)
is the following computation. Using the identification of GC/Hi,CQi,− ∩KC
with YXi , we have

(g1, g2) · g = (g1, g2) ·
(
gxi, V

i(gy0,gw0)
)

= (g1g, g2g)(xi, V
i(y0,w0))

=
(
g1g exp(X+)xi, V

i(g1g exp(X+)y0, g1g exp(X+)w0)
)

= g1g expX+(xi, V
i(y0,w0))

= g1g expX+.

Now we address the Harish-Chandra decomposition of (g1g)−1g2g. Since
g ∈ ϕ(YDi), there exist g3, g4 ∈ G such that ϕ(g3, g4) = g. That is, there
exist X

′
+ ∈ p+ and h ∈ Hi,CQi,− ∩KC such that g = g3 exp(X ′

+)h. Using
this expression for g in (g1g)−1g2g and the Harish-Chandra decomposition
of (g1g3)−1g2g4 yields the decomposition of (g1g)−1g2g.

Let W denote the restriction of µ̃∗Lχ̃ to ϕ(YDi) and let [g, w] be in Wg.
For g1, g2 ∈ G,

(g1, g2) · [g, w] =
[
g1g exp(X+), w

]
defines an action of G×G on W. Then W is the G×G-homogeneous line
bundle on YDi with fiber Cχ ⊗ 1. �

We note that the action of G on W as a subgroup of GC is equivalent to
the action of G as the diagonal subgroup of G×G.

In the remainder of this section, we will show that the sheaves Ωp
µ(µ∗Lχ)

in (4.2) are sheaves of sections of homogeneous bundles on YDi . Since
Ωp

µ(µ∗Lχ) = Ωp
µ ⊗O(µ∗Lχ), it suffices to show that Ωp

µ is homogeneous.
First we describe the sheaf of relative differential 1-forms for a general

fibration between differentiable manifolds. Let f : Y → X be a C∞ fibra-
tion. Then ker df , the relative tangent bundle, is a subbundle of the tangent
bundle of Y whose stalk at y is the kernel of dfy and (ker df)∗ is the relative
cotangent bundle. Let E1

M denote the sheaf of smooth differential 1-forms
on a manifold M and let EM be the sheaf of C∞ functions on M . Then
f∗E1

X = f−1E1
X ⊗f−1EX

EY and the sheaf of relative differential 1-forms is
E1

f = E1
Y /f

∗E1
X .

Theorem 4.4. E1
f and E((ker df)∗) are isomorphic as sheaves.

Sketch of Proof. Since it suffices to check this on sufficiently small open
sets, we may assume that U , an open subset of Y , is isomorphic to Rn×Rk.
The map γU : E1

f (U) → E((ker df)∗)(U) defined by γU ([w]) = γw where
γw(y) = w(y)|ker df and y ∈ Y gives the isomorphism. �
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We will use this theorem to describe the relative holomorphic (1,0)-forms
for the holomorphic fibration from GC/Hi,CQi,− ∩KC to GC/Hi,CQi,− given
by the natural projection map µ̃. As is customary, we identify the holomor-
phic tangent space T 1,0(GC/Hi,CQi,− ∩KC) with T (GC/Hi,CQi,− ∩KC); we
do likewise for GC/Hi,CQi,−. Under these identifications, Theorem 4.4 im-
plies that the sheaf of relative holomorphic 1-forms Ω1

µ̃ is isomorphic to the
sheaf O((ker dµ̃)∗). Now ker dµ̃ is the GC–homogeneous bundle with fiber
(hi,C ⊕ qi,−)/(hi,C ⊕ qi,−) ∩ kC.

Theorem 4.4 again implies that Ω1
µ is the sheaf O((ker dµ)∗) where here

dµ is the map from T 1,0(YDi) to T 1,0(Di). Since the map µ from G/Hi∩K×
G/K to G/Hi is given in terms of isotropic planes and maximal compact
subvarieties and not as a map of homogeneous spaces, we are unable to use
the definition of µ to determine ker dµ. However, we can give an explicit
description of Ω1

µ by understanding the relationship between Ω1
µ and Ω1

µ̃.

Theorem 4.5.

(1) The sheaf Ω1
µ is isomorphic to O((ker dµ)∗).

(2) The vector bundle ker dµ is (G × G)-homogeneous with fiber
(hi,C ⊕ qi,−) ∩ p where (Hi ∩K)×K acts by Ad ⊗ 1.

(3) The vector bundle (ker dµ)∗ is (G × G)-homogeneous with fiber
(hi,C ⊕ qi,+) ∩ p where (Hi ∩K)×K acts by Ad ⊗ 1.

Proof of (1). This follows from the discussion before the statement of The-
orem 4.5. �

Proof of (2). Recall the map

ϕ : G6 Hi ∩K ×G6 K → GC6 Hi,CQi,− ∩KC

from Section 3.3. Since the image of ϕ is open in GC/Hi,CQi,− ∩KC, the
fiber of µ is open in the fiber of µ̃. Thus, we have ker dµ = (ker dµ̃)|Im(ϕ).
Then, as in Theorem 4.3, we can define an action of G×G on ker dµ and
the action of (Hi ∩ K) × K on (ker dµ)e is determined by its action on
(ker dµ̃)|Im(ϕ). Thus (Hi ∩K)×K acts on

(
(hi,C ⊕ qi,−)/(hi,C ⊕ qi,−)∩ kC

)
via Ad⊗1. Since (hi,C ⊕ qi,−)∩ p is an

[
(Hi∩K)×K

]
-invariant complement

to (hi,C ⊕ qi,−)∩ kC in hi,C ⊕ qi,−, the bundle ker dµ is (G×G)–homogeneous
with fiber (hi,C ⊕ qi,−) ∩ p. �

Proof of (3). The Killing form can be used to identify (hi,C ⊕ qi,+)∩p as the
dual of (hi,C ⊕ qi,−) ∩ p in gC. �

We are now ready to apply Lemma 2.2.
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4.2. The Vanishing Condition. We will show in this section that
Hp(YDi ,Ω

q
µ(µ∗Lχ)) vanishes for all p < s and 1 ≤ q ≤ m if a < 1

2 −
3
2n

when r = n and if a < −3n+ r when r < n. That is, we obtain the hypoth-
esis of Lemma 2.2 for the resolution of µ−1Lχ given in (4.2). Once this is
accomplished, we have:

Theorem 4.6. If a < 1
2 −

3
2n when r = n and if a < −3n + r when r <

n, then there is an injection from Hs
(
YDi , µ

−1Lχ

)
into Hs

(
YDi ,O(µ∗Lχ)

)
whose image is the kernel of the induced map from Hs

(
YDi ,O(µ∗Lχ)

)
to

Hs
(
YDi ,Ω

1
µ(µ∗Lχ)

)
.

To obtain the vanishing condition, we make the following observations.
First, the manifold MDi is Stein [Wo2, Wo3]. Second, since the map ν is
a fibration, it is proper because the inverse image of a point in MDi under
ν is isomorphic to the compact submanifold K/Hi ∩K. Third, the sheaves
Ωq

µ(µ∗Lχ) are coherent since each is the sheaf of sections of a homogeneous
vector bundle. (See Theorem 4.3 and 4.5.)

Now we can apply Theorem 2.8 to Hp(YDi ,Ω
q
µ(µ∗Lχ)) to obtain the fol-

lowing theorem.

Theorem 4.7. Hp(YDi ,Ω
q
µ(µ∗Lχ)) is isomorphic to H0(MDi , R

p
νΩ

q
µ(µ∗Lχ))

for all p and q.

Now we will show that H0(MDi , R
p
νΩ

q
µ(µ∗Lχ)) vanishes for all p < s

and 1 ≤ q ≤ m if a < 1
2 −

3
2n when r = n and if a < −3n + r when

r < n. Recall that Ωq
µ(µ∗Lχ) is the sheaf of holomorphic sections of the

(G×G)-homogeneous bundle Vq
χ = ∧q(ker dµ)∗ ⊗ µ∗Lχ on YDi whose fiber

is ∧q
[
(hi,C ⊕ qi,+) ∩ p

]
⊗ Cχ.

Before we look at the structure of Rp
νΩ

q
µ(µ∗Lχ) we identify the fiber of

ν with K/Hi ∩K. Under this identification, the restriction of µ∗Lχ to the

fiber of ν is the bundle K ×(Hi∩K) Cχ and the restriction of (ker dµ)∗ is the
K-homogeneous bundle with fiber ∧q

[
(hi,C ⊕ qi,+) ∩ p

]
(see Theorem 4.5).

With these identifications, the restriction of Vq
χ to the fiber of ν is the

bundle
K ×(Hi∩K) [∧q[(hi,C ⊕ qi,+) ∩ p]⊗ Cχ]

which we also denote by Vq
χ. With this in mind, a theorem of Bott [B]

implies that Rp
νΩ

q
µ(µ∗Lχ) is the sheaf of holomorphic sections of the (G×G)–

homogeneous vector bundle Hp (K/Hi ∩K,O(Vq
χ)) on MDi whose fiber is

Hp(K/Hi ∩K,O(Vq
χ)).

We summarize this discussion with the following lemma.

Lemma 4.8. The sheaf Rp
νΩ

q
µ(µ∗Lχ) is the sheaf of holomorphic sections of

the (G×G)-homogeneous vector bundle on MDi whose fiber is Hp(K/Hi ∩K,
O(Vq

χ)) and the action of K×K on the fiber is given by (k1, k2) · ω = `∗
k−1
1

ω
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where `k is the map from K/Hi ∩K to itself given by left translation. We
denote Rp

νΩ
q
µ(µ∗Lχ) by O

[
Hp

(
K/Hi ∩K,O(Vq

χ)
)]

.

We now state the vanishing condition.

Theorem 4.9. Hp
(
K6 Hi ∩K , O(Vq

χ)
)

vanishes for p < s and 1 ≤ q ≤ m

if a < 1
2 −

3
2n when r = n and if a < −3n+ r when r < n.

The proof of this theorem is an application of Bott-Borel-Weil along
with the following observations. Since the fiber V q

χ of Vq
χ is reducible, we

decompose V q
χ into irreducible subrepresentations V1, . . . , Vj . Then Bott-

Borel-Weil determines a condition on χ such that Hp(K/Hi ∩K,O(Vi))
vanishes for all p 6= s. Thus Hp(K/Hi ∩K,O(Vq

χ)) also vanishes. Since
we do not know the Vi’s or their highest weights, we choose χ such that
〈χ+γ+ρK , α〉 < 0 for all α ∈ 4(qi,+∩ kC) and for all weights γ of V q

χ which
guarantees the vanishing of Hp(K/Hi ∩K,O(Vi)) for all i and for all p 6= s.
If χ is chosen such that a < 1

2 −
3
2n when r = n and if a < −3n + r when

r < n, then the vanishing is guaranteed. The calculations for this theorem
were done with 4+(kC) = {ej − ek : 1 ≤ k < i and k ≤ j ≤ n, i + 1 ≤ j <
k ≤ i+n−r, i+1 ≤ k ≤ i+n−r < j ≤ n, or i+n−r+1 ≤ k < j ≤ n}. Thus
we have obtained the hypothesis for Lemma 2.2 and have proved Theorem
4.6.

4.3. Pushing Down to MDi by ν. Now we will push Hs(YDi ,O(µ∗Lχ))
down to MDi and construct the double fibration transform.

Theorem 4.10. Hs
(
YDi ,O(µ∗Lχ)

)
is isomorphic to H0

(
MDi , R

s
νO(µ∗Lχ)

)
which is isomorphic to H0

(
MDi ,O

[
Hs(K/Hi ∩K,Lχ)

])
.

Proof. This is Theorem 4.3 and Lemma 4.8 applied to the sheaf O(µ∗Lχ).
�

Now we can define the double fibration transform.

Theorem 4.11. Define the map

P : Hs
(
Di,Lχ

)
→ H0

(
MDi , R

s
νO(µ∗Lχ)

)
by the composition of the maps in Theorem 4.1, Theorem 4.6, and Theorem
4.10. Then P is the double fibration transform and it is an injection if
a < 1

2 −
3
2n when r = n and a < −3n + r when r < n. Also, the image

of P is isomorphic to the kernel of a map D from H0
(
MDi , R

s
νO(µ∗Lχ)

)
to

H0
(
MDi , R

s
νΩ

1
µ(µ∗Lχ)

)
where D is defined in Theorem 2.9.
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4.4. Bott-Borel-Weil applied to Hs(K/Hi ∩K,O(Lχ)). Before we in-
vestigate the map D in the next section, we will further our understanding
of H0

(
MDi , R

s
νO(µ∗Lχ)

)
As before, a theorem of Bott [B] implies that the

fiber of Rs
ν(µ

∗Lχ) is Hs(K/Hi ∩K,Lχ).
We have the following lemma.

Lemma 4.12. For r = n, if a < 1
2(1 − n), the cohomology space

Hp(K/Hi ∩K,Lχ) vanishes whenever p < s and whenever p = s it is the
nonzero irreducible K-representation of highest weight (a+i, . . . , a+i ; −a−
n+ i, . . . ,−a− n+ i) where there are (n− i) entries before the semicolon.

For r < n if a < −n+1 then Hp(K/Hi ∩K,Lχ) vanishes whenever p < s
and whenever p = s it is a nonzero irreducible K-representation. If r−i ≤ i,
the highest weight of the representation is

(a+ i+ n− r, . . . , a+ i+ n− r;

2i− r, . . . 2i− r| − a− n+ i, · · · − a− n+ i;

2i− r, . . . , 2i− r| − a− n+ i, . . . ,−a− n+ i)

where there are (r− i)-entries before the first semicolon, a total of i-entries
before the first vertical bar, (2i− r)-entries between the first vertical bar and
the second semicolon, a total of (n−r)-entries between the vertical bars, and
(r − i)-entries after the second vertical bar.

If r − i > i, the highest weight of the representation is

(a+ i+ n− r, . . . , a+ i+ n− r|2i− r, . . . 2i− r;

a+ i+ n− r, . . . a+ i+ n− r|2i− r, . . . , 2i− r;

− a− n+ i, . . . ,−a− n+ i)

where there are i-entries before the first vertical bar, (n + 2i − 2r)-entries
between the first vertical bar and the first semicolon, a total of (n−r)-entries
between the two vertical bars, (r−2i)-entries between the second vertical bar
and the second semicolon, a total of (r − i)-entries after the second vertical
bar.

The proof is an application of Bott-Borel-Weil.

5. The differential operator.

The double fibration transform realizes the representation Hs
(
Di,Lχ

)
as the

kernel of the map

D : H0
(
MDi , R

s
νO(µ∗Lχ)

)
→ H0

(
MDi , R

s
νΩ

1
µ(µ∗Lχ)

)
(5.1)

defined in Theorem 4.11 and Theorem 2.9. In this section, we will describe
D more explicitly and show that it is a G-invariant differential operator.
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Recall that Hs
(
Di,Lχ

)
is isomorphic to Hs

(
YDi , µ

−1Lχ

)
and that

Hs
(
YDi , µ

−1Lχ

)
is the kernel of the map ∂∗µ : Hs

(
YDi ,O(µ∗Lχ)

)
→

Hs
(
YDi ,Ω

1
µ(µ∗Lχ)

)
where ∂∗µ is induced from the map ∂µ : OYDi

→ Ω1
µ.

Now a Leray spectral sequence argument shows that Hs
(
YDi ,O(µ∗Lχ)

)
is

isomorphic to H0
(
MDi , R

s
νO(µ∗Lχ)

)
and that Hs

(
YDi ,Ω

1
µ(µ∗Lχ)

)
is isomor-

phic to H0
(
MDi , R

s
νΩ

1
µ(µ∗Lχ)

)
. The map ∂µ determines a map between the

spectral sequences and induces the map D in (5.1).
To understand D, we need a better understanding of the map ∂µ : OYDi

→
Ω1

µ. By definition ∂µ = π ◦ ∂ where ∂ : OYDi
→ Ω1

YDi
is the standard

holomorphic deRahm operator on YDi and π is the quotient map from Ω1
YDi

to Ω1
µ = Ω1

YDi
/µ∗Ω1

Di
. We note that, in this case, d = ∂ since ∂ = 0 on the

sheaves of interest. Although we can realize both Ω1
YDi

and Ω1
µ as sheaves of

holomorphic sections of a (G×G)–homogeneous bundles, the map π is not
determined by a (G×G)-equivariant bundle map. To understand π we will
decompose it into π1 ◦π2 where π2 : Ω1

YDi
→ ν∗Ω1

MDi
and π1 : ν∗Ω1

MDi
→ Ω1

µ.
Once we show that π2 is a (G×G)-equivariant map and π1 is equivariant for
the diagonal embedding of G in G×G, then π will be a G–equivariant map.

Let ∂2 = π2 ◦ ∂ and let ∂∗2 be the induced map from the cohomology
space Hs

(
YDi ,O(µ∗Lχ)

)
to Hs

(
YDi , ν

∗Ω1
MDi

(µ∗Lχ)
)
. We will see in Section

5.1 that the corresponding map

D2 : H0
(
MDi , R

s
νO(µ∗Lχ)

)
→ H0

(
MDi , R

s
ν

[
ν∗Ω1

MDi
(µ∗Lχ)

])
is the standard holomorphic d operator on MDi and that D2 is a (G×G)-
invariant first-order differential operator.

Now π1 induces a map

π1 : Hs
(
YDi , ν

∗Ω1
MDi

(µ∗Lχ)
)
→ Hs

(
YDi ,Ω

1
µ(µ∗Lχ)

)
.

In Section 5.2, we will show that the corresponding map

D1 : H0
(
MDi , R

s
ν [ν

∗Ω1
MDi

(µ∗Lχ)]
)
→ H0

(
MDi , R

s
νΩ

1
µ(µ∗Lχ)

)
is a G-invariant zeroth-order differential operator. As D1 is G-invariant and
D2 is (G×G)-invariant, the map D = D1 ◦ D2 is a G-invariant first-order
differential operator for the diagonal embedding of G in G×G.

5.1. The operator D2. In this section we will define π2 : Ω1
YDi

→ ν∗Ω1
MDi

and give an explicit realization of the map ∂2 : OYDi
→ ν∗Ω1

MDi
which

induces the map

∂∗2 : Hs
(
YDi ,O(µ∗Lχ)

)
→ Hs

(
YDi , ν

∗Ω1
MDi

(µ∗Lχ)
)
.
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We will then see how ∂∗2 determines the (G×G)-invariant differential operator

D2 : H0
(
MDi , R

s
νO(µ∗Lχ)

)
→ H0

(
MDi , R

s
ν [ν

∗Ω1
MDi

(µ∗Lχ)]
)

by examining the maps between the Leray spectral sequences for
Hs

(
YDi ,O(µ∗Lχ)

)
and Hs

(
YDi , ν

∗Ω1
MDi

(µ∗Lχ)
)
.

The Leray spectral sequence which defines the isomorphism between the
cohomology spaces Hs

(
YDi ,O(µ∗Lχ)

)
and H0

(
MDi , R

s
νO(µ∗Lχ)

)
is realized

from a filtration of the resolution

0 → O(µ∗Lχ) → E0,0(µ∗Lχ) → E0,1(µ∗Lχ) → · · · → E0,a(µ∗Lχ) → 0

with respect to the fiber of ν. (See, for example, [G].) Using the homoge-
neous structure of E0,c and µ∗Lχ, the E0-term is given by

Ep,q
0 = C∞

(
G×G,Cχ ⊗ ∧qci ⊗ ∧pd

)(Hi∩K)×K(5.2)

where Cχ is an (Hi ∩ K)-representation and where ci and d represent the
fiber of the antiholomorphic cotangent space of K/Hi ∩K and G/K ×G/K
respectively. Since ∧pd is a (K × K)-representation, the following lemma
gives another realization of Ep,q

0 .

Lemma 5.3.

Ep,q
0 = C∞

(
G×G,C∞

(
K,Cχ ⊗ ∧qci

)Hi∩K ⊗ ∧pd
)K×K

.(5.4)

Proof. The isomorphism is given by sending ϕ to ϕ̃ where ϕ̃(g1, g2)(k) =
ϕ(g1k, g2). A straightforward computation shows that ϕ̃ has the correct
invariance property. �

Then Ep,q
1 = C∞

(
G×G,Hq(K/Hi ∩K,O(Cχ))⊗ ∧pd

)K×K and

Ep,q
2 = Hp

(
G/K ×G/K,O

[
Hq(K/Hi ∩K,O(Cχ))

])
= Hp

(
G/K ×G/K,Rq

νO(µ∗Lχ)
)
.

Now we turn our attention to the Leray spectral sequence for
the cohomology space Hs

(
YDi , ν

∗Ω1
MDi

(µ∗Lχ)
)
. The E0-term of the Leray

spectral sequence which defines the isomorphism between the spaces
Hs

(
YDi , ν

∗Ω1
MDi

(µ∗Lχ)
)

and H0
(
MDi , R

s
ν [ν

∗Ω1
MDi

(µ∗Lχ)]
)

is given by

Ep,q
0,M = C∞

(
G×G,Cχ ⊗ ∧qci ⊗ ∧pd⊗ (p+ ⊕ p−)

)(Hi∩K)×K(5.5)

where here we are identifying (gC/(kC ⊕ p±))∗ with p∓.
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Lemma 5.6.

Ep,q
0,M = C∞

(
G×G,

[
C∞

(
K,Cχ ⊗ ∧qci ⊗ p+

)Hi∩K ⊗ ∧pd
]

(5.7)

⊕
[
C∞

(
K,Cχ ⊗ ∧qci

)Hi∩K ⊗
(
p− ⊗ ∧pd

)])K×K

.

Proof. As in Lemma 5.3, we see that (5.5) is isomorphic to

C∞
(
G×G,C∞

(
K×K,Cχ ⊗ ∧qci ⊗ (p+ ⊕ p−)

)(Hi∩K)×K ⊗ ∧pd
)K×K

.(5.8)

Since p− and p+ are K-representations, the inside of (5.8) is isomorphic to

C∞
(
K×K,

(
Cχ ⊗ ∧qci

)
⊗ 1

)(Hi∩K)×K ⊗
(
(p+ ⊗ 1)⊕ (1⊗ p−)

)
which is isomorphic to

C∞
(
K,Cχ ⊗ ∧qci

)Hi∩K ⊗
(
(p+ ⊗ 1)⊕ (1⊗ p−)

)
.

The lemma follows from splitting up the direct sum and identifying

C∞
(
K,Cχ ⊗ ∧qci

)Hi∩K ⊗ (p+ ⊗ 1)

with
C∞

(
K,Cχ ⊗ ∧qci ⊗ p+

)Hi∩K
.

�

Now that we have explicit descriptions of the Leray spectral sequences, we
look at the map π2 and π2 ◦∂ in more detail so we can define a map between
the spectral sequences. To define the map π2, we observe that ν∗Ω1

MDi
is

the sheaf of holomorphic sections of the (G×G)-homogeneous bundle on YDi

with fiber (
gC6 (kC ⊕ p+) ⊕ gC6 (kC ⊕ p−)

)∗
(5.9)

and Ω1
YDi

is the sheaf of holomorphic sections of the (G×G)-homogeneous
bundle with fiber(

gC6 [(hi,C ⊕ qi,−) ∩ kC]⊕ p+
⊕ gC6 (kC ⊕ p−)

)∗
.(5.10)

The natural map from (5.9) to (5.10) induces the (G×G)–equivariant map
π2 : Ω1

YDi
→ ν∗Ω1

MDi
. Then ∂2 = π2 ◦ ∂ is a map from OYDi

to ν∗Ω1
MDi

.
In the following lemma, we give an explicit formula for ∂2 : OYDi

→
ν∗Ω1

MDi
which will lead to a formula for ∂2,0 : Ep,q

0 → Ep,q
0,M .

Lemma 5.11. The map ∂2 : OYDi
→ ν∗Ω1

MDi
is given by

∂2(ψ) =
∑

α∈p−

r1(Xα)ψ ⊗X−α +
∑

β∈p+

r2(Xβ)ψ ⊗X−β(5.12)



EXPLICIT REALIZATIONS OF CERTAIN REPRESENTATIONS OF Sp(n, R) 441

where ψ represents the corresponding element of O(G×G)(Hi∩K)×K . Here(
r1(Xα)ψ

)
(g1, g2) =

d

dt

∣∣∣∣
t=0

ψ(g1 exp tXα, g2)

and (
r2(Xβ)ψ

)
(g1, g2) =

d

dt

∣∣∣∣
t=0

ψ(g1, g2 exp tXβ).

Proof. The manifolds G/Hi ∩ K and G/K are open orbits in the general-
ized flags GC/(Hi,CQi,− ∩KC)P+ and GC/KCP− respectively. Griffiths and
Schmid’s [GS] formula for the standard ∂ operator implies that the standard
∂ operator from OYDi

to Ω1
YDi

is given by

∂(ψ) =
∑

α∈(qi,+∩kC)⊕p−

r1(Xα)ψ ⊗X−α +
∑

β∈p+

r2(Xβ)ψ ⊗X−β .

The lemma follows from the fact that ∂2 = π2 ◦ ∂. �

The map ∂2 : OYDi
→ ν∗Ω1

MDi
determines a map between the resolutions

E0,• ⊗ OYDi
(µ∗Lχ) and E0,• ⊗ ν∗Ω1

MDi
(µ∗Lχ) which respects the filtration

along the fibers of ν. This map of resolutions induces a map between the
associated Leray spectral sequences (see, for example, [G]). Let ∂2,0 be the
induced map from Ep,q

0 to Ep,q
0,M (i.e., from (5.2) to (5.5)). Thus the formula

for ∂2,0 is the same as the formula for ∂2.

Lemma 5.13. The map ∂̃2,0 from (5.4) to (5.7) is given by (5.12).

Proof. The isomorphism between (5.2) and (5.4) and the one between (5.5)
and (5.7) as defined in Lemma 5.3 and 5.6 respectively imply that

(∂̃2,0ψ)(g1, g2)(k) =
∑

α∈p−

(
r1(Xα)ψ

)
(g1, g2)(k)⊗Ad(k−1)X−α

+
∑

β∈p+

(
r2(Xβ)ψ

)
(g1, g2)(k)⊗X−β.

Since C∞
(
K,Cχ⊗∧qci⊗p+)Hi∩K is isomorphic to C∞

(
K,Cχ⊗∧qci

)Hi∩K⊗
p+, the lemma follows. �

Thus the maps ∂̃2,0 and ∂2,1 : Ep,q
1 → Ep,q

1,M where

Ep,q
1,µ = C∞

(
G×G,

[(
Hq(K/Hi ∩K,O(Lχ))⊗ p+

)
⊗ ∧pd

]
⊕[

Hq(K/Hi ∩K,O(Lχ))⊗ (p− ⊗ ∧pd)
])K×K

are each the standard holomorphic d operator on MDi . Since both spec-
tral sequences collapse at the E2–term, the map ∂2,2 : Ep,q

2 → Ep,q
2,M is the
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zero map except when p = 0 and q = s. In that case, it is the standard
holomorphic d operator on MDi

D2 : H0
(
MDi , R

s
νO(µ∗Lχ)

)
→ H0

(
MDi , R

s
ν [ν

∗Ω1
MDi

(µ∗Lχ)]
)

and it is a (G×G)-equivariant map.

5.2. The operator D1. In this section, we define π1 : ν∗Ω1
MDi

→ Ω1
µ and

then see how this determines the operator

D1 : H0
(
MDi , R

s
ν [ν

∗Ω1
MDi

(µ∗Lχ)]
)
→ H0

(
MDi , R

s
νΩ

1
µ(µ∗Lχ)

)
.

To define the map π1 we observe that the restriction of ν̃∗Ω1
MXi

and Ω1
µ̃ to

YDi is isomorphic to ν∗Ω1
MDi

and Ω1
µ respectively. Because the embedding

of YDi in YXi is G-equivariant, these two isomorphisms are G–equivariant.
Now ν̃∗Ω1

MXi
is the sheaf of holomorphic sections of the GC-homogeneous

bundle with fiber (
gC6 kC

)∗
(5.14)

and Ω1
µ̃ is the sheaf of holomorphic sections of the GC-homogeneous bundle

with fiber (
(hi,C ⊕ qi,+)6 (hi,C ⊕ qi,+) ∩ kC

)∗
.(5.15)

Then π̃1 is the GC–equivariant map induced by the natural restriction map
from (5.14) to (5.15) and π1 = π̃1|ν∗Ω1

MDi

is the G-equivariant map from

ν∗Ω1
MDi

to Ω1
µ.

As in Section 5.1, the Leray spectral sequences forHs
(
YDi , ν

∗Ω1
MDi

(µ∗Lχ)
)

and Hs
(
YDi ,Ω

1
µ(µ∗Lχ)

)
together with the map π1 : ν∗Ω1

MDi
→ Ω1

µ determine
a map

D1 : H0
(
MDi , R

s
ν [ν

∗Ω1
MDi

(µ∗Lχ)]
)
→ H0

(
MDi , R

s
νΩ

1
µ(µ∗Lχ)

)
.

In this case, this process does not yield an explicit description of D1

because we do not have an explicit description of π1 in terms of the homoge-
neous vector bundles for ν∗Ω1

MDi
and Ω1

µ. To resolve this difficulty we use the
fact that π1 is the restriction of the map π̃1 to ν∗Ω1

MDi
. Since π̃1 can be de-

scribed explicitly we use the Leray spectral sequences for
Hs

(
YXi , ν̃

∗Ω1
MXi

(µ̃∗Lχ̃)
)

and Hs
(
YXi ,Ω

1
µ̃(µ̃∗Lχ̃)

)
to determine the map D̃1

from H0
(
MXi , R

s
ν̃ [ν̃

?Ω1
MXi

(µ̃∗Lχ̃)]
)

to H0
(
MXi , R

s
ν̃Ω

1
µ̃(µ̃∗Lχ̃)

)
. Then we will

show that D̃1 restricts to D1.
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Using the homogeneous structure of ν̃∗Ω1
MXi

we see that the E0-term of

the Leray spectral sequence for Hs
(
YXi , ν̃

∗Ω1
MXi

(µ̃∗Lχ̃)
)

is given by

Ẽp,q
0,M = C∞

(
GC,Cχ̃ ⊗ ∧qci ⊗ ∧pd⊗ F2

)Hi,CQi,−∩KC

where F2 = (gC/kC)∗. Now Ẽp,q
0,M is isomorphic to

C∞
(
GC, C

∞(KC,Cχ̃ ⊗ ∧qci ⊗ F2)Hi,CQi,−∩KC ⊗ ∧pd
)KC

by sending ϕ to ϕ̃ where ϕ̃(g)(k) = ϕ(gk). Likewise the E0–term of the
Leray spectral sequence for Hs

(
YXi ,Ω

1
µ̃(µ∗Lχ̃)

)
is given by

Ẽp,q
0,µ = C∞

(
GC,Cχ̃ ⊗ ∧qci ⊗ ∧pd⊗ F3

)Hi,CQi,−∩KC

where F3 =
(
(hi,C ⊕ qi,−)/(hi,C ⊕ qi,−) ∩ kC

)∗ and Ẽp,q
0,µ is isomorphic to

C∞
(
GC, C

∞(KC,Cχ̃ ⊗ ∧qci ⊗ F3)Hi,CQi,−∩KC ⊗ ∧pd
)KC .

Since the homogeneous structures of ν̃∗Ω1
MXi

and Ω1
µ̃ are compatible, we

can give an explicit realization of the map π̃1,0 : Ẽp,q
0,M → Ẽp,q

0,µ induced by π1.
Let r be the map from F2 to F3 given by restriction. Then (π̃1,0(ϕ)) (g)(k) =
r(ϕ(g)(k)).

For the E1-terms we have that

Ẽp,q
1,M = C∞

(
GC,H

q(KC/Hi,CQi,− ∩KC,O(F2,χ̃))⊗ ∧pd
)KC(5.16)

and

Ẽp,q
1,µ = C∞

(
GC,H

q(KC/Hi,CQi,− ∩KC,O(F3,χ̃))⊗ ∧pd
)KC(5.17)

where Fj,χ̃ is the homogeneous bundle on KC/Hi,CQi,− ∩KC with fiber Fj⊗
Cχ̃.

Since K/Hi ∩K = KC/(Hi,CQi,− ∩KC) we can identify the cohomology
space in (5.16) with

Hq
(
K/Hi ∩K,O(F2,χ)

)
(5.18)

and the cohomology space in (5.17) with

Hq
(
K/Hi ∩K,O(F3,χ)

)
(5.19)

where Fj,χ is the homogeneous bundle on K/Hi ∩K with fiber Fj ⊗ Cχ.
The map π̃1,0 induces a map from Ẽp,q

1,M to Ẽp,q
1,µ which is determined by

the map from (5.18) to (5.19). To determine this map for q = s, we let
F1 = (gC/(hi,C + qi,− + kC))∗.

Lemma 5.20.

0 → F1
j−→ F2

r−→ F3 → 0(5.21)

is a short exact sequence where j is the natural inclusion map.



444 JODIE D. NOVAK

Proof. For vector spaces W ⊂ V the dual space (V/W )∗ can be identified
with the set of λ ∈ V ∗ such that λ|W = 0. Since F3 can also be written as(
(hi,C + qi,− + kC)/kC

)∗ the lemma follows. �

Now (5.21) induces a short exact sequence in cohomology.

Lemma 5.22.

0 → Hs(K/Hi ∩K,O(F1,χ))
j∗−→ Hs(K/Hi ∩K,O(F2,χ))
r∗−→ Hs(K/Hi ∩K,O(F3,χ)) → 0

is an exact sequence for r = n if a < 1
2 −

3
2n and for r < n if a < −3n+ r.

Proof. The short exact sequence (5.21) induces the following short exact
sequence of sheaves

0 → O(F1,χ)
j̃−→ O(F2,χ) r̃−→ O(F3,χ) → 0(5.23)

since j and r are equivariant for Hi ∩ K and qi,− ∩ kC. The sequence
(5.23) induces a long exact sequence in cohomology. Since the dimension of
K/Hi ∩K is s, cohomology vanishes in degree greater than s. The space
Hs−1(K/Hi ∩K,O(F3,χ)) = 0 by Theorem 4.9 and the lemma follows. �

We will now determine r∗ explicitly.

Lemma 5.24. r∗ is a linear projection map.

Proof. Since K is compact, representations of K are semisimple so the short
exact sequence splits. Thus, Hs(K/Hi ∩K,O(F1,χ)) has a complement in
Hs(K/Hi ∩K,O(F2,χ)) which must map isomorphically onto
Hs(K/Hi ∩K,O(F3,χ)). Thus, r∗ is a linear projection map. �

In Appendix B, we decompose the K-representations
Hs(K/Hi ∩K,O(F2,χ)) and Hs(K/Hi ∩K,O(F3,χ)) and determine r∗ ex-
plicitly for the case when r = n.

The map from Ẽp,s
1,M → Ẽp,s

1,µ is given by sending ϕ to r∗ ◦ ϕ where
(r∗ ◦ ϕ)(g)(k) = r∗(ϕ(g)(k)). Thus the map D̃1 from Ẽ0,s

2,M → Ẽ0,s
2,µ is the

restriction of the map from Ẽ0,s
1,M → Ẽ0,s

1,µ to holomorphic sections of the
bundle Hs(K/Hi ∩K,O(F2,χ)) and D̃1 is a GC–invariant zeroth-order dif-
ferential operator. Since MDi is open in MXi , the map D̃1 restricts to a
differential operator on MDi . Now

Rs
ν̃ [ν̃

∗Ω1
MXi

(µ̃∗Lχ̃)] ' Rs
ν [ν

∗Ω1
MDi

(µ∗Lχ)](5.25)

so D̃1 restricted to MDi is the map from H0
(
MDi , R

s
ν [ν

∗Ω1
MDi

(µ∗Lχ)]
)

to H0
(
MDi , R

s
νΩ

1
µ(µ∗Lχ)

)
which is given by sending ϕ to r∗ ◦ ϕ. Since
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π̃1|ν∗Ω1
MDi

= π1 this map is D1. The G-equivariance of the map π1 implies

that D1 is also G-invariant. Thus we have proven the following theorem.

Theorem 5.26.
(1) The map

D1 : H0
(
MDi , R

s
ν

[
ν∗Ω1

MDi
(µ∗Lχ)

])
→ H0

(
MDi , R

s
νΩ

1
µ(µ∗Lχ)

)
is a G-equivariant zeroth–order differential operator.

(2) The map

D : H0(MDi , R
s
νO(µ∗Lχ)) → H0

(
MDi , R

s
νΩ

1
µ(µ∗Lχ)

)
is given by D = D1◦D2 and D is a G-equivariant first–order differential
operator.

Appendix A.

The main body of the paper considers the double fibration transform for a
family of representations of Sp(n,R) which are realized in cohomology with
values in a line bundle. The outline for constructing the double fibration
transform, as given in Section 2, is valid if we replace the line bundle L
with a finite dimensional vector bundle V. In this appendix, we consider the
details of the construction when the line bundle is replaced with a vector
bundle.

Let Fλ be a finite-dimensional, irreducible representation of Hi with high-
est weight λ and Fλ the corresponding homogeneous vector bundle on Di.
When r = n and λ = (a1, · · · , ai | ai+1, · · · , an), then λ is a highest weight
if

ai ≥ · · · ≥ a1 ≥ −ai+1 ≥ · · · ≥ −an.(A.1)

When r < n and λ = (a1, · · · , ai | ai+1, · · · , ai+n−r | ai+n−r+1, · · · , an), then
λ is a highest weight if

ai ≥ · · · ≥ a1 ≥ −ai+n−r+1 ≥ · · · ≥ −an(A.2)

and

ai+1 ≥ · · · ≥ ai+n−r ≥ 0.(A.3)

The representation Hs(Di,O(Fλ)) is infinite-dimensional, non-zero, and
irreducible [Wg] under the following circumstances: When r = n, in addi-
tion to A.1, we require that −an > n and when r < n, in addition to A.2
and A.3, we require that −an > n and ai+1 + an < −2n+ r. Unlike the line
bundle case, these representations are not unitarizable.

Now we consider the construction of the double fibration transform. The
first step, using Buchdahl’s theorem [Bu] to identify Hs(Di,O(Fλ)) with
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Hs
(
YDi , µ

−1O(Fλ)
)
, remains valid because Buchdahl’s theorem, which ap-

plies to vector bundles, requires only that the fiber of µ be contractible,
which we already have.

The second step, embedding Hs
(
YDi , µ

−1O(Fλ)
)

in Hs(YDi ,O(µ∗Fλ)),
is more complicated. As in Theorem 4.9, this requires a condition on λ
which guarantees that Hp(K/Hi ∩K,O(Vq ⊗ Fλ)) vanish for all p < s and
all 1 ≤ q ≤ m. Recall that Vq is the bundle ∧q(ker dµ)∗ whose fiber is
V q = ∧q[(hi,C ⊕ qi,+) ∩ p]. When we consider V q ⊗ Fλ as an K/Hi ∩K
representation, we see the main difference from the line bundle case. In
the line bundle case, when the representation Cχ is restricted to Hi ∩ K,
it remains irreducible. This allows us to know explicitly the form of the
highest weights of the irreducible components of V q⊗Cχ (see the discussion
after Theorem 4.9) and to compute a specific condition on χ to guarantee
vanishing.

Such is not the case for vector bundles. The representation Fλ, when

restricted to Hi∩K, may be reducible. If we decompose Fλ as Fλ =
k
⊕

j=1
Fλj

with Fλj
an irreducible representation of Hi ∩ K with highest weight λj ,

we can say something about the λj ’s. Since Hi ∩ K = U(i) × U(r − i) ×
Sp(n − r,R) is reductive, the highest weight λj splits into two pieces: A
highest weight λ′j for the semisimple piece and a character χj on the center.
Similarly, λ itself is of the form λ = χ + λ′ when λ is a highest weight of
Hi = U(i, r − i) × Sp(n − r,R). Since the one-dimensional representation
remains irreducible under restriction, we have that χj = χ for all j where
χ = (−a, · · · ,−a | 0, · · · , 0 | a, · · · , a). So, each λj is of the form χ + λ′j .
Now we replace χ with χ+ λ′j in the proof of Theorem 4.9. Then let

C = max
j

{〈
λ
′
j , en − e1

〉}
and

D = max
j,t

{〈
λ
′
j , αt

〉}
with α1 = ei+1 − e1, α2 = en − ei, α3 = en − ei+n−r. Then the vanishing
condition holds for r = n when a < −3n + 1 − C and for r < n when
a < −3n+ r −D.

The third step, pushing Hs(YDi ,O(µ∗Fλ)) down to H0(MDi , R
s
νO(µ∗Fλ)),

is unaffected by changing from a line bundle to a vector bundle.
Likewise, the differential operator is not affected by changing from a line

bundle to a vector bundle. Although, as in the line bundle case, when
r < n, it is difficult to decompose the representations in Lemma 5.22 to give
an explicit description of the projection operator r∗ as was done when r = n
in Appendix B.
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Appendix B.

For the case when r = n, we will decompose the spaces
Hs(K/Hi ∩K,O(F2,χ)) and Hs(K/Hi ∩K,O(F3,χ)) and determine the
map r∗ : Hs(K/Hi ∩K,O(F2,χ)) → Hs(K/Hi ∩K,O(F3,χ)) in Lemma
5.22 explicitly. Since K is compact, each of Hs(K/Hi ∩K,O(F2,χ)) and
Hs(K/Hi ∩K,O(F3,χ)) can be decomposed into a direct sum of irreducible
K-representations.
First, we decomposeHs(K/Hi ∩K,O(F3,χ)) . We cannot apply Bott-Borel-

Weil directly to Hs(K/Hi ∩K,O(F3,χ)) since
(
(hC⊕qi,−)/(hC⊕qi,−)∩ kC

)∗
= F3 is not an irreducible (qi,− ∩ kC)-representation. Although we can
decompose F3 into a direct sum of irreducible (Hi ∩K)-representations, in
order to decompose O(F3,χ) accordingly the decomposition of V must also
be as (qi,− ∩ kC)-modules (see [TW]). If we use the killing form to identify
F3 with (hi,C ⊕ qi,+)∩p, then on hi,C∩p the action of qi,−∩ kC is trivial and
on qi,+ ∩ p,the action is by ad. Since we cannot find a decomposition of F3

which respects the action of qi,−∩ kC, we will use a composition series for F3

to determine Hs(K/Hi ∩K,O(F3,χ)) as indicated in the following theorem.

Theorem B.1. Let V be a representation of qi,− ∩ kC and let 0 = V0 ⊂
V1 ⊂ V2 ⊂ · · · ⊂ VN = V be a composition series for V . Let Wj denote
Vj/Vj−1 and let V and Wj be the associated homogeneous vector bundles on
K/Hi ∩K. Then there exists a spectral sequence with Ep,q

1 =
Hp+q

(
K/Hi ∩K,O(WN−p)

)
which abuts to H∗(K/Hi ∩K,O(V)

)
.

Proof. Since the representations are stable under the action of the antiholo-
morphic tangent space qi,−∩kC, the filtration of V induces a filtration in the
Dolbeault complex. By the proposition on page 440 of [GH] it follows that
there exists a spectral sequence with Ep,q

1 = Hp+q
(
K/Hi ∩K,O(WN−p)

)
which abuts to H∗(K/Hi ∩K,O(V)

)
. �

Corollary B.2. If Hp
(
K/Hi ∩K,O(Wj)

)
= 0 for all p 6= p0 and all j,

then Hp0
(
K/Hi ∩K,O(V)

)
=

N∑
j=1

Hp0
(
K/Hi ∩K,O(Wj)

)
.

Proof. The spectral sequence collapses in Theorem B.1 giving the conclusion.
�

Once we find an appropriate decomposition series of F3 we can use Bott-
Borel-Weil to determine when Hp

(
K/Hi ∩K,O(Wj ⊗ Lχ)

)
vanishes for all

j and for all p 6= s. Choose the following elements for the composition series:

F3 = V4 = (hi,C ⊕ qi,+) ∩ p V2 = (hi,C ⊕ qi,+) ∩ p+

V3 = [(hi,C ⊕ qi,+) ∩ p+]⊕ (hi,C ∩ p−) V1 = hi,C ∩ p+.

Then each Vj is a representation for Hi ∩K and qi,− ∩ kC where the action
of qi,− ∩ kC on Vj is the restriction of its action on V . Let Wj = Vj/Vj−1.
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Then the successive quotients are

W4 ' qi,+ ∩ p− W2 ' qi,+ ∩ p+

W3 ' hi,C ∩ p− W1 ' hi,C ∩ p+.

Each Wj is an irreducible (Hi∩K)–representation (since each is the realiza-
tion of the holomorphic or anti-holomorphic tangent space of some symmet-
ric space) and each Wj is a (qi,− ∩ kC)–representation. The induced action
of qi,− ∩ kC on Wj is trivial. Let λj denote the highest weight of Wj . Then

λ4 = −2e1 λ2 = 2en
λ3 = −e1 − ei+1 λ1 = ei + en.

Lemma B.3. If a < −1
2(n + 1) then Hp(K/Hi ∩K,O(Wj ⊗ Lχ)) = 0

for all j whenever p < s and whenever p = s it is an irreducible K-
representation with highest weight ξ + λ′j. Here ξ = (a+ i, . . . , a+ i ; −a−
n+ i, . . . ,−a− n+ i) with (n− i) entries before the semicolon and

λ′4 = −2en−i+1 λ′2 = 2en−i

λ′3 = −e1 − en−i+1 λ′1 = en−i + en.

The proof is an application of Bott-Borel-Weil.
Thus we have proven the following theorem.

Theorem B.4. If a < −1
2(n+ 1), then

Hs(K/Hi ∩K,O(F3,χ)) =
4
⊕

j=1
Eτj

where Eτj is the irreducible K-representation with highest weight τj = ξ+λ′j
where ξ and λ′j are given in Lemma B.3.

Now we will decompose Hs(K/Hi ∩K,O(F2,χ)).

Theorem B.5. If a < −1
2(n+ 1), then

Hs(K/Hi ∩K,O(F2,χ)) =
6
⊕

j=1
Eτj

where Eτj is the irreducible K–representation of highest weight τj = ξ + λ′j.
Here ξ and λ′j are given in Lemma B.3 for j = 1, . . . , 4. Let λ′5 = 2en and
λ′6 = −2e1.
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Proof. First we identify F2 = (gC/kC)∗ with p. The decomposition p+⊕p− of
p respects the action of Hi ∩K and qi,− ∩ kC. Thus Hs(K/Hi ∩K,O(F2,χ))
decomposes into the direct sum of the K-representations

Hs
(
K/Hi ∩K,O

[
K ×Hi∩K (Cχ ⊗ p+)

])
and

Hs
(
K/Hi ∩K,O

[
K ×Hi∩K (Cχ ⊗ p−)

])
.

Since p+ and p− are indecomposable as (qi,− ∩ kC)-representations, the co-
homology spaces will be computed using a composition series.

Now U3 = p+, U2 = p+∩ (hi,C ⊕ qi,−) and U1 = p+∩ qi,− is a composition
series for p+ and Z3 = p−, Z2 = p− ∩ (hi,C ⊕ qi,−) and Z1 = p− ∩ qi,− is a
composition series for p−. Lemma B.3 implies that

Hp
(
K/Hi ∩K,O(K ×Hi∩K (Cχ ⊗W ))

)
= 0(B.6)

for p < s where W = U3/U2, U2/U1, Z3/Z2, and Z2/Z1. We will determine
the condition necessary for (B.6) to hold when W is U1 or Z1.

Let λ5 = 2ei and λ6 = −2ei+1. Then λ5 (respectively λ6) is the highest
weight of the irreducible K-representation U1 (respectively Z1). As in the
proof of Lemma B.3, to show (B.6) it suffices to show that 〈χ+pk+λj , en−e1〉
< 0 for j = 5, 6. Since 〈χ+ pk + λj , en − e1〉 = 2a+ n− 1 we see that (B.6)
is true when a < −1

2(n+ 1). Thus Theorem B.1 and Corollary B.2 together
imply that Hs

(
K/Hi ∩K,O

[
K ×Hi∩K (Cχ ⊗ p+)

])
= Eτ1 ⊕ Eτ2 ⊕ Eτ5 and

that Hs
(
K/Hi ∩K,O

[
K ×Hi∩K (Cχ ⊗ p−)

])
= Eτ3 ⊕ Eτ4 ⊕ Eτ6 �

We will now determine r∗ explicitly.

Lemma B.7. r∗ is a linear projection map.

Proof. The map r∗ is onto by Lemma 5.22. Since Hs(K/Hi ∩K,O(F3,χ)) =
4
⊕

j=1
Eτj and Hs(K/Hi ∩K,O(F2,χ)) =

6
⊕

j=1
Eτj and each Eτj is an irreducible

K-representation, r∗ is the natural projection map from
6
⊕

j=1
Eτj to

4
⊕

j=1
Eτj .

�
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