
Pacific
Journal of
Mathematics

ANALYSIS OF THE MODULE DETERMINING THE
PROPERTIES OF REGULAR FUNCTIONS OF SEVERAL

QUATERNIONIC VARIABLES

William W. Adams and Philippe Loustaunau

Volume 196 No. 1 November 2000



PACIFIC JOURNAL OF MATHEMATICS
Vol. 196, No. 1, 2000

ANALYSIS OF THE MODULE DETERMINING THE
PROPERTIES OF REGULAR FUNCTIONS OF SEVERAL

QUATERNIONIC VARIABLES

William W. Adams and Philippe Loustaunau

For a polynomial ring, R, in 4n variables over a field, we
consider the submodule of R4 corresponding to the 4 × 4n
matrix made up of n groupings of the linear representation of
quarternions with variable entries (which corresponds to the
Cauchy-Fueter operator in partial differential equations) and
let Mn be the corresponding quotient module. We compute
many homological properties of Mn including the degrees of
all of its syzygies, as well as its Betti numbers, Hilbert func-
tion, and dimension. We give similar results for its leading
term module with respect to the degree reverse lexicograph-
ical ordering. The basic tool in the paper is the theory of
Gröbner bases.

1. Introduction.

In several recent papers, [1], [2] and [3], the authors and their colleagues
have applied to certain analytic questions some algebraic properties of the
following module. Let xi0, xi1, xi2, xi3 (1 ≤ i ≤ n) denote 4n variables
(n = 1, 2, . . . ), let k be any field, and let R = k[xi0, xi1, xi2, xi3|1 ≤ i ≤ n]
denote the corresponding polynomial ring in the given 4n variables (in the
analytic applications k = C, but the specific field plays no role in the current
paper). We consider the 4× 4n matrix

An =
[
U1 U2 · · · Un

]
,

where

Ui =


xi0 xi1 xi2 xi3

−xi1 xi0 xi3 −xi2

−xi2 −xi3 xi0 xi1

−xi3 xi2 −xi1 xi0

 ,

for i = 1, . . . , n. It is easy to see that Ui is a linear representation of the
quarternion1 ξ = xi0+xi1i+xi2j+xi3k. We denote by 〈An〉 the submodule

1Note added in proof: It should be noted that this representation differs slightly from
the usual one which may be obtained from this one either by changing the sign of xi2 or
by interchanging i and j. This does not effect any of the computations in this paper or
in [3].
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of R4 generated by the columns of An. The module of study in this paper is

Mn = R4/〈An〉.(1)

Very briefly, the connection with analysis is the following. We consider the
real quarternions H and a function f : Hn −→ H with f = (f0, f1, f2, f3),
where the fi’s are the real valued functions which make up the components
of f . We assume that f0, f1, f2, f3 are C∞-functions in the 4n real variables
xi0, xi1, xi2, xi3 (1 ≤ i ≤ n). In analogy with the Cauchy-Riemann equations,
we say f is left regular if it satisfies the Cauchy-Fueter system

∂f0

∂ξi0
− ∂f1

∂ξi1
− ∂f2

∂ξi2
− ∂f3

∂ξi3
= 0

∂f0

∂ξi1
+

∂f1

∂ξi0
− ∂f2

∂ξi3
+

∂f3

∂ξi2
= 0

∂f0

∂ξi2
+

∂f1

∂ξi3
+

∂f2

∂ξi0
− ∂f3

∂ξi1
= 0

∂f0

∂ξi3
− ∂f1

∂ξi2
+

∂f2

∂ξi1
+

∂f3

∂ξi0
= 0

(2)

for i = 1, . . . , n. If Sn denotes a sheaf of generalized functions (e.g., Sn is
the sheaf of hyperfunctions or the sheaf of infinitely differentiable functions)
and SP

n denotes the left regular functions in Sn, then analytic information
concerning left regular functions is deduced from algebraic information con-
cerning Mn because of the isomorphism

HomR(Mn,Sn) ∼= SP
n

(see [1], [2], [3], [13], and [15]).
In this paper we will concentrate just on the algebraic properties of Mn

in (1) and we will continue the developements started in the earlier paper
[3]. Our main motivation for this paper is to answer some of the questions
posed in [13] and [15] concerning the syzygies of Mn.

The first question in [13] concerns the first syzygies of Mn. It was con-
jectured there that they were all quadratic. We will establish this result as
our Theorem 3.1. We do not, however, answer the analytic question asked
in [13], that is, to give an analytic explanation for the quadratic syzygies
we construct. The issue is that the third class of quadratic syzygies given
in Theorem 3.1 gives some unexpected (from the analytic viewpoint) com-
patibility conditions for solving the inhomogeneous version of (2).

The second question posed in [13] is based upon the observation, using
CoCoA(see [9]), that for n = 2, 3, 4 all the syzygies beyond the first are linear
(see Equation (5) in Section 3). We will prove this is a general fact in Section
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3 as Theorem 3.2 and this is the main result of this paper.2 (The analytic
consequences of this result are not understood.) There are two main tools
used in the proof of this result. The first is that, as seen in [3], we can
write down an explicit Gröbner basis for 〈An〉 for general n (with respect
to the degree reverse lexicographical ordering on R). The second is that we
can show that the (Castelnuovo) regularity of 〈An〉 equals 2. This latter,
combined with the first syzygies being quadratic, allows us to conclude that
all the higher syzygies are linear. It should be pointed out that some of
the results of this paper could also be obtained using the theory of shellable
complexes (see [15] or [8]).

In Section 2 we will describe the explicit Gröbner basis for 〈An〉. From
this we easily write down the leading term module corresponding to 〈An〉.
We then deduce the Hilbert-Poincaré series and consequently the Hilbert
polynomial, dimension and degree of Mn.

Also in Section 2, we briefly describe the main algebraic results of [3]:
Using the explicit Gröbner basis we are able to write down an explicit max-
imal regular sequence for Mn, showing that Mn has depth equal 2n+1 (as
a graded R-module) and then from the Auslander-Buchsbaum formula we
get the projective dimension of Mn, pdR(Mn) = 2n− 1. We conclude that
Mn is Cohen-Macaulay. Moreover, using these results and those of Section
3 we give an explicit formula for the Betti numbers of Mn.

2. Dimensions for Mn.

We begin by describing a Gröbner basis for 〈An〉 and as a result a generating
set for Lt(〈An〉), the leading term module of 〈An〉 (see [4] for the relevant
definitions and basic results on Gröbner bases). We use the degree reverse
lexicographic (degrevlex) term ordering on R with

x10 > x20 > · · · > xn0 > x11 > · · · > xn1 > x12 > · · · > xn3,(3)

and the TOP (TOP stands for term over position) ordering on R4 with
e1 > e2 > e3 > e4, where ei is the ith column of the 4× 4 identity matrix.
That is, for monomials X = xα10

10 · · ·xαn3
n3 and Y = xβ10

10 · · ·xβn3
n3 and for

r, s = 1, 2, 3, 4, we have

Xer > Y es ⇐⇒



deg(X) =
∑

i=1,...,n
j=0,1,2,3

αij > deg(Y ) =
∑

i=1,...,n
j=0,1,2,3

βij or

deg(X) = deg(Y ) and αij < βij for the index ij,

last with respect to (3), such that αij 6= βij or
X = Y and r < s.

2After the preparation of this paper, the paper of R. Baston [5] was pointed out to
the authors which appears to have results very similar to our Theorems 3.1 and 3.2. The
paper of Baston is concerned with the possible physical applications of this theory.
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Lemma 2.1. The reduced Gröbner basis for the R-module 〈An〉 is given by
the columns of An together with the columns of the

(
n
2

)
matrices UrUs−UsUr

(1 ≤ r < s ≤ n). Moreover the module generated by the leading terms of all
the elements of 〈An〉, denoted Lt(An), is

Lt(An) = 〈xi0e`, xr2xs1e`〉 i=1,...,n
1≤r<s≤n
`=1,2,3,4

.

The proof for this result simply lies in observing that the columns of
UrUs − UsUr clearly lie in 〈An〉, and that all of the S-polynomials of the
listed vectors go to zero. See also [3].

We use this result to compute the Hilbert-Poincaré series for Mn. Recall
that if we write

Mn =
∐
ν≥0

Mνn,

where Mνn is the k-space of elements of Mn of degree ν, then the Hilbert
function of Mn is defined by

Hn(ν) = dimk Mνn

and the Hilbert-Poincaré series for Mn by

Pn(t) =
∞∑

ν=0

Hn(ν)tν .

We obtain

Theorem 2.2.

Pn(t) =
4 + 4(n− 1)t
(1− t)2n+1

.

Proof. We first recall Macaulay’s result [12] (see also [6]) that the Hilbert
function and hence the Hilbert-Poincaré series are the same for Mn =
R4/〈An〉 and Ln = R4/Lt(An). Then from the symmetry of Lt(An) in each
component, we see that

Pn(t) = 4Qn(t),
where Qn(t) is the Hilbert-Poincaré series for R/In and In is the ideal of R
defined by

In = 〈xi0, xr2xs1〉 i=1,... ,n
1≤r<s≤n

.

To simplify the notation, for T1, . . . , Tr monomials in R we denote by
QT1,... ,Tr(t) the Hilbert-Poincaré series for R/〈T1, . . . , Tr〉. The following
two computational rules allow us to compute Qn(t) (see [6]):

Rule 1: If V is a (possibly empty) subset of the variables, then

QV (t) =
1

(1− t)4n−|V |

where |V | denotes the cardinality of V .
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Rule 2: If T1, . . . , Tr, T are monomials with degree T = d, then

QT1,... ,Tr,T (t) = QT1,... ,Tr(t)− tdQ T1
(T1,T )

,... , Tr
(Tr,T )

(t)

where (Ti, T ) (1 ≤ i ≤ r) denotes the greatest common divisor of the
two monomials Ti and T .

We first consider the n+2 variables that do not appear in the generating
set for In, namely xi3 for 1 ≤ i ≤ n, and x11, xn2. Applying Rule 2 above
successively to these n + 2 variables we obtain

QA(t) = (1− t)n+2Qn(t),

where A = {xi0, xi3, x11, xn2, xr2xs1} i=1,... ,n
1≤r<s≤n

. It is then clear that the vari-

ables xi0, xi3 for 1 ≤ i ≤ n, and x11, xn2 are no longer relevant to the
computation. Thus we may replace R by

S = k[x1, . . . , xn−1, y1, . . . , yn−1]

(letting xr = xr2 for 1 ≤ r ≤ n− 1 and ys−1 = xs1 for 2 ≤ s ≤ n) and A by
B = {xrys|1 ≤ r ≤ s ≤ n− 1}. We have, in the obvious notation,

QB(t) = QA(t),

and to prove the theorem we must prove

QB(t) =
1 + (n− 1)t
(1− t)n−1

.

This will be proved by induction on n − 1. We note that the number of
variables is now 2(n− 1) and so Rule 1 now reads

QV (t) =
1

(1− t)2(n−1)−|V | .

(Rule 2 is unchanged.)
If n− 1 = 1, then using first Rule 1 and then Rule 2 with B = ∅ we get

Qx1y1(t) = Q∅(t)− t2Q∅(t) =
1− t2

(1− t)2
=

1 + t

1− t
,

as desired.
For the induction we let C = {xrys|1 ≤ r ≤ s ≤ n− 2} so that

QB(t) = QC,x1yn−1,... ,xn−1yn−1(t)

= QC,x1yn−1,... ,xn−2yn−1(t)− t2QC,x1,... ,xn−2(t)

= QC,x1yn−1,... ,xn−2yn−1(t)− t2Qx1,... ,xn−2(t)

= QC,x1yn−1,... ,xn−2yn−1(t)−
t2

(1− t)2(n−1)−(n−2)

= QC,x1yn−1,... ,xn−2yn−1(t)−
t2

(1− t)n
;
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here we have used Rule 2 and the equality

〈C, x1, . . . , xn−2〉 = 〈x1, . . . , xn−2〉,
and then Rule 1. We repeat this reasoning on the first term,
QC,x1yn−1,... ,xn−2yn−1(t), with T = xn−2yn−1 in Rule 2, only this time there
is a non-trivial greatest common denominator with a term in C. We easily
obtain

QC,x1yn−1,... ,xn−2yn−1(t) = QC,x1yn−1,... ,xn−3yn−1(t)− t2Qx1,... ,xn−3,yn−2(t)

= QC,x1yn−1,... ,xn−3yn−1(t)−
t2

(1− t)n
,

again using Rule 1. Thus

QB(t) = QC,x1yn−1,... ,xn−3yn−1(t)− 2
t2

(1− t)n
.

Continuing in this way, we have

QB(t) = QC(t)− (n− 1)
t2

(1− t)n
.

We now can determine QC(t) from the induction assumption. However we
note that the current QC(t) occurs in a ring with two more variables than
the one in the induction assumption, and so we have

QC(t) =
1 + (n− 2)t
(1− t)n−2+2

.

Thus

QB(t) =
1 + (n− 2)t

(1− t)n
− (n− 1)

t2

(1− t)n
=

1 + (n− 1)t
(1− t)n−1

,

which is the desired result. �

It is easy to determine the Hilbert function of Mn from Theorem 2.2.
Moreover, since the degree of the numerator in P(t) is less than the degree
of the denominator, we have that the Hilbert function corresponds to the
Hilbert polynomial for all degrees ν. So we have

Corollary 2.3. Hn(ν) = 4
(
ν+2n
2n

)
+ 4(n− 1)

(
ν+2n−1

2n

)
.

As a further Corollary, we read off from Theorem 2.2

Corollary 2.4. dim Mn = 2n + 1.

Of course, here we mean the Krull dimension of R/annMn. Also we read
off of Theorem 2.2 that the degree or multiplicity of Mn is 4n(2n + 1).

We now turn to the projective dimension of Mn. This was the main
algebraic result in [3] and so we will only summarize the results here. We
do this both for completeness and because some of the ideas will be needed
in the next section.
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In [3] we used the Auslander-Buchsbaum formula (see, for example, [10,
Theorem 19.9 and Exercise 19.8])

pdR(Mn) = depth(℘n, R)− depth(℘n,Mn).

Here pdR denotes the projective dimension of a module over R and
depth(℘n,M) is the length of any maximal M -regular sequence in ℘n (℘n

denotes the ideal of the variables in R). So in order to compute pdR(Mn)
it suffices to compute depth(℘n,Mn) (depth(℘n, R) = 4n, the number of
variables). Now depth(℘n,Mn) is defined to be the length of the longest
sequence of polynomials f1, . . . , fs ∈ ℘n such that

1) fν is a non-zerodivisor on Mn/〈f1, . . . , fν−1〉Mn, for ν = 1, . . . , s;
2) Mn 6= 〈f1, . . . , fs〉Mn.

(Such a sequence is called an Mn-regular sequence in ℘n.)

Theorem 2.5. We have
1) x11, xn2, x13, x23, . . . , xn3, x21 + x12, x31 + x22, . . . , xn1 + xn−1,2 is a

maximal Mn-regular sequence in ℘n.
2) depth(℘n,Mn) = 2n + 1.
3) pdR(Mn) = 2n− 1.

Statements 2 and 3 follow from Statement 1, in light of the comments
above. The outline of the proof of Statement 1 is as follows: We first note
that x11, xn2, x13, x23, . . . , xn3 are precisely the variables that do not appear
in the leading terms of any of the elements of the Gröbner basis of 〈An〉 given
in Lemma 2.1. So the verification that they form an Mn-regular sequence
is easy. For the verification that the remaining elements in Statement 1
form an appropriate Mn-regular sequence, we consider, for ν = 1, . . . , n,
the submodule of R4:

Bν−1 =〈An, x11e`, xn2e`, x13e`, x23e`, . . . , xn3e`,(4)

(x21 + x12)e`, (x31 + x22)e`, . . . , (xν1 + xν−1,2)e`〉`=1,2,3,4

and we write down an explicit Gröbner basis Gν−1 for Bν−1. If xν+1,1 +xν2

is a zero-divisor on R4/Bν−1, then there is a vector g ∈ R4−Bν−1 such that
(xν+1,1+xν2)g ∈ Bν−1 and so (xν+1,1+xν2)g reduces to zero with respect to
Gν−1. Using all this explicit information we can arrive at a contradiction.
Similarly, we show every element in ℘n is a zero-divisor on R4/Bn−1 by
showing that for all f ∈ ℘n we have f2e1 ∈ Bn−1 by showing that f2e1

reduces to zero using Gn−1. For details see [3].
We obtain the striking

Corollary 2.6. The module Mn is Cohen-Macaulay.

This follows immediately from Corollary 2.4 and Theorem 2.5 since the
definition of a Cohen-Macaulay graded module over a graded ring is that

depth(℘n,Mn) = dimMn.
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We also obtain the standard decomposition of Cohen-Macaulay modules.

Corollary 2.7. Let

S = k[x11, xn2, x13, x23, . . . , xn3, x21 + x12, x31 + x22, . . . , xn1 + xn−1,2].

We have the following S-module direct sum decomposition:

Mn = S4 ⊕ x12S
4 ⊕ · · · ⊕ xn−1,2S

4.

Proof. It is easy to verify that the reduced Gröbner basis of Bn−1 in (4)
consists precisely of the elements of Mn listed in (4) for ν = n together
with xs2xr2e` for 1 ≤ r ≤ s ≤ n− 1 and ` = 1, 2, 3, 4. This gives rise to the
leading term module for Bn−1 consisting of the vectors xi0e`, xi1e`, xi3e` for
1 ≤ i ≤ n, xs2xr2e` for 1 ≤ r ≤ s ≤ n−1, and xn2e`, all for ` = 1, 2, 3, 4. This
in turn gives rise to the list of standard monomials e`, x12e`, . . . , xn−1,2e`

(` = 1, 2, 3, 4), which form a k basis for Mn/Bn−1. It is then a standard
and easily proven fact that these elements form a basis of Mn as a free
S-module. �

3. Degrees of the Syzygies.

We now turn to more explicit statements concerning the minimal free resolu-
tion ofMn, or equivalently of 〈An〉. For n = 2, 3, 4 these minimal free resolu-
tions of 〈An〉 were computed using the computer algebra package CoCoA(see
[9]). We obtained:

for n=2:
0 −→ R4(−4) −→ R8(−3) −→ R8(−1) −→ 〈A2〉 −→ 0,

for n=3:
0 −→ R8(−6) −→ R36(−5) −→ R60(−4)

−→ R40(−3) −→ R12(−1) −→ 〈A3〉 −→ 0,
for n=4:

0 −→ R12(−8) −→ R80(−7) −→ R224(−6) −→ R336(−5)

−→ R280(−4) −→ R112(−3) −→ R16(−1) −→ 〈A4〉 −→ 0.

(5)

Here, as usual, Rν(−j) means the graded free R-module of rank ν with the
grading translated j places. (For a general graded R-module N =

∐
i∈Z Ni,

we denote by N(j) the graded R-module such that N(j)i = Ni+j).
In the three examples above, the matrices that define the maps (i.e., the

syzygies) have a special form: the first has quadratic entries and all the
others have linear entries. That is, the first syzygy module of Mn has a
2-linear resolution in the sense of Eisenbud and Goto [11]. Our main goal
in this section is to prove this is true for general n.

Our first result then is that the first syzygies are generated by quadratics.
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Theorem 3.1. There is a generating set for the first syzygy module of An

consisting of vectors with quadratic entries. More specifically a generating
set for the first syzygy module of An comes from expanding the following 3
formulas:

1) For each of the
(
n
2

)
pairs of indices r and s (1 ≤ r, s ≤ n)[

Ur, UsU
t
s

]
= 0 and

[
UrU

t
r , Us

]
= 0.

2) For each of the
(
n
3

)
triples of indices r, s, and ` (1 ≤ r, s, ` ≤ n)[

Ur, UsU
t
` + U`U

t
s

]
= 0 and

[
Us, UrU

t
` + U`U

t
r

]
= 0.

3) For each of the
(
n
3

)
triples of indices r, s, and ` (1 ≤ r, s, ` ≤ n)

[Ur, Us]J [U`, I] + [Us, U`]J [Ur, I] + [U`, Ur]J [Us, I] = 0

and

[Ur, Us] I [U`, J ] + [Us, U`] I [Ur, J ] + [U`, Ur] I [Us, J ] = 0.

Here [−,−] denotes the commutator and I and J denote the matrices for
the quaternions i and j respectively. The 4

[
2
(
n
2

)
+ 4

(
n
3

)]
generators above

then form a minimal generating set (note that each of the matrix identities
above yield 4 syzygies).

That the first two formulas are valid follows since in the first case UsU
t
s is

diagonal (i.e., qq̄ is “real” for any quaternion) and in the second case since
UsU

t
` + U`U

t
s is diagonal (i.e., q̄1q2 + q̄2q1 is “real” for any 2 quaternions).

The third formula can be verified, but we know of no “simple” explanation
for it as in the previous cases.

Proof. We have in Lemma 2.1 that a Gröbner basis for 〈An〉 consists of vec-
tors involving just one or two of the matrices Ui. Now to compute the syzygy
module of the Gröbner basis we use S-polynomials and reduce them (see,
for example, [4], Theorem 3.7.3). Since the reduction process cannot involve
any variables not already in the S-polynomial, we see that the generating set
for the syzygy module of the Gröbner basis obtained this way can involve
at most four of the matrices Ui as multipliers of the same four matrices Ui.
That is, the generating set for the syzygies of the Gröbner basis can be taken
as the union of the generating sets of the syzygies of four of the Ui at a time.
From these we obtain the syzygies of An following the procedure given in
[4], Theorem 3.7.6. Namely, we consider the 4n×(4n+4

(
n
2

)
) transformation

matrix, T , between the vectors in An and the Gröbner basis, which is easily
seen to consist of a 4n× 4n identity matrix in its first 4n columns and in its
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remaining 4
(
n
2

)
columns the matrices U1, . . . , Un as follows:

U2 U3 · · · Un 0 · · · 0 0 · · · 0 · · ·
−U1 0 · · · 0 U3 · · · Un 0 · · · 0 · · ·

0 −U1 · · · 0 −U2 · · · 0 U4 · · · Un · · ·
...

...
. . .

...
...

. . .
...

...
. . .

...
. . .

0 0 · · · −U1 0 · · · −U2 0 · · · −U3 · · ·

 .

If we multiply the above type of syzygy of the Gröbner basis by this matrix
in order to obtain a syzygy of An we again see that it can involve no more
than four of the matrices Ui, and indeed, again we see that the desired
minimal generating set of the first syzygies of An can be obtained by taking
the union of the minimal generating set of the syzygies of four of the Ui

taken at a time.
Now, using CoCoAwe have computed the minimal generating set for the

syzygies of An for n = 2, 3, 4 and have obtained the formulas enunciated in
the Theorem. The author’s have made this file and the computations giving
rise to the formulas available on the web at the URL www.math.umd.edu/
˜wwa/syzygies. This then completes the proof of the theorem. �

We now move on to the higher syzygies.

Theorem 3.2. All of the syzygy modules in the minimal resolution of An

of order greater than 1 are generated by linear polynomials.

The proof of this result rests on the concept of (Castelnuovo-Mumford)
regularity. We say that the homogeneous submodule M of a free R-module
is m-regular provided that for the minimal graded free resolution

0 −→
⊕

j

R(−erj) −→ · · · −→
⊕

j

R(−e1j)

−→
⊕

j

R(−e0j) −→ M −→ 0

of M , we have eij − i ≤ m for all i, j. We say the regularity of M is m
(reg(M) = m) provided m is the least integer for which M is m-regular. For
a general discussion of this concept see [10].

For example we see in Equation (5) that for n = 2, 3, 4, we have reg(〈An〉)
= 2. Also for the leading term module Lt(An) we have (again using CoCoA)
for n = 2:

0 −→ R4(−4) −→ R4(−2)⊕R8(−3) −→ R8(−1)⊕R4(−2) −→ Lt(A2) −→ 0

and for n = 3:

0 −→ R8(−6) −→ R36(−5) −→ R4(−3)⊕R60(−4) −→ R12(−2)⊕R44(−3)
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−→ R12(−1)⊕R12(−2) −→ Lt(A3) −→ 0.

Thus we see that for n = 2, 3 we also have reg(Lt(An)) = 2. These results
hold in general.

Theorem 3.3. We have reg(〈An〉) = reg(Lt(An)) = 2.

Given this result the proof of Theorem 3.2 is immediate. Namely, from
Theorem 3.1 we know that the first syzygies of An are quadratic. Hence,
in order to have a regularity of 2 we must have all higher order syzygies be
linear.

Proof of Theorem 3.3. Since we have the general fact that reg(Lt(An)) ≥
reg(〈An〉) (see [7]) and we have from Theorem 3.1 that reg(〈An〉) ≥ 2, we
see that it suffices to show that reg(Lt(An)) = 2. Recall that from Lemma
2.1 we have

Lt(An) = 〈xi0e`, xr2xs1e`〉i=1,...,n,1≤r<s≤n,`=1,2,3,4.

Since the vectors here are concentrated in one coordinate and are the same
for all coordinates we see that reg(Lt(An)) = reg(In) where

In = 〈xi0, xr2xs1〉i=1,...,n,1≤r<s≤n,

an ideal in R.
We use the following criterion of Bayer and Stillman ([7]):
An ideal I in R is m-regular if and only if there are h1, . . . , h` ∈ R1, for

some ` ≥ 0, such that

(〈I, h1, . . . , hi−1〉 : hi)m = 〈I, h1, . . . , hi−1〉m
for i = 1, . . . , ` and

〈I, h1, . . . , h`〉m = Rm.

We will show that the regular sequence we defined in Theorem 2.5 works
for h1, . . . , h` in the present case. Namely,

h1 = x11, h2 = xn2, h3 = x13, h4 = x23, . . . , hn+2 = xn3,
hn+3 = x21 + x12, hn+4 = x31 + x22, . . . , h2n+1 = xn1 + xn−1,2

(6)

works with m = 2, and ` = 2n + 1, and I = In. We will also show that
this sequence forms a maximal regular sequence for R/In and so also for
R4/Lt(An). This will give, as it did for Theorem 2.5:

Theorem 3.4. We have the following equalities
1) depth(℘n, R4/Lt(An)) = depth(℘n, R/In) = 2n + 1
2) pdR(R4/Lt(An)) = pdR(R/In) = 2n− 1.

The first part of the sequence in (6) are the variables that do not appear
in the generators for In and so form a regular sequence. To continue the
process we add these variables into In. In the ideal they have no effect on
the regular sequence or on the Bayer-Stillman criterion. So we simplify the
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notation by letting xj = xj1 for 2 ≤ j ≤ n and yj = xj2 for 1 ≤ j ≤ n − 1
and prove the following lemma.

Lemma 3.5. We consider the polynomial ring S = k[x2, . . . , xn, y1, . . . ,
yn−1] and the ideal in S, I = 〈xiyj | 1 ≤ j < i ≤ n〉. Then

1) 〈I, x2 + y1, . . . , x` + y`−1〉 : (x`+1 + y`) = 〈I, x2 + y1, . . . , x` + y`−1〉 for
` = 1, . . . , n− 1.

2) 〈I, x2 + y1, . . . , xn + yn−1〉 : f 6= 〈I, x2 + y1, . . . , xn + yn−1〉 for all
f ∈ ℘n.

3) 〈I, x2 + y1, . . . , xn + yn−1〉2 = S2.

We note that Statements 1 and 2 imply that x2 +y1, . . . , xn +yn−1 forms
a maximal I-regular sequence in ℘n and Statements 1 and 3 imply that
this same sequence satisfies the Bayer-Stillman criterion for the regularity
of I to be equal to 2. So once this lemma is proved all the above unproved
assertions are proved.

Proof of Lemma 3.5, part 1. The proof will use the theory of Gröbner bases.
We will use the degree reverse lexicographical (degrevlex) term ordering with
x2 > · · · > xn > y1 > · · · > yn−1. We let I` = 〈I, x2 + y1, . . . , x` + y`−1〉 (so
that I1 = I). Then a Gröbner basis for I` is

G` = {yiyj |1 ≤ i ≤ j ≤ `− 1} ∪ {xiyj |` + 1 ≤ i ≤ n, 1 ≤ j < i}
∪{x2 + y1, . . . , x` + y`−1}

(7)

as is readily checked. From this we can explicitly list the standard (reduced)
power products:

yiy
ν`
` · · · yνn−1

n−1 (0 ≤ i ≤ `− 1, y0 = 1)

x
µ`+1

`+1 · · ·xµi
i yνi

i · · · yνn−1

n−1 (` + 1 ≤ i ≤ n)
(8)

where the integers ν`, . . . , νn−1 and µ`+1, . . . , µn are all nonnegative and, in
order to guarantee that all the power products in (8) are distinct, we assume
that all the µi in the second set of power products in (8) are ≥ 1. This is
again readily checked using G` above. Now, by way of contradiction, let us
assume that there is an f /∈ I` with

(x`+1 + y`)f ∈ I`.

We may assume that f is reduced, that is, f is a linear combination of the
power products in (8). Now

x`+1yiy
ν`
` · · · yνn−1

n−1 ∈ I` (0 ≤ i ≤ `− 1)

unless i = 0 and ν` = 0. Also

y`x
µ`+1

`+1 · · ·xµi
i yνi

i · · · yνn−1

n−1 ∈ I` (` + 1 ≤ i ≤ n),
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since µi ≥ 1. This means that (x`+1 + y`)f is congruent modulo I` to a
linear combination of monomials all of which are standard and different and
include all terms in f in the first list multiplied by y` and in the second list
multiplied by x`+1. Since (x`+1 + y`)f ∈ I` all of these terms must be 0 and
we immediately conclude that f = 0, a contradiction. Thus Statement 1 in
Lemma 3.5 is proved.

Proof of Lemma 3.5, part 2. We are to show that In : f 6= In for all f ∈ ℘n,
and for this it suffices to show that for all f ∈ ℘n, we have that f2 ∈ In.
From Equation (7) we have that the Gröbner basis for In is

Gn = {yiyj |1 ≤ i ≤ j ≤ n− 1} ∪ {x2 + y1, . . . , xn + yn−1}.

Since f ∈ ℘n every term of f2 is of degree 2 or higher and using x2 +
y1, . . . , xn + yn−1 we may replace every x variable with a y variable and
have the result congruent modulo In and then we see the result is in In

using the first set of generators in Gn above.

Proof of Lemma 3.5, part 3. This is the same argument as for the last case
as every element of S2 has degree 2 and so lies in In by the argument above.
This completes the proof of Lemma 3.5 and so of Theorem 3.4 as well.

From Theorems 3.1 and 3.2 we see that the minimal free resolution of
Mn = R4/〈An〉 has the following shape:

0 −→ Rβ2n−1(−2n) −→ Rβ2n−2(−2n + 1) −→ · · ·

−→ Rβ3(−4) −→ Rβ2(−3) −→ Rβ1(−1) −→ Rβ0 −→Mn −→ 0.
(9)

Here, of course, β0 = 4 and β1 = 4n. It is not in general possible to read
off the Betti numbers, βν (0 ≤ ν ≤ 2n− 1), from the minimal resolution of
a module. However, because of the simple nature of the resolution (9) we
may combine resolution (9) with the Hilbert-Poincaré series of Theorem 2.2
to get the Betti numbers for Mn.

Corollary 3.6. The Betti numbers of the module Mn = R4/〈An〉 are given
by β0 = 4, β1 = 4n and for 2 ≤ ν ≤ 2n− 1 by the formula

βν = 4
(

2n− 1
ν

)
n(ν − 1)

ν + 1
.(10)

Proof. As noted, for example, in Stanley [14], we can read off the Hilbert-
Poincaré series from the minimal free resolution (9) as

Pn(t) =
β0 − β1t + β2t

3 − β3t
4 − · · ·+ β2n−2t

2n−1 − β2n−1t
2n

(1− t)4n
.
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From Theorem 2.2 we have that

Pn(t) =
4 + 4(n− 1)t
(1− t)2n+1

.

Equating coefficients in the last two expressions gives the result. �

Note: Corollary 3.6 gives β2 = 4
(
2n−1

2

)
n
3 , and so we recover the number

of generators of the first syzygy module given in Theorem 3.1, since

4
(

2n− 1
2

)
n

3
= 4

[
2
(

n

2

)
+ 4

(
n

3

)]
.
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