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Let G be a connected semisimple Lie group of real rank one.
We denote by U(g)K the algebra of left invariant differential
operators on G right invariant by K, and let Z(U(g)K) be its
center.

In this paper we give a sufficient condition for a differential
operator P ∈ Z(U(g)K) to have a fundamental solution on G.
We verify that this condition implies P C∞(G) = C∞(G). If
G has a compact Cartan subgroup, we also give a sufficient
condition for a differential operator P ∈ Z(U(g)K) to have a
parametrix on G. Finally we prove a necessary condition for
the existence of parametrix of P ∈ Z(U(g)K) for a connected
semisimple Lie group.

1. Introduction.

Let G be a connected semisimple Lie group. The algebra of left invariant
differential operators on G identifies canonically with the universal algebra
U(g). The operators of the center Z(g) are the bi-invariant differential
operators on G, i.e., left and right invariant. More generally, we consider
the algebra U(g)K of right K-invariant differential operators of U(g), where
K is a maximally compact subgroup of G, and Z(U(g)K) will denote its
center.

We denote by D(G) the space of C∞ functions with compact support.
The dual D′(G) of continuous linear functionals in D(G) is the space of
distributions of G.

An operator P in U(g) acts on D′(G) in the following way:

PT (f) = T (P tf),

where P t ∈ U(g) is such that, if dx is a Haar measure on G,∫
G

Pf(x)g(x)dx =
∫

G
f(x)P tg(x)dx.

If X ∈ g, Xt = −X, so the P 7→ P t is the anti automorphism of U(g)
extending −Id of g. In addition, this map preserves the subalgebras Z(g)
and U(g)K .
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Definition 1. A distribution T ∈ D′(G) is a fundamental solution of a
differential operator P ∈ U(g) if PT = δ, where δ(f) = f(1); and T is a
parametrix of P if PT − δ ∈ C∞(G).

In [5], Cerezo and Rouvière study the construction of parametrix and
fundamental solutions in the group G = SL(2, R) for operators in U(g)K

(note that U(g)K is abelian in this case).
When G has only one conjugacy class of Cartan subgroups (G complex

semisimple, for example), in [13], Rouvière gives a sufficient condition for
the existence of fundamental solution of bi-invariant operators (Theorem
4.2 of [13]). He also proves a necessary condition for P ∈ Z(g) to have a
parametrix in an any connected semisimple group (Proposition 4.1 of [13]).

In this paper we extend the results of [5] and [13] for operators in
Z(U(g)K) to rank one groups and groups with one conjugacy class of Cartan
subgroups.

If G is Lie group with Lie algebra so(n, 1) or su(n, 1), it is a well know
result that U(g)K is abelian, and isomorphic to Z(g)⊗Z(k). This isn’t true
for other groups, but in general Z(U(g)K) ' Z(g)⊗ Z(k) (Knop’s theorem
[11]).

Given h0 and t0 Cartan subalgebras of g0 and k0 respectively, we will
denote γG

h and γK
t the Harish-Chandra homomorphisms of Z(g) and Z(k)

with respect to the subalgebras h and t; then we have

Z(g)×Z(k)
γG

h×γK
t−→ U(h)W × U(t)WK

↓ ⊗ ↓ ⊗

Z(U(g)K) '−→ Z(g)⊗Z(k)
γG

h⊗γK
t−→ U(h)W ⊗ U(t)WK

i⊗i−→ U(h⊕ t).

Therefore, by the way of the homomorphisms described above, we can
associate to P ∈ Z(U(g)K) a differential operator

(
γG

h ⊗ γK
t

)
(P ) in the

group H×T , where H and T are the respective Cartan subgroups of G and
K with Lie algebras h0 and t0.

We say that Hf is a fundamental Cartan subgroup of G if Hf has maximal
compact factor between θ-stable Cartan subgroups of G. All fundamental
Cartan subgroups of G are conjugate (c.f. [15], Chapter I).

We will denote γG = γG
hf , where h

f
0 is the Lie subalgebra of a fundamental

Cartan subgroup Hf . Because in K all Cartan subgroups are conjugate, we
put γK = γK

t .
We can now state our main result:

Theorem 1.1. Let G be a connected semisimple Lie group of real rank one
or with one conjugacy class of Cartan subgroups. Let Hf be a fundamental
Cartan subgroup of G and P ∈ Z(U(g)K). If

(
γG ⊗ γK

)
(P ) has a funda-

mental solution in Hf × T , then P has a fundamental solution in G.
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When P is a bi-invariant operator, we obtain a complete proof for these
groups of the theorem announced in [3]:

Corollary 1.2 (Benabdallah-Rouvière). Let P ∈ Z(g). If γG(P ) has a
fundamental solution in Hf , then P has a fundamental solution in G.

The proof will consist in the explicit construction of the fundamental
solution of P , using the Plancherel formula as the main tool. When G
is a rank one group having a compact Cartan subgroup, using Zuckerman
characters identities combined with the proof of 1.1, we obtain a sufficient
condition for the existence of a parametrix of P :

Theorem 1.3. Let G be a linear connected semisimple Lie group of rank
one such that T is a compact Cartan subgroup of G, and P ∈ Z(U(g)K). If(
γG ⊗ γK

)
(P ) has a parametrix on T × T , then P has a parametrix on G.

Finally we extend Proposition 4.1 of [13] for P ∈ Z(U(g)K).
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proof of Proposition 6.3, which although I suppose well known, I couldn’t
find in the references.

2. Preliminaries.

In this section we fix notation and summarize the basics known facts about
representation theory that will be needed through this paper.

2.1. Notation. Let G be a connected reductive Lie group. θ will denote
a Cartan involution in both g0 and G. Let g0 = k0 ⊕ p0 be a Cartan
decomposition of g0 with respect to θ; that is, k0 = {X ∈ g0 : θX = X} and
p0 = {X ∈ g0 : θX = −X}.

Let K be analytic subgroup of G with Lie algebra k0, K is a maximally
compact subgroup of G. We fix t0 a Cartan subalgebra of k0 coming from
a maximal torus T of K. We will denote τ ∈ K̂ an irreducible unitary
representation of K.

Let a0 be a maximal abelian subalgebra of p0. The dimension of a0 is the
real rank of G. We put m0 = {X ∈ k0 : [X, a0] = 0}. If M = ZK(a0) = {x ∈
K; Ad (x)|a0 = Id}, then M is a compact subgroup of G with Lie algebra
m0. If t−0 is a Cartan subalgebra of m0, then h0 = a0 ⊕ t−0 is a Cartan
subalgebra of g0.

If B is the Killing form of g0, B|k0×k0 is negative definite and B|p0×p0 is
positive definite. Then (X, Y ) = −B(X, θY ) defines an inner product on g0.
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The complexification of any real Lie algebra will be denoted without the
subscript. If gu = k0 ⊕ ip0 ⊆ g, then gu is a compact form of g. The Killing
form of g is the complex bilinear extension of that of g0, and making an
abuse of notation, we will still call it B. On g we define the inner product,
(X, Y ) = −B(X, JY ), where J is conjugation with respect to gu. Let’s note
that J |g0 = θ and so this inner product extends that of g0.

Given σ ∈ M̂ with infinitesimal character µσ ∈ i(t−0 )′ and τ ∈ K̂ with
infinitesimal character µτ ∈ it′0, we define

|σ| = |µσ|, |τ | = |µτ |.(1)

We note that this definition makes sense because the norm is both WM and
WK invariant, since the elements of the Weyl groups of M and K are inner
automorphisms of K.

Every semisimple Lie group of rank one has at most two conjugacy classes
of θ-stable Cartan subgroups (or subalgebras). But in the case G has only
one, the hypothesis of rank one is not needed. So from now on we will
restrict our attention to the following two cases:

I. G has only one conjugacy class of θ-stable Cartan subalgebras, which
will be represented by h0 = a0 ⊕ t−0 .

II. G is a rank one group having a compact Cartan subgroup. In this
case t0 is a Cartan subalgebra of g0 and we can choose {t0, h0} as a
representative set of conjugacy classes of θ-stable Cartan subalgebras.

We will also suppose that G has a simply connected complexification GC.
Finally we can assume, with no loss of generality, that M is connected,
because in case I, M always is ([14, 7.12.7]), and in case II, if M is discon-
nected, then G must be a direct product of SL(2, R) with a compact group,
and the results of this paper are easily deduced from [5] and [4].

2.2. Principal series. Let Λ(g0, a0) be the restricted root system of g0

with respect to a0; we choose Λ+(g0, a0) a positive system and we put
n0 =

∑
λ∈Λ+ gλ

0 . If A and N are the analytic subgroups with respective
Lie algebras a0 and n0, then MAN is a minimal parabolic subgroup of G.

Given σ ∈ M̂ an irreducible representation of M , ν ∈ a′ a complex linear
functional on a. The principal series representation πσ,ν is defined inducing
the representation σ ⊗ eν ⊗ 1 from MAN to G. The representation πσ,ν is
admissible; moreover the multiplicity of τ in πσ,ν |K is independent of ν ([10,
Prop. 8.4]) and will be denoted nσ

τ .
If µσ ∈ it−0 is the infinitesimal character of σ relative to t−, then πσ,ν has

infinitesimal character µσ + ν relative to a + t− ([10, Prop. 8.22]).

2.3. Discrete series (case II). Let (π, V ) be an irreducible unitary rep-
resentation of G. We say that (π, V ) is a discrete series representation of G
if all its matrix coefficients g 7→ (π(g)u, v) are square integrable. G admits
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discrete series representations if and only if G has a compact Cartan sub-
group; or equivalently, t0 is a Cartan subalgebra of g0 and k0. All discrete
series representations can be parametrized by the forms λ ∈ it′0 such that
λ is non-singular (i.e., (λ, α) 6= 0 for all α ∈ ∆(g, t)) and λ + ρ is analyt-
ically integral, or equivalently, λ is integral, because we are assuming GC

simply connected. The functional λ is called the Harish-Chandra parame-
ter. Two discrete series representations are equivalent if and only if their
parameters are conjugate by an element of the Weyl group WK of K. We
will denote πλ the discrete series representation of parameter λ and Sd the
set of Harish-Chandra parameters.

The representation πλ has infinitesimal character λ, and discrete series
representations with parameters wλ, w ∈ WG, the Weyl group of G, have
the same infinitesimal character. Therefore exactly |WG|/|WK | of the rep-
resentations πwλ are mutually inequivalent.

Finally, there is a positive number dλ, called the formal degree of πλ, such
that ∫

G
(πλ(x)u1, v1)(πλ(x)u2, v2) dx = d−1

λ (u1, u2)(v1, v2)

for all u1, u2, v1, v2.

2.4. Global characters. We say that an admissible representation π has
a global character Θπ if the operator

π(f) =
∫

G
f(g)π(g)dg

is a trace class operator for all f ∈ D(G) and if the map f 7→ tr π(f) = Θπ(f)
is a distribution on G.

Every admissible representation π whose decomposition π|K =
∑

τ∈K̂ nττ
satisfies nτ ≤ C dim τ has a global character ([10, Thm. 10.2]). As a
consequence, every irreducible unitary representation has a character ([10,
Thm. 8.1]). In the same way, induced representations from irreducible
unitary representations also have characters. So discrete series as well as
principal series representations have characters.

Given λ ∈ Sd, we will denote Θλ the character of πλ; and given σ ∈ M̂ ,
ν ∈ a′, Θσ,ν the character of πσ,ν .

2.5. Plancherel formula. We are now in a position to write down the
Plancherel formula for the groups we are considering (cf. [1, Lemma 5] and
[14, Thm. 8.15.4]).

Theorem 2.1. There is a non-negative function mσ(ν) defined in M̂ × ia′0
such that for all f ∈ D(G) we have in case I,

f(1) =
∑
σ∈M̂

∫
ν∈ia′0

Θσ,ν(f)mσ(ν) dν,(2)
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and in case II,

f(1) =
∑
σ∈M̂

∫
ν∈ia′0

Θσ,ν(f)mσ(ν) dν +
∑
λ∈Sd

dλΘλ(f).(3)

The function mσ(ν) has the following properties:
(i) For each σ ∈ M̂ , mσ(ν) is the restriction to ia′0 of a meromorphic

function on a′ without poles on ia′0.
(ii) Exist a positive constant C and a positive integer l such that for all

σ ∈ M̂ , ν ∈ ia′0, we have

|mσ(ν)| ≤ C(1 + |σ|2)l(1 + |ν|2)l.

3. Action of P on characters.

If π is an admissible representation with global character Θπ and infinitesi-
mal character χπ, and P ∈ Z(g) is a bi-invariant differential operator, then
P Θπ = χπ(P ) Θπ ([10, Prop. 10.24]).

We want to prove a similar result for an operator P ∈ Z(U(g)K). First we
need to decompose a distribution as a sum of its K-isotypical components.

If we consider the right regular representation R acting on L2(G) then
D(G) is a dense subspace of C∞ vectors of L2(G), and decomposing R in
sum of its K-isotypical components we obtain

f =
∑
τ∈K̂

fτ ,

where
fτ (x) = dτ (f ∗Θτ )(x) = dτ

∫
K

f(xk)Θτ (k−1) dk

with Θτ (k) = tr τ(k). Convergence holds not only in L2(G) but also in
D(G). This decomposition induces a similar decomposition for a distribution
T ∈ D′(G):

T =
∑
τ∈K̂

T τ

with T τ (f) = T (fτ̄ ), where τ̄ is the conjugate representation of τ . Remind
that τ̄ is isomorphic to the contragredient representation τ∗ of K.

Lemma 3.1. Let (π, V ) be an admissible representation. Suppose that its
K-isotypical decomposition

V =
∑
τ∈K̂

nτVτ (L2 sum)

satisfies nτ ≤ Cdτ , where dτ is the dimension of τ , and (π|K , Vτ ) is equiv-
alent to τ . We choose an orthonormal base of V by joining orthonormal
bases {eτ

i : i = 1 . . . dτ} of Vτ .
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If Θπ is the character of π, then:

Θτ
π(f) = nτ

dτ∑
i=1

(π(f)eτ
i , e

τ
i ).

Proof.

Θτ
π(f) = Θπ(fτ̄ ) =

∑
τ∈K̂

nτ

[
dτ∑
i=1

(π(fτ̄ )eτ
i , e

τ
i )

]
with

fτ̄ = dτ (f ∗Θτ̄ ) = dτ (f ∗Θτ ),

where Θτ is a C∞ function on K being τ of finite dimension.
Let pτ : V −→ Vτ be the orthogonal projection. Now let τ ′ ∈ K̂ be

another representation; then, using Fubini’s theorem and the bi-invariance
of the Haar measures of G and K,

(π(fτ̄ )eτ ′
i , eτ ′

i )

=
∫

G
fτ̄ (x)(π(x)eτ ′

i , eτ ′
i ) dx

=
∫

G

[
dτ

∫
K

f(xk)Θτ (k−1) dk

]
(π(x)eτ ′

i , eτ ′
i ) dx

=
∫

G
f(x)

[
dτ

∫
K

(π(k−1)eτ ′
i , π(x)∗eτ ′

i )Θτ (k−1) dk

]
dx

=
∫

G
f(x)

 dτ∑
j=1

dτ

∫
K

(π(k)eτ ′
i , pτ ′(π(x)∗eτ ′

i ))(τ(k)eτ
j , e

τ
j ) dk

 dx,

and by Schur orthogonality relations (Corollary 1.10 of [10]),

(π(fτ̄ )eτ ′
i , eτ ′

i ) =
∫

G
f(x)

 dτ∑
j=1

δτ,τ ′(eτ ′
i , eτ

j )(pτ ′(π(x)∗eτ ′
i ), eτ

j ) dk

 dx

= δτ,τ ′

∫
G

f(x)(π(x)∗eτ ′
i , eτ ′

i ) dx

= δτ,τ ′

∫
G

f(x)(π(x)eτ
i , e

τ
i ) dx.

�

Given π a representation of G, τ ∈ K̂, the map χπ ⊗ χτ is a linear
functional on Z(g) ⊗ Z(k), and induces a linear functional on Z(U(g)K),
which we will still denote χπ ⊗ χτ .

We can now state the result we need.
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Proposition 3.2. If π is an admissible representation with infinitesimal
character χπ and global character Θπ, and P is a differential operator in
Z(U(g)K), then

P Θτ
π = (χπ ⊗ χτ )(P ) Θτ

π.

Proof. We preserve the notation of Lemma 3.1. If P ∈ Z(g), P Θτ
π =

χπ(P ) Θτ
π. If P ∈ Z(k),

P Θτ
π(f) = Θτ

π(P tf) = nτ

dτ∑
i=1

(π(P tf)eτ
i , e

τ
i )

and

(π(P tf)eτ
i , e

τ
i ) =

∫
G
(π(x)π(P )eτ

i , e
τ
i )f(x) dx

= χτ (P )(π(f)eτ
i , e

τ
i ) by [10, (8.10)],

because π(P )|Vτ = τ(P ). Then P Θτ
π = χτ (P ) Θτ

π if P ∈ Z(k). �

4. Fundamental solutions on abelian connected groups.

In [4], Cerezo and Rouvière obtain necessary and sufficient conditions for
P ∈ U(g) to have a fundamental solution when G is a connected compact
group or a product of a connected compact group with Rn.

In this section we state these results for a connected abelian group, which
is the product of a torus with Rn. Theorem 4.1 follows directly from Theo-
rem III of [4].

We consider in first place an abelian connected compact Lie group T
with Lie algebra t0, i.e., T a torus. In this case exp : t0 −→ T is a group
epimorphism, and Γ = ker(exp) is a closed discrete subgroup of t0. Being T
abelian, its irreducible unitary representations are one dimensional and can
be parametrized by the linear functionals λ ∈ it′0 such that λ(Γ) ⊆ 2πiZ. So
we set

T̂ = {λ ∈ it′0 such that λ(Γ) ⊆ 2πiZ}.(4)

A general abelian connected Lie group is of the form A×T , where A = Rn

and T is a m-dimensional torus. The universal algebra U(a ⊕ t) coincides
with the symmetric algebra S(a ⊕ t), and so an element P in U(a ⊕ t) can
be thought of both as a constant coefficient differential operator on A × T
and as a polynomial function on a′ ⊕ t′. Given λ ∈ T̂ , if we put

Pλ(x) = P (x, λ), x ∈ a′,(5)

then Pλ is a polynomial function in Rn, and its norm can be defined

||Pλ|| =

(∑
α

1
(α!)2

|P (α)
λ (0)|2

) 1
2

.
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Theorem 4.1. Let P ∈ U(a⊕ t) be a constant coefficients differential oper-
ator on A× T . P has a fundamental solution if and only if exists a positive
constant C and a positive integer k such that in any norm of it′0

||Pλ|| ≥
C

(1 + |λ|2)k
∀λ ∈ T̂ .(6)

Remark. Let’s go back to G a connected semisimple Lie group. Remember
that given P ∈ Z(U(g)K) and h0 and t0 Cartan subalgebras of g0 and k0

respectively we have defined a differential operator
(
γG

h ⊗ γK
t

)
(P ) on the

group H ×T . This operator depends on the choice of the Cartan subgroups
of G and K. However, the existence of fundamental solution only depends
on the conjugacy class (in G or K) of Cartan subgroups, as we see below.

Let H̃ and T̃ Cartan subgroups of G and K respectively and suppose
there exist g ∈ G, k ∈ K such that H̃ = g−1Hg and T̃ = k−1Tk. Then
Ad (g)h0 = h̃0 and Ad (k)t0 = t̃0. If H = A × T−, h0 = a0 + t0, then
H̃ = Ã× T̃−, Ã = Ad (g)A, T̃− = Ad (g)T−, and is clear from (4) that

̂̃T = {λ̃ = λ ◦Ad (g)−1 : λ ∈ T̂}, ̂̃
T− = {µ̃ = µ ◦Ad (k)−1 : µ ∈ T̂−};

(7)

besides we have

γG
h̃

= Ad (g) ◦ γG
h , γK

t̃
= Ad (k) ◦ γK

h ,

so if x ∈ a′, x̃ = x ◦Ad (g)−1 ∈ ã′, (λ̃, µ̃) ∈ ̂̃T × ̂̃
T− and if P ∈ Z(U(g)K),

P(λ̃,µ̃)(x̃) =
((

γG
h̃
⊗ γK

t̃

)
(P )
)

(x̃, λ̃, µ̃)(8)

=
((

γG
h ⊗ γK

t

)
(P )
)
(x, λ, µ) = P(λ,µ)(x),

and so Theorem 4.1 implies that
(
γG

h ⊗ γK
t

)
(P ) has a fundamental solution

on H × T if and only if
(
γG

h̃
⊗ γK

t̃

)
(P ) has one on H̃ × T̃ .

5. Inversion of infinitesimal characters.

5.1. Case I. Let h0 = a0 + t−0 be a Cartan subalgebra of g0, where t−0 is a
Cartan subalgebra of m0, let t0 be a Cartan subalgebra of k0. Let σ ∈ M̂
with infinitesimal character µσ ∈ i(t−0 )′, ν ∈ a′, τ ∈ K̂ with infinitesimal
character µτ ∈ it′0.

Recall that to an operator P ∈ Z(U(g)K) we associate an operator(
γG

h ⊗ γK
)
(P ) on the abelian connected group A× T− × T . We then have

(χσ,ν ⊗ χτ )(P ) =
((

γG
h ⊗ γK

)
(P )
)
(ν + µσ, µτ ),(9)
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and fixing σ, τ we obtain a polynomial function in a′, and we put

Pσ,τ (ν) = (χσ,ν ⊗ χτ )(P ).(10)

Proposition 5.1. Given P ∈ Z(U(g)K), if
(
γG

h ⊗ γK
)
(P ) has a funda-

mental solution on A × T− × T there exist a constant C and a positive
integer k such that

||Pσ,τ || ≥
C

(1 + |σ|2)k (1 + |τ |2)k
∀ (σ, τ) ∈ M̂ × K̂.

Proof. According to (6) and (9), Pσ,τ (ν) =
((

γG
h ⊗ γK

)
(P )
)
(µσ ,µτ )

(ν); µσ

as well as µτ are analytically integral forms, so (µσ, µτ ) ∈ T̂− × T̂ , and the
proposition follows directly from Theorem 4.1. �

5.2. Case II: Discrete series. Let t0 be a Cartan subalgebra of g0 and
k0. Let πλ be the discrete series representation with parameter λ ∈ it′0, and
τ ∈ K̂ with infinitesimal character µτ ∈ it′0.

In this case, given P ∈ Z(U(g)K),
(
γG

t ⊗ γK
)
(P ) is a differential operator

on T × T , and we put

Pλ,τ = (χλ ⊗ χτ )(P ) =
(
γG

t ⊗ γK(P )
)
(λ, µτ ).(11)

Proposition 5.2. Given P ∈ Z(U(g)K), if
(
γG

t ⊗ γK
)
(P ) has a fundamen-

tal solution on T ×T , there exist a constant C and a positive integer k such
that

|Pλ,τ | ≥
C

(1 + |λ|2)k (1 + |τ |2)k
∀ (λ, τ) ∈ Sd × K̂.

As in Proposition 5.1, the proof is a direct consequence of Theorem 4.1
with A = 0, observing that (λ, µτ ) ∈ T̂ × T̂ .

5.3. Case II: Principal series. In this case we need to invert simultane-
ously the infinitesimal characters of principal and discrete series representa-
tions. We will prove the following:

Proposition 5.3. Given P ∈ Z(U(g)K), suppose that for a finite set F
exist a constant C and a positive integer k such that

|Pλ,τ | ≥
C

(1 + |λ|2)k (1 + |τ |2)k
∀ (λ, τ) ∈ (Sd − F )× K̂.

Then there exist a constant C̃ and a positive integer k̃ such that

||Pσ,τ || ≥
C̃

(1 + |σ|2)k̃ (1 + |τ |2)k̃
∀ (σ, τ) ∈ M̂ × K̂.

For this purpose we will introduce the Cayley transform which is an in-
ner automorphism of the complex group GC that conjugates the Cartan
subalgebras t and h.
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5.4. Cayley transform. Given a compact Cartan subgroup T with Lie
algebra t0, and given a non-compact root β ∈ ∆(g, t), we can construct a
Cayley transform cβ and a non-compact Cartan subgroup H in the following
way:

Let Hβ ∈ t such that β(H) = B(H,Hβ) for all H ∈ t and we put H ′
β =

2|β|−2Hβ. We choose root vectors X ′
β ∈ gβ and X ′

−β = −θX ′
β ∈ g−β such

that B(X ′
β, X ′

−β) = 2|β|−2 and such that X ′
β + X ′

−β and i(X ′
β −X ′

−β) are
in g0. We then define

cβ = Ad
(
exp

π

4
(X ′

−β −X ′
β)
)

(12)

and

h0 = g0 ∩ cβ(t).(13)

If we put ker β = {H ∈ t0 : β(H) = 0}, then t0 = ker β ⊕ RiHβ. Now
cβ |ker β = Id and cβ(iHβ) = i(X ′

β + X ′
−β), so

h0 = kerβ ⊕ R(X ′
β + X ′

−β), cβ(t0) = kerβ ⊕ Ri(X ′
β + X ′

−β).(14)

Let a0 = R(X ′
β + X ′

−β), a0 is a maximal abelian subalgebra in p0 because G

is of rank one. Besides m0 = {X ∈ g0 : [X, a0] = 0}, and it’s clear by the
choice of a0 that kerβ ⊂ m0, and t−0 = ker β is maximal abelian subalgebra
of m0 by dimension. So cβ carries t on h fixing t−.

5.5. Extension of infinitesimal characters of representations of M.
If we fix a positive root system ∆+(g, t), the set of infinitesimal characters
of Sd can be parametrized by the set of strongly dominant integral forms,
that is,

{λ ∈ it′0 : λ(ΓT ) ⊆ 2πiZ and (λ, α) > 0∀α ∈ ∆+(g, t)},(15)

where ΓT = ker(exp |t0). Now, being t0 a Cartan subalgebra of gu, this
set coincides with the set of infinitesimal characters of irreducible unitary
representations of finite dimension of the compact form Gu of G.

Note that hu = cβ(t0) = ia0⊕ t−0 is another Cartan subalgebra of gu, and
we can also parametrize the set of infinitesimal characters of Ĝu, and then
that of Sd, with the set

{λ̃ ∈ (a0 ⊕ it−0 )′ : λ̃(ΓHu) ⊆ 2πiZ and (λ̃, α̃) > 0∀ α̃ ∈ ∆+(g, h)},(16)

where ΓHu = ker(exp |hu) = cβ(ΓT ); putting λ̃ = cβ(λ) = λ ◦ c−1
β , it’s clear

that cβ provides a bijection between both sets.
Besides, if ΓT− = ker(exp |t−0 ), the set of infinitesimal characters of irre-

ducible unitary representations of M is given by

{µ ∈ i(t−0 )′ : µ(ΓT−) ⊆ 2πiZ and (µ, α) > 0∀α ∈ ∆+(m, t−)}.(17)
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For any λ ∈ Sd, if we put µ = cβ(λ)|t−0 , then

µ(ΓT−) = λ(c−1
β ΓT−) ⊆ λ(ΓT ) ⊆ 2πiZ,

and if α ∈ ∆(m, t−), Hα ∈ it−0 ⊆ it0, by suitable choice of the respective
positive systems,

(µ, α) = µ(Hα) = λ(c−1
β Hα) = λ(Hα) = (λ, α) > 0,

and there exists σ ∈ M̂ such that µσ = cβ(λ)|t−0 . We want to see that every
infinitesimal character µσ can be obtained in this way.

Proposition 5.4. Given F a finite subset of Sd, for all σ ∈ M̂ exists a
discrete series parameter λ ∈ Sd − F such that µσ = cβ(λ)|t−0 . Moreover, λ

can be chosen such that |λ| ≤ C|µ| for some constant C (independent of µ).

For the proof we will need some previous lemmas.
We choose positive root systems in g and m in the following way: Let

{H1, . . . , Hn} be an ordered basis of a0 + it−0 such that H1 is a basis of a0

and {H2, . . . , Hn} is basis of it−0 and let ∆+(g, h) be the respective positive
root system. Then

∆+(m, t−) = {α ∈ ∆+(g, h) : α|a0 = 0}.(18)

We also choose ∆+(g, t) as the image of ∆+(g, h) by c−1
β .

Let Λ+(g0, a0) = {α|a0 : α ∈ ∆+(g, h)} be the respective positive re-
stricted root system. Because of the rank one condition, there exists β0 ∈ a′0
such that Λ+(g0, a0) = {β0} or Λ+(g0, a0) = {1

2β0, β0}; and we will still
denote β0 its extension to (a0 + it−0 )′ by 0 in i(t−0 )′.

Lemma 5.5. β0 belongs to the positive root system ∆+(g, h).

Proof. Follows directly from Lemmas 1 and 2, p. 33 of [15]. �

Lemma 5.6. If {α1, . . . , αn} is a simple root system of g with respect to
the positive system fixed previously, there exist at most two simple roots
such that their restriction to a0 are not identically 0.

Proof. Let α = m1α1+ · · ·+mnαn be the maximal positive root of ∆+(g, h);
that is, mi ∈ N for all i. Now αi|a0 = siβ0, con si = 0, 1/2 or 1 for all i,
therefore m1s1 + · · ·+ mnsn ≤ 1 and so at most two of the si can be 0. �

Lemma 5.7. Let G be a semisimple rank one Lie group. For every µ ∈
(it−0 )′ strongly dominant analytically integral form, exists k ∈ R such that
kβ0+µ is strongly dominant integral in (a0+it−0 )′. Moreover, we can choose
k with the following properties:

(i) kβ0 + µ /∈ F , where F is a fixed finite subset of strongly dominant
integral forms in (a0 + it−0 )′.

(ii) |k| ≤ C|µ| for some constant C (independent of µ).
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Proof. With no loss of generality, we can suppose that g is simple.
Let {α1, . . . , αn} be a simple root system of g with respect to the positive

system previously chosen. Let {λ1, . . . , λn} be the fundamental weights of
g with respect to to this simple root system.

Then {αi : αi|a0 = 0} is a simple root system of the semisimple part of
m. If λM

i is the respective fundamental weight in m and we extend it by 0
to (a0 + it−0 )′,

λi = λM
i + kiβ0(19)

because λi − λM
i |t−0 = 0, and ki = (λi,β0)

(β0,β0) ∈
1
2Z being β0 a root. We will

analyze two cases:
I) The simple root α1 is the only one with non-vanishing restriction to

a0. In this case, M is semisimple. Now, because (λ1, αi) = 0 for all i ≥ 2,
λ1|t−0 = 0 then λ1 = k1β0, with k1 ∈ 1

2Z.
So, if µ is strongly dominant integral, µ = m2λ

M
2 + · · · + mnλM

n with
mi ∈ N for all i ≥ 2 and

kβ0+µ =

(
k −

n∑
i=2

miki

)
β0+

n∑
i=2

miλi =

(
k −

n∑
i=2

miki

)
1
k1

λ1+
n∑

i=2

miλi,

so it’s enough to choose k = k0k1 + m2k2 + · · ·+ mnkn ∈ 1
2Z with k0 ∈ Z+

minimum subject to the condition kβ0 + µ /∈ F .
II) There exist two simple roots with non-vanishing restriction to a0. In

this case, looking at the Satake diagrams ([15, Chap. 1], it’s clear that
the only possibility is g0 ' su(n, 1). We choose h0 as the 0 trace diagonal
matrices. If H =

∑
ihiEii, let ei ∈ ih′0 be defined by ei(H) = hi. We fix

∆+(g, h) = {ei − ej : i < j} and {αi = ei − ei+1 : 1 ≤ i ≤ n} becomes
a simple root system. Taking a0 = iR(E11 − En+1 n+1), then α1 and αn

have non-vanishing restriction to a0 and β0 = e1 − en+1. In this case m '
C⊕ sl(n− 1, C). The center of m is CH0, where

H0 =

 −(n− 1)i
2iI

−(n− 1)i

 .

The fundamental weights of g with respect to this simple root system are
λi = e1+· · ·+ei, so it follows that λ1+λn = β0 and λ1−λn is the coordinate
function of the center of m.

Then, if µ is strongly dominant integral, µ = m(λ1−λn) + m2λ
M
2 + · · ·+

mn−1λ
M
n−1 with mi ∈ N for all 2 ≤ i ≤ n− 1, m ∈ R. It’s easy to see that µ
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analytically integral implies m ∈ Z. Then

kβ0 + µ = kβ0 + m(λ1 − λn) +
n−1∑
i=2

mi(λi − kiβ0)

=

(
k + m−

n−1∑
i=2

miki

)
λ1 +

(
k −m−

n−1∑
i=2

miki

)
λn +

n−1∑
i=2

miλi,

and we choose k = k0 + |m|+
∑n−1

i=2 miki with k0 ∈ Z+ minimum subject to
the condition kβ0 + µ /∈ F . �

Proof of Proposition 5.4. It suffices to take λ = c−1
β (kβ0 + µ), with k given

by Lemma 5.7, reminding that we are supposing GC simply connected. �

Proof of Proposition 5.3. By hypothesis there exists a constant C and a pos-
itive integer k such that

|Pλ,τ | ≥
C

(1 + |λ|2)k (1 + |τ |2)k
∀ (λ, τ) ∈ (Sd − F )× K̂.

Besides, according to the choice of t0 and h0, γG = c−1
β ◦ γG

h , therefore

Pλ,τ =
((

γG ⊗ γK
)
(P )
)
(λ, µτ )

=
((

γG
h ⊗ γK

)
(P )
)
(λ ◦ c−1

β , µτ )

=
((

γG
h ⊗ γK

)
(P )
)
(cβ(λ), µτ );

given σ ∈ M̂ , let λ ∈ Sd − F be given by Proposition 5.4. If we set xσ =
cβ(λ)|a0 ∈ ia′0, then

Pσ,τ (xσ) =
((

γG
h ⊗ γK

)
(P )
)
(xσ + µσ, µτ )

=
((

γG
h ⊗ γK

)
(P )
)
(cβ(λ), µτ ) = Pλ,τ .

If P has order m in U(g), Pσ,τ is a polynomial function on a′ of order ≤ m,
and ||Pσ,τ || is the norm of the vector in Cm+1 formed with its coefficients,
and by Schwarz inequality

|Pσ,τ (xσ)| ≤ ||Pσ,τ ||

 m∑
j=0

|xσ|2m

1/2

≤ ||Pσ,τ ||(1 + |xσ|2)
m
2 ;

besides,
1 + |xσ|2 ≤ C2(1 + |µσ|2),

so

||Pσ,τ || ≥
C̃

(1 + |σ|2)k+m
2 (1 + |τ |2)k

∀ (σ, τ) ∈ M̂ × K̂,

and it’s enough to choose k̃ = k + m
2 . �
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6. Inversion of global characters.

One important step in building the fundamental solution of P is the con-
struction of distributions Rπ such that PRπ = Θπ for each representation π
that appears in the Plancherel formula. In this section we will define these
distributions Rπ. We will begin with the principal series representations.
Before this we state some necessary results in order to bound the Rπ. The
next two lemmas follow directly from [14, Lemma 5.6.4].

Lemma 6.1. Let K be a connected compact Lie group. There exist Ω ∈
Z(k) and a positive constant C such that

|χτ (Ω)| ≥ C(1 + |τ |2) ∀ τ ∈ K̂.

Lemma 6.2. Let G a connected semisimple Lie group with a compact Car-
tan subgroup. There exist Z ∈ Z(g) and a positive constant C such that

|χλ(Z)| ≥ C(1 + |λ|2) ∀λ ∈ Sd.

Proposition 6.3. Let G a connected semisimple Lie group. There exist
Z ∈ Z(g), a positive constant C, an ε > 0 and a positive integer k such that

|χσ,ν+z(Z)| ≥ C(1 + |σ|2)k(1 + |ν|2)k ∀σ ∈ M̂, ν ∈ ia′0, z ∈ a′, |z| < ε.

To prove this proposition, we begin with a lemma.

Lemma 6.4. Let g0 be the Lie algebra of a semisimple Lie group G, h0 a
Cartan subalgebra of g0, W the Weyl group of g. There exists P ∈ S(h)W

an homogeneous polynomial function on h′ such that

P (λ) > 0 ∀λ ∈ ih′0, λ 6= 0.

Proof. We will begin with the construction of a G-invariant polynomial func-
tion on g0. The symmetric algebra S(g0) (resp. S(g′0)) is identified with the
set of polynomial functions on g′0 (resp. g0). We denote I(g0) (resp. I(g′0))
the G-invariant elements of S(g0) (resp. S(g′0)).

The Killing form B of g0, being non-degenerate and G-invariant, induces
canonical isomorphisms between S(g0) and S(g′0) and between I(g0) and
I(g′0).

Given X ∈ g0, let

pX(x) = det(xI − ad X) = xn + an−1(X)xn−1 + · · ·+ al(X)xl

be the characteristic polynomial of ad X, n = dim g0, l = dim h0. The coef-
ficients ai(X) are G-invariant homogeneous polynomial functions of degree
n − i on g0. Let di and p be positive integers such that n − i + di = 4p; if
we define

Q̃ = adl
l + · · ·+ a

dn−1

n−1 ,

then Q̃ ∈ I(g′0) and is homogeneous of degree 4p.
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B is non-degenerate on h0, so g0 = h0 ⊕ h⊥0 , h⊥0 the orthogonal of h0

with respect to B. Besides h⊥0 = (g+ ⊕ g−) ∩ g0 so Q̃ vanishes on h⊥0 and
is positive on h0. Let Q ∈ I(g0) be the image of Q̃ by the isomorphism
mentioned above.

We also note that we can include h′0 in g′0 by extending a functional from
h0 to g0 by 0 on h⊥0 . This inclusion allow us to restrict elements from S(g0)
to S(h0).

Let P ∈ S(h0) be the restriction of Q. P has the following properties:
(i) P (λ) > 0 for all λ ∈ h′0, λ 6= 0.
(ii) P ∈ S(h)W .

It only remains to see (ii): It’s clear that I(g0) is included in I(g). Besides,
Q = P + P̃ , with P̃ ∈ S(g0)h⊥0 ⊂ S(g)(g+ ⊕ g−). Now, WG = W (Gu,Hu)
([10, Thm. 4.41]), so, if w ∈ WG, w = Ad (x), with x ∈ NGu(Hu), and the
action of w preserves h and g+ ⊕ g−, then Q = wQ = wP + wP̃ , therefore
wP = P , wP̃ = P̃ .

Finally, if λ ∈ ih′0, P (λ) = (−i)4pP (iλ) > 0. �

Proof of Proposition 6.3. Let P ∈ S(h)W be given by the lemma above. If

2c = inf{P (λ) : λ ∈ ih′0, |λ| = 1} > 0,

there exists 0 < ε < 1/2 such that Re P (λ + λ̃) ≥ c for all λ ∈ ih′0, |λ| = 1,
λ̃ ∈ h′, |λ̃| < 2ε. Suppose now that λ ∈ ih′0, |λ| ≥ 1, λ̃ ∈ h′, |λ̃| < ε, then,
as Re P is also an homogeneous polynomial of degree 4p, we have

Re P (λ + λ̃) = |λ|4pRe P

(
λ

|λ|
+

λ̃

|λ|

)
≥ |λ|4pc.

On the other hand, if |λ| ≤ 1, |λ̃| < ε, |P (λ + λ̃)| is bounded by a positive
constant A. Now let Z ∈ Z(g) be such that γh(Z) = P + 2A. If σ ∈ M̂ ,
ν ∈ ia′0, z ∈ a′, |z| < ε, then, if |µσ + ν| ≤ 1,

|χσ,ν+z(P )| ≥ A ≥ C1(1 + |µσ|2)2p(1 + |ν|2)2p,

and, if |µσ + ν| ≥ 1,

|χσ,ν+z(P )| ≥ 2A + Re P (µσ + ν + z) ≥ C2(1 + |µσ|2)2p(1 + |ν|2)2p.

�

Now we state a lemma we will use to obtain uniform bounds of the dis-
tributions Θσ,ν and Θλ. The proof follows easily from the proof of Theorem
10.2 in [10].

Lemma 6.5. Given K̃ ⊂ G a compact subset, for every admissible repre-
sentation π whose K-types have the multiplicity property nτ ≤ N dim τ there
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exists a differential operator Ω̃ ∈ Z(k) and a constant C which only depends
on K̃ such that if supp f ⊆ K̃

|Θπ(f)| ≤ CN

(∫
G
|Ω̃f(g)|2||π(g)||2 dg

)1/2

.

In particular, if π is unitary, |Θπ(f)| ≤ CN ||Ω̃f ||L2(G).

6.1. Principal series. Before proceeding to the definition of the distribu-
tions Rσ,ν we state two lemmas about polynomial functions.

If m is a positive integer we denote Pol(m) the complex vector space of
polynomial functions in Cn of degree ≤ m, and Pol0(m) this vector space
with the origin removed.

Given Q ∈ Pol(m), ζ ∈ Cn, the equation

Q̃(ζ) =

(∑
α

1
(α!)2

|Q(α)(ζ)|2
) 1

2

(20)

defines a norm in Pol(m) for a fixed ζ ∈ Cn. Let

||Q|| = Q̃(0).(21)

The following lemma is used to construct a fundamental solution of a con-
stant coefficients differential operator in Rn (Theorem 7.3.10 of [8]). For a
proof see Lemmas 7.3.11 and 7.3.12 in [8].

Lemma 6.6. For all ε > 0 exists a non-negative function Φ ∈ C∞(Pol0(m)
×Cn) such that

(i) Φ is absolutely homogeneous of degree 0, i.e., Φ(zQ, ζ) = Φ(Q, ζ) for
all z ∈ C− {0}.

(ii) Φ(Q, ζ) = 0 if |ζ| ≥ ε.
(iii) If F is an entire function in Cn and dζ is Lebesgue measure in Cn,∫

F (ζ)Φ(Q, ζ) dζ = F (0).

(iv) There exists a constant Cε such that Q̃(0) ≤ Cε|Q(ζ)| if Φ(Q, ζ) 6= 0.

Being Pol(m) a finite dimensional vector space, all norms Q̃(ζ) are equiv-
alent. The following lemma estimates the constants which give this equiva-
lence. The proof is an easy consequence of Taylor’s formula.

Lemma 6.7. Exists a constant C > 0 depending only on n and m such that

C
(
1 + |ζ|2

)−m
Q̃(0)2 ≤ Q̃(ζ)2 ≤ C

(
1 + |ζ|2

)m
Q̃(0)2

for all Q ∈ Pol(m).
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We are now in position to define the distributions Rσ,ν for P ∈ Z(U(g)K)
satisfying the hypothesis of Theorem 1.1. Let ε > 0 be given by Proposition
6.3, m the order of P and let Φ ∈ C∞(Pol0(m) × C) be the non-negative
function given by Lemma 6.6.

Given σ ∈ M̂ , τ ∈ K̂, and a fixed ν ∈ a′, we put

P ν
σ,τ (z) = Pσ,τ (ν + z) = (χσ,ν+z ⊗ χτ )(P ).(22)

Finally, if dz is Lebesgue measure in a′, f ∈ D(G), we define

Rσ,ν(f) =
∑
τ∈K̂

∫
|z|<ε

1
P ν

σ,τ (z)
Θτ

σ,ν+z(f)Φ(P ν
σ,τ , z) dz.(23)

This definition makes sense because P ν
σ,τ (z) 6= 0 if Φ(P ν

σ,τ , z) 6= 0 (Lemma
6.6 (iv)).

Proposition 6.8. The map defined by (23) is a finite order distribution for
all σ ∈ M̂ , ν ∈ a′. This map has also the following properties:

(i) PRσ,ν = Θσ,ν .
(ii) For every positive integer k and f ∈ D(G), exist a constant C > 0

which only depends on the support of f and a differential operator
Dk ∈ Z(U(g)K) such that

|Rσ,ν(f)| ≤ C

(1 + |ν|2)k(1 + |σ|2)k
||Dkf ||L2(G) ∀σ ∈ M̂, ν ∈ ia′0.

Proof. By Proposition 3.2, PΘτ
σ,ν+z = P ν

σ,τ (z)Θτ
σ,ν+z, and, as Θσ,ν+z(f) is

an entire function in z ([6], Section 21) for fixed f , so it is Θτ
σ,ν+z(f), and

by Lemma 6.6 (ii),∫
|z|<ε

Θτ
σ,ν+z(f)Φ(P ν

σ,τ , z) dz = Θτ
σ,ν(f),

and this proves (i).
Let’s see that (23) defines a distribution: According to Lemma 6.6 (iv)

and Lemma 6.7 together with (20) and (21), if Φ(P ν
σ,τ , z) 6= 0, we have

||Pσ,τ || ≤ C1(1 + |ν|2)m|P ν
σ,τ (z)|, and by the hypothesis on P (Prop. 5.1 or

5.3), exists a positive integer k̃ such that

1
|P ν

σ,τ (z)|
≤ C2(1 + |ν|2)m

(
1 + |σ|2

)k̃ (1 + |τ |2
)k̃

.(24)

On the other hand, if Z ∈ Z(g) and Ω ∈ Z(k) are given by Proposition 6.3
and Lemma 6.1 respectively and if s1 and s2 are positive integers, we have,
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for some positive integer k̄,

|Θτ
σ,ν+z(f)| =

|Θτ
σ,ν+z

(
(Zt)s1(Ωt)s2f

)
|

|χs1
σ,ν+z(Z)||χs2

τ (Ω)|

≤
C3 |Θσ,ν+z

(
(Zt)s1(Ωt)s2fτ̄

)
|

((1 + |σ|2)(1 + |ν|2))s1−k̄ (1 + |τ |2)s2

,

besides, it holds for D ∈ U(g)K that Dfτ̄ = (Df)τ̄ ; also |Θπ(fτ̄ )| ≤ |Θπ(f)|,
so

|Θτ
σ,ν+z(f)| ≤

C3 |Θσ,ν+z

(
(Zt)s1(Ωt)s2f

)
|

((1 + |σ|2)(1 + |ν|2))s1−k̄ (1 + |τ |2)s2

.(25)

Let K̃ ⊆ G be a compact subset. Note that for principal series it holds
nτ ≤ dim τ ([10, p. 207]); so by Lemma 6.5 exist Ω̃ ∈ Z(k) and a constant
C1 independent of σ ∈ M̂, ν, z ∈ a′ such that

|Θσ,ν+z(f)| ≤ C1

(∫
G
|Ω̃f(g)|2||πσ,ν+z(g)||2 dg

)1/2

;

on the other hand, given ϕ in the space V σ where the πσ,ν+z acts, if a(g) is
the A-component of g in the Iwasawa decomposition, then (cf. [10, p. 169]),

(πσ,ν+z(g)ϕ) (k) = e−z log a(g−1k) (πσ,ν(g)ϕ) (k),

and taking A=supg∈K̃,k∈K,|z|<ε |e
−z log a(g−1k)| and Bσ,ν = supg∈K̃ ||πσ,ν(g)||,

then ||πσ,ν+z(g)|| ≤ ABσ,ν uniformly on K̃, so for all f such that supp f ⊆
K̃,

|Θτ
σ,ν+z(f)| ≤ ABσ,ν ||Ω̃f ||L2(G).(26)

Now combining (24), (25) and (26) and the fact that Φ is uniformly bounded
we obtain ∣∣∣∣∣

∫
|z|<ε

Θτ
σ,ν+z(f)Φ(P ν

σ,τ , z)
P ν

σ,τ (z)
dz

∣∣∣∣∣
≤

C4Bσ,ν ||Ω̃(Zt)s1(Ωt)s2f ||L2(G)

(1 + |ν|2)s1−m−k̄(1 + |σ|2)s1−k̃−k̄(1 + |τ |2)s2−k̃
;

therefore for all f such that supp f ⊆ K̃

|Rσ,ν(f)| ≤

∑
τ∈K̂

1

(1 + |τ |2)s2−k̃

 C4Bσ,ν ||Ω̃(Zt)s1(Ωt)s2f ||L2(G)

(1 + |ν|2)s1−m−k̄(1 + |σ|2)s1−k̃−k̄
,(27)

and
∑
τ∈K̂

1

(1 + |τ |2)s2−k̃
is finite if we choose s2 > k̃+1/2 dim K ([14, Lemma

5.6.7]), so Rσ,ν is a finite order distribution.
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To see (ii), just observe that Bσ,ν = 1 if ν ∈ ia′0, so given k if we take
Dk = Ω̃(Zt)s1(Ωt)s2 with the s2 chosen above and s1 ≥ k + k̄ + max(k̃, m),
(27) becomes

|Rσ,ν(f)| ≤ C

(1 + |ν|2)k(1 + |σ|2)k
||Dkf ||L2(G)

with C depending only K̃. �

6.2. Discrete Series. Suppose T is a compact Cartan subgroup of G.

Proposition 6.9. Let P ∈ Z(U(g)K) such that exist a constant C and a
positive integer k such that

|Pλ,τ | ≥
C

(1 + |λ|2)k (1 + |τ |2)k
∀ (λ, τ) ∈ Sd × K̂,

then the map

Rλ(f) =
∑
τ∈K̂

1
Pλ,τ

Θτ
λ(f)

defines a finite order distribution with the following properties:

(i) PRλ = Θλ.
(ii) For each positive integer k and f ∈ D(G), exist a constant C > 0

which only depends on the support of f and a differential operator
Ek ∈ Z(U(g)K) such that

|Rλ(f)| ≤ C

(1 + |λ|2)k
||Ekf ||L2(G) ∀λ ∈ Sd.

Proof. First note that Rλ is well defined because by Proposition 5.2 exist a
constant C1 and a positive integer k1 such that

|Pλ,τ | ≥
C1

(1 + |λ|2)k
1 (1 + |τ |2)k

1

∀ (λ, τ) ∈ Sd × K̂,

and in particular Pλ,τ 6= 0; (i) is clear because PΘτ
λ = Pλ,τΘτ

λ (Proposition
3.2).

To see (ii), observe that by Lemma 6.5 exist a constant C2 depending
only on supp f and Ω̃ ∈ Z(k) such that |Θλ(f)| ≤ C2||Ω̃f ||L2(G).
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Then, if Z ∈ Z(g) and Ω ∈ Z(k) are given by Lemmas 6.2 and 6.1
respectively, we have

|Rλ(f)| ≤
∑
τ∈K̂

1
|Pλ,τ |

|Θτ
λ(f)| ≤

∑
τ∈K̂

1
C3

(
1 + |λ|2

)k
1

(
1 + |τ |2

)k
1
|Θλ(fτ̄ )|

≤
∑
τ∈K̂

C̃

(1 + |λ|2)s1−k1 (1 + |τ |2)s2−k1
|Θλ((Zt)s1(Ωt)s2fτ̄ )|

≤

∑
τ∈K̂

1

(1 + |τ |2)s2−k1

 C̃C1

(1 + |λ|2)s1−k1
||(Ω̃(Zt)s1(Ωt)s2f)||L2(G),

and it suffices to take Ek = Ω̃(Zt)s1(Ωt)s2 with s1 = k +k1 and s2 such that∑
τ∈K̂

1

(1 + |τ |2)s2−k1
is finite. �

7. Demonstration of Theorem 1.1.

Now we are ready to complete the proof of Theorem 1.1 with the explicit
construction of the fundamental solution of P .

Proposition 7.1. Let P ∈ Z(U(g)K) and suppose that exist a constant C
and a positive integer k such that in case I,

||Pσ,τ || ≥
C

(1 + |σ|2)k (1 + |τ |2)k
∀ (σ, τ) ∈ M̂ × K̂,(28)

and in case II,

|Pλ,τ | ≥
C

(1 + |λ|2)k (1 + |τ |2)k
∀ (λ, τ) ∈ Sd × K̂;(29)

if Rσ,ν and Rλ are the distributions defined respectively by (23) and 6.9, then
the map R defined in case I,

R =
∑
σ∈M̂

∫
ν∈ia′0

Rσ,ν mσ(ν) dν,(30)

and in case II,

R =
∑
σ∈M̂

∫
ν∈ia′0

Rσ,ν mσ(ν) dν +
∑
λ∈Sd

dλ Rλ,(31)

is a finite order distribution which is a fundamental solution of P .

Remark. We note that in case II, T is a fundamental Cartan subgroup of
G, and in case I, H = A× T− is.
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So if P ∈ Z(U(g)K) is such that
(
γG ⊗ γK

)
(P ) has a fundamental solution

in Hf ×T , Propositions 5.2 and 5.1 imply (28) and (29) respectively in each
case, so Theorem 1.1 is a direct consequence of Proposition 7.1.

Proof. First of all, we note that in case II, Proposition 5.3 says that (28)
implies (29) (changing, maybe, C and k), so Rσ,ν is well defined and Propo-
sition 6.8 applies in this case.

Equality PR = δ is clear by Plancherel formula (Theorem 2.1) and be-
cause PRσ,ν = Θσ,ν and PRλ = Θλ (Propositions 6.8 and 6.9 respectively);
it only remains to prove that R is a finite order distribution in each case.
So we will prove that each of the following are finite order distributions:

Rsp =
∑
σ∈M̂

∫
ν∈ia′0

Rσ,ν mσ(ν) dν, Rsd =
∑
λ∈Sd

dλ Rλ.

Let K̃ be a compact subset and f ∈ DK̃(G); for each positive integer k

let Dk ∈ Z(U(g)K) be given by Proposition 6.8 (ii), then, using 2.1 (ii),

|Rsp(f)| ≤ C1C2

∑
σ∈M̂

1
(1 + |σ|2)k−l2

(∫
ν∈ia′0

1
(1 + |ν|2)k−l1

)
||Dkf ||L2(G),

and choosing k large enough so that the sum and the integral are finite, we
obtain an operator D ∈ Z(U(g)K) and a constant C depending only on K̃
such that

|Rsp(f)| ≤ C||Df ||L2(G),

and this proves that Rsp is a distribution of finite order less or equal that
the order of D.

In the same way, for each positive integer k let Ek ∈ Z(U(g)K) be given
by Proposition 6.9 (ii), therefore

|Rsd(f)| ≤ C3

∑
τ∈K̂

dλ

(1 + |λ|2)k

 ||Ekf ||L2(G);

if k > 1/2 dim G,
∑
τ∈K̂

dλ

(1 + |λ|2)k
is finite ([14, Lemma 5.6.7]), there exist

E ∈ Z(U(g)K) and a constant C̃ depending only on K̃ such that

|Rsd(f)| ≤ C̃||Ef ||L2(G),

so Rsd is a distribution of finite order less or equal that the order of E. �
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8. P-convexity of G.

Suppose that P ∈ Z(U(g)K) satisfies the conditions of Proposition 7.1. So
P has a fundamental solution R ∈ D′(G). This implies that the differential
equation Pu = f has a solution u ∈ C∞(G) for all f ∈ D(G); just taking
u = f ∗ R because Pu = f ∗ PR = f ∗ δ = f . Now, in order to guarantee
the solvability of Pu = f when f ∈ C∞(G), it is necessary to analyze the
P -convexity of G.

Definition 2. Given D ∈ U(g), we say that G is D-convex if for every
compact subset Ω ⊆ G exists another compact subset Ω̃ ⊆ G such that

supp (Df) ⊆ Ω =⇒ supp (f) ⊆ Ω̃.

Using Johnson’s injectivity criterion ([9]), we will verify that G is P -
convex.

Let P ∈ Z(U(g)K) satisfying the conditions of 7.1. Then Pσ,τ is a non-zero
polynomial on a′ for all (σ, τ) ∈ M̂ × K̂.

Given σ ∈ M̂ , ν ∈ a′, we denote V σ the space where the principal series
representation πσ,ν acts (remind that we can choose V σ independent of ν).
Let V σ

F be the subspace of K-finite vectors of πσ,ν .
Now, if U is a πσ,ν(P )-invariant finite dimensional subspace of V σ

F , then

U ⊆ W =
k∑

j=i

nσ
τj

Vτj ;

on the other hand, if vj ∈ Vτj , πσ,ν(P )vj = (χσ,ν ⊗ χτj )(P )vj = Pσ,τj (ν)vj ,
that is, πσ,ν(P ) is diagonalizable on W , so U has a πσ,ν(P )-invariant com-
plement Ũ in W .

Suppose that det πσ,ν(P )|U = 0 for all ν ∈ a′. Then

0 = det πσ,ν(P )|U det πσ,ν(P )|Ũ =
k∏

j=1

(
Pσ,τj (ν)

)dτj nσ
τj ∀ ν ∈ a′,

therefore exist σ ∈ M̂ , τ ∈ K̂ such that Pσ,τ (ν) = 0 for all ν ∈ a′ which is
absurd. So Theorems 5.1 and 5.2 in [9] imply that G is P -convex.

9. Parametrix of operators in Z(U(g)K).

In this section, using Zuckerman characters identities combined with the
work done so far, we will prove:

Proposition 9.1. Let G be a linear connected semisimple Lie group of rank
one having a compact Cartan subgroup, and P ∈ Z(U(g)K). A sufficient
condition for the existence of a parametrix of P is:
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Exist a finite set F ⊂ Sd, a positive constant C and a positive integer k
such that

|Pλ,τ | ≥
C

(1 + |λ|2)k (1 + |τ |2)k
∀ (λ, τ) ∈ (Sd − F )× K̂.(32)

Remark. The fact that if
(
γG ⊗ γK

)
(P ) has a parametrix on T × T then

(32) holds is an easy consequence of [4, Thm. II]. So Proposition 9.1 clearly
implies Theorem 1.3.

Before proceeding to the proof of this proposition, we state Zuckerman
characters identities in the form we need (cf. Proposition 5.13 from [16] for
a more precise statement together with the proof).

Proposition 9.2. Let G be as in Proposition 9.1. We put r = |W (g,h)|
|W (G,H)| .

Given λ ∈ Sd exist σλ
1 , . . . , σλ

r ∈ M̂ and νλ
1 , . . . , νλ

r ∈ a′0 such that

1
|WK |

∑
w∈WG

Θwλ = a0(λ)Θf
λ +

r∑
j=1

aj(λ)Θσλ
j ,νλ

j
,

where Θf
λ is the character of the finite dimensional representation with in-

finitesimal character λ, and aj(λ) = ±1 for all 0 ≤ j ≤ r, λ ∈ Sd.

Proof of Proposition 9.1. We will construct the parametrix R of P as the
sum of three distributions R = Rsp + Rsd + RF .

As in the proof of Proposition 7.1, applying Proposition 5.3 together with
6.8, we see that

Rsp =
∑
σ∈M̂

∫
ν∈ia′0

Rσ,ν mσ(ν) dν

defines a finite order distribution such that

PRsp =
∑
σ∈M̂

∫
ν∈ia′0

Θσ,ν mσ(ν) dν.

In the same way, if we define

Rsd =
∑

λ∈Sd−F

dλ Rλ,

then, applying Proposition 6.9,

PRsd =
∑

λ∈Sd−F

dλ Θλ.

For the definition of RF , we note in first place that having all the repre-
sentations πwλ infinitesimal character λ, F is closed by the action of WG.
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Besides πwλ is equivalent to πw′λ if and only if w−1w′ ∈ WK , and we can
write ∑

λ∈F

Θλ =
|WK |
|WG|

∑
λ∈F

1
|WK |

∑
w∈WG

Θwλ.(33)

Now, for each λ ∈ F , let σλ
1 , . . . , σλ

r ∈ M̂ and νλ
1 , . . . , νλ

r ∈ a′0 be given by
Proposition 9.2; then we can define

RF =
|WK |
|WG|

∑
λ∈F

 r∑
j=1

aj(λ)Rσλ
j ,νλ

j

(34)

which is a finite order distribution.
Finally, Propositions 6.8 and 9.2 imply

PRF =
|WK |
|WG|

∑
λ∈F

 r∑
j=1

aj(λ)Θσλ
j ,νλ

j

 =
∑
λ∈F

Θλ −
|WK |
|WG|

∑
λ∈F

ao(λ)Θf
λ;

therefore, putting R = Rsp + Rsd + RF , the above equalities together with
Plancherel formula (Theorem 2.1) imply

PR− δ = −|WK |
|WG|

∑
λ∈F

a0(λ)Θf
λ,

and this distribution is given by a C∞ function because Θf
λ are characters

of a finite dimensional representation. �

10. Casimir Operator.

The fundamental solution constructed for P ∈ Z(U(g)K) satisfying the con-
ditions of Theorem 1.1 is invariant by inner automorphisms of K. In the
case that P is a bi-invariant operator in the conditions of Corollary 1.2, we
obtain a fundamental solution of P invariant by inner automorphisms of all
G.

Let’s analyze the case of the Casimir operator of G. If h is a Cartan
subalgebra of g, and if λ ∈ h′, then χλ(Ω) = B(λ, λ)−B(ρ, ρ) ([14, 5.6.4]);
in particular, if σ ∈ M̂ , ν ∈ ia′0,

χσ,ν(Ω) = χµσ+ν(Ω) = |µσ| − |ν|2 − |ρ|2,(35)

and ||χµ,−(Ω)|| ≥ 1 for all µ ∈ T̂−, so, by Theorem 4.1, γG
h (Ω) has a funda-

mental solution on A× T−. Besides if t is a Cartan subalgebra of g, in this
case if λ ∈ it′0 we have

χλ(Ω) = |λ|2 − |ρ|2;(36)
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now, being GC simply connected, λ = ρ is a discrete series parameter, and
consequently we cannot apply Corollary 1.2.

So Theorem 1.1 only provides a fundamental solution of the Casimir op-
erator when G has one conjugacy class of Cartan subgroups.

We note, on the other hand, that solvability of Ω have been proved by
Rauch and Wigner ([12]) in a non-constructive way. In [2] an explicit fun-
damental solution of Ω is constructed for G = SL(2, R) and it’s also proved
that an invariant one doesn’t exists for this group.

However, note that |χλ(ω)| ≥ C for all λ ∈ Sd − F , where F = {λ ∈ S :
|λ| = |ρ|} is a finite subset, so by Proposition 9.1, Ω has a parametrix on G.

11. A necessary condition.

Let G be a connected semisimple Lie group. Recall from [7, Thm. 5.17]
that we can define a Harish-Chandra homomorphism γa : U(g)K → S(a)W0 ,
where W0 = W (g0, a0) is the Weyl group of the restricted root system. The
kernel of γa is U(g)K ∩ U(g)k.

Proposition 4.1 in [13] states that if P ∈ Z(g) is in the kernel of γa, then
P doesn’t have a parametrix. In this section we will extend this proposition
for P ∈ Z(U(g)K).

Let DK(G), resp. C∞
K (G), be the space of left and right K-invariant

functions in D(G), resp. C∞(G), D′K(G) the dual of DK(G), identified with
the space of left and right K-invariant distributions in D′(G), and similarly
DW0(A), resp. D′W0

(A), the space of W0-invariant elements of D(A), resp.
D′(A). Let

Ff (a) = aρ

∫
N

f(an) dn,

f ∈ DK(G), a ∈ A; then the map f 7→ Ff is an isomorphism of DK(G)
onto DW0(A) for the Schwartz topologies ([7, Cor. 7.9]). If P ∈ Z(g),
FPf = γa(P )Ff ([7, p. 307]). Transposing F−1 we get an isomorphism F t

of D′K(G) onto D′W0
(A), and

F t
PT = γa(P )F t

T

for all P ∈ Z(g), T ∈ D′K(G).
Now let P ∈ Z(U(g)K). If τ ∈ K̂, we can form the homomorphism

γa ⊗ χτ : Z(U(g)K) −→ S(a)W0 .

Proposition 11.1. Let G be a connected semisimple Lie group and P ∈
Z(U(g)K). If P has a parametrix in G, then for all τ ∈ K̂, (γa⊗χτ )(P ) 6= 0.

Proof. Suppose that P has a parametrix E and that exists τ ∈ K̂ such that
(γa ⊗ χτ )(P ) = 0.
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An easy computation shows that if Ω ∈ Z(k), then ΩEτ = χτ (Ω)Eτ , so
if P τ = (Id⊗ χτ )(P ) ∈ Z(g), then

PEτ = P τEτ .

Taking τ -components, PE − δ ∈ C∞(G) implies P τEτ − δτ ∈ C∞(G), and
making everything K-bi-invariant we get P τEτ

K − δτ
K ∈ C∞

K (G).
Applying F t yields

γa(P τ )F t
Eτ

K
− F t

δτ
K
∈ C∞

W0
(A);

now γa(P τ ) = (γa ⊗ χτ )(P ) = 0 would imply δτ
K ∈ C∞

K (G), which is absurd
because it’s easy to see that δτ = dτΘτmK , where mK(f) =

∫
K f is the

distribution induced by the Haar measure of K. �
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(5000) Córdoba
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