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Let T N,χ
p,k (x) be the characteristic polynomial of the Hecke

operator Tp acting on the space of cusp forms Sk(N, χ). We
describe the factorization of T N,χ

p,k (x) mod ` as k varies, and we
explicitly calculate those factorizations for N = 1 and small
`. These factorizations are used to deduce the irreducibility
of certain T 1,1

q,k (x) from the irreducibility of T 1,1
2,k (x).

1. Introduction and statement of results.

Let Sk(N,χ) be the space of holomorphic cusp forms of integral weight
k for the Hecke congruence subgroup Γ0(N), and denote by TN,χ

p,k (x) the
characteristic polynomial of the Hecke operator Tp acting on Sk(N,χ). Let
Sk(N) = Sk(N, 1) and set Tp,k = T 1,1

p,k . A conjecture of Maeda asserts that
Tp,k(x) is irreducible and has full Galois group over Q. This conjecture is
related to the nonvanishing of L-functions [KZ], [CF], and to constructing
base changes to totally real number fields for level 1 eigenforms, [HM].
Maeda’s conjecture has been checked for all primes p < 2000 and weights
k ≤ 2000 [B], [CF], [FJ].

The methods which have been used to check Maeda’s conjecture involve
computing the factorization of T2,k(x) mod ` for various `. One searches for
enough factorizations to deduce that T2,k(x) is irreducible and has full Galois
group over Q. With a small amount of additional calculation it is possible
to deduce the same conclusion for other Tp,k(x). The method of translating
information about T2,k(x) to information about Tp,k(x) is related to the
following result of James and Ono.

Theorem ([JO]). Suppose q and ` are distinct primes. Then

#
{

prime p < X | TN,χ
p,k (x) ≡ TN,χ

q,k (x) mod `
}
� X/ log X.

In particular, if TN,χ
p,k (x) is irreducible mod ` for some p, then the same

holds for a positive proportion of primes p.

The above result makes use of the Chebotarev density theorem and deep
results of Deligne, Serre, and Shimura on the Galois representations associ-
ated to modular forms. In this paper we describe how to determine, with
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a finite calculation, the factorization of TN,χ
p,k (x) mod ` for any k. We use

those factorizations to give an easy proof of the following result, which is
similar to the second statement in the theorem given above.

Theorem 1. If Tn,k(x) is irreducible and has full Galois group for some
n, then Tp,k(x) is irreducible and has full Galois group for p prime and
p 6≡ ±1 mod 5, or p 6≡ ±1 mod 7.

Note that the conclusion of Theorem 1 holds for 5/6 of all primes p.
Farmer and James [FJ] have used a version of the above result to show that
Tp,k(x) is irreducible and has full Galois group if p < 2000 and k ≤ 2000.

In Section 2 we describe the factorizations of TN,χ
p,k (x) mod `. In Section

3 we give some examples. In Section 4 we deduce some corollaries and prove
Theorem 1.

Throughout the paper, p, q, and ` are distinct rational primes; N and
n are positive rational integers with N , np, q, and ` pairwise coprime; k
is a positive rational integer, and χ is a character of conductor N with
χ(−1) = (−1)k. We write TN,χ

n,k (x) for the characteristic polynomial of Tn

acting on the space of cusp forms Sk(N,χ) and put Tn,k(x) = T 1,1
n,k(x). When

we refer to the irreducibility or to the Galois group of a polynomial, we will
mean over Q. For prime p we write pA||b to mean pA|b and pA+1 - b.

The authors thank J.-P. Serre for helpful comments concerning the cal-
culations in this paper.

2. Patterns in the factorization of TN,χ
p,k (x) mod `.

Fix p, `, N , and χ. In this section we describe the factorization of
TN,χ

p,k (x) mod ` as k varies. We show that those factorizations follow a pat-

tern. In principle one can use this pattern to determine TN,χ
p,k (x) mod ` for

any k, after an initial calculation. In the following section we give some
examples for N = 1 and small `.

The idea here is to consider Sk(N,χ) mod ` and Tn mod `, and to find a
basis Bk(N,χ) of Sk(N,χ) with the following nice property.

Lemma 1. Let [Tn]k,N,χ be the matrix of Tn with respect to the basis
Bk(N,χ). Then [Tn]k,N,χ is block upper-triangular and [Tn]k,N,χ ⊂
[Tn]k+`−1,N,χ, where the smaller matrix is a block in the upper left corner
of the larger matrix. In particular, TN,χ

n,k+`−1(x) ≡ g(x) TN,χ
n,k mod ` for some

polynomial g(x).

Proof. We define the basis Bk(N,χ) as follows. The classical congruence for
the level 1 Eisenstein series E`−1 ≡ 1 mod ` gives an inclusion Sk(N,χ) ⊂
Sk+`−1(N,χ) mod `, given by multiplication by E`−1. Choose Bk(N,χ) to
respect this inclusion. The Hecke operator Tn mod ` also respects this
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inclusion because we have

(Tnf) (z) =
1
n

∑
ad=n

χ(a)ak
∑

0≤b<d

f

(
az + b

d

)
and ak ≡ ak+`−1 mod `. This proves Lemma 1. �

By Lemma 1, there is a sequence of polynomials fj ∈ (Z/`Z)[x], depending
only on N , χ, p, `, and (k mod `− 1), so that

(2.1) TN,χ
p,k (x) ≡

J∏
j=1

fj(x) mod `.

The following Proposition explains why it is easy to understand TN,χ
p,k (x) mod

` for any k.

Proposition 1. The sequence fj in (2.1) is periodic.

Thus, the calculation of TN,χ
p,k (x) mod ` for any k reduces to a finite calcu-

lation. The periodicity of fj follows from the isomorphism Wk+`+1 = Wk[1].
Here Wk = M̃k+`−1/M̃k, with M̃k the F` vector space obtained by reducing
Mk mod `. See [J]. We give a different proof based on the trace formula.

Proof. The degree of each fj is bounded by

M = max
k

(dim Sk+`−1(N,χ)− dim Sk(N,χ)) .

This is finite because dim Sk(N,χ) grows linearly as a function of k.
The polynomial fj has at most M roots, and the coefficients of fj are

symmetric functions in those roots. These can be expressed as polynomials
in the traces of Tp, T 2

p , . . . , TM
p , which in turn can be expressed as polyno-

mials in Tpj with j ≤ M . Thus, the coefficients of fj are just polynomials
in the traces of Tp, Tp2 , . . . , TpM mod `.

Let σN,χ
k (Tn) denote the trace of Tn acting on Sk(N,χ). We need only

show that σN,χ
k (Tn) mod ` is periodic as a function of k. This follows from

the Eichler-Selberg trace formula. We state the trace formula in the follow-
ing way, retaining only the features necessary for our proof. For details see
[SV] or [C].

Lemma 2 (The trace formula). There are explicit algebraic numbers A,
Bm, and Cd, depending only on N , n, and χ, such that

σN,χ
k (Tn) = A nk/2(k − 1)χ(

√
n) +

∑
|m|≤2

√
n

Bm
ηk−1

m − η̄k−1
m

ηm − η̄m
+

∑
d|n

0<d≤
√

n

Cd dk,

where ηm =
m +

√
m2 − 4n

2
. Furthermore, each of A, Bm, and Cd is integral

modulo the rational prime ` for ` ≥ 5 and ` - nN .
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Each term in Lemma 2 is periodic mod ` as a function of k; therefore so is
σN,χ

k (Tn). One slight complication is that if n is a square mod ` and ` < 4n,
then for some m we may have ηm − η̄m ≡ 0 mod `K for K ≥ 1. In this case
choose L so that ηk+L

m ≡ ηk
m mod `K+1. This proves Proposition 1. �

In many cases the period of fj is too large to actually compute on available
computers. However, for N = 1 and ` reasonably small, the computation is
tractable. In the next section we give several examples, and in the following
section we use those examples to deduce Theorem 1.

3. Some factorizations of level 1 Hecke polynomials.

We give some examples of the factorizations of Hecke polynomials mod `
described in the previous section. The easiest examples to calculate are for
N = 1 and ` ≤ 7 or ` = 13. In those cases

dim Sk+`−1(1, 1) ≤ 1 + dim Sk(1, 1),

so Tp,k(x) mod ` factors completely and we only need the trace of Tp to
determine each factor.

There is a further simplification for ` ≤ 7 arising from the classification
of cusp forms mod `. For normalized Hecke eigenforms f =

∑
anqn and

g =
∑

bnqn, write f ≡ g mod ` to mean an ≡ bn mod ` for (n, `) = 1. For
any particular `, there are only finitely many congruence classes of Hecke
eigenforms mod `. These are given explicitly by Serre [Ser] for ` ≤ 23.

For ` = 2 we have ap ≡ 0 mod 2, so Tp,k(x) ≡ xdk mod 2 for all p 6= 2.
For ` = 3, 5, or 7, we have ap ≡ pm + pn mod ` for p 6= `, where m and
n depend only on ` and the Hecke eigenform. Thus, if p ≡ q mod ` then
ap ≡ aq mod `, so Tp,k(x) ≡ Tq,k(x) mod ` if p ≡ q mod `. For ` ≤ 7 this
reduces the determination of Tp,k(x) mod ` for all p and k to the calculation
of a few cases. The results of those calculations are presented in the following
Theorem.

Theorem 2a. For prime ` ≤ 7 and p 6= `, the Hecke polynomial Tp,k(x)
factors as

Tp,k(x) ≡
dk∏

j=1

(x− aj) mod `

where {aj} is a periodic sequence depending only on p mod ` and k mod (`−
1). We have

Tp,k(x) ≡

{
(x− 2)dk mod 3, if p ≡ 1 mod 3
xdk mod 3 if p ≡ 2 mod 3

.

For ` = 5 or 7 the results are summarized in the tables below. The rows are
labeled by the smallest prime in each congruence class mod `, the columns
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are labeled by the congruence class of k mod (` − 1), and the table entry
gives one period of the sequence {aj}. The tables are sufficient to determine
Tp,k(x) mod ` for all p because if ` ≤ 7 and p ≡ q mod ` then Tp,k(x) ≡
Tq,k(x) mod `.

` = 5 0 2
p = 11 (2) (2)

2 (1,4) (2,3)
3 (2,3) (1,4)

19 (0) (0)

` = 7 0 2 4
p = 29 (2) (2) (2)

2 (4,5) (1,3) (6,2)
3 (0,1,0,6) (0,3,0,4) (5,0,2,0)

11 (1,3) (4,5) (6,2)
5 (0,3,0,4) (0,1,0,6) (2,0,5,0)

13 (0) (0) (0)

For ` > 7 there are no simple relationships between Tp,k and Tq,k mod `, so
each Tp,k mod ` must be calculated separately. We give an example mod 13.

Theorem 2b. We have a factorization T2,k(x) ≡
∏dk

j=1(x − aj) mod 13,
where {aj} is a sequence of period 14 depending only on k mod 12. The first
14 terms of each sequence are given in the following table, where each row
corresponds to a congruence class of k mod 12.

` = 13 (a1 . . . a14)
k ≡ 0 mod 12 (2, 12, 9, 4, 1, 11, 5, 11, 1, 4, 9, 12, 2, 8)

2 (4, 11, 5, 8, 2, 9, 10, 9, 2, 8, 5, 11, 4, 3)
4 (8, 6, 8, 9, 10, 3, 4, 5, 7, 5, 4, 3, 10, 9)
6 (5, 3, 12, 3, 5, 7, 6, 8, 10, 1, 10, 8, 6, 7)
8 (1, 10, 6, 11, 6, 10, 1, 12, 3, 7, 2, 7, 3, 12)
10 (11, 2, 7, 12, 9, 12, 7, 2, 11, 6, 1, 4, 1, 6)

The calculations for Theorem 2 were done in Mathematica. The method
was to find a basis for Sk(1) using ∆, E4, and E6, and then explicitly
compute the action of the Hecke operator. Representative cases were checked
using the trace formula.

The period of aj given in Theorem 2 is shorter than might have been
predicted from Lemma 2. If p is not a square mod ` then (m2−4p, `) = 1 for
all m, so Fermat’s little theorem gives ηk

m ≡ ηk+`2−1
m mod `, which implies

σk(Tp) = σk+`2−1(Tp) mod `. This implies that the aj mod ` has period
at most (`2 − 1)/12. This is the actual period given for those cases in
Theorem 2a and Theorem 2b. If p is a square mod ` then the period of
σk(Tp) is much larger, leading to a larger upper–bound for the period of
aj . (The largest case we needed is p = 11, m = 3, ` = 7, where we
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have η295
3 ≡ η3 mod 72.) However, as can be seen in the examples, the

period of aj is actually smaller. J.-P. Serre has pointed out to us that the
elementary result Wk+p+1 = Wk[1] gives the indicated periodicity, and this
can also be used to explain the various patterns which appear in the table
in Theorem 2b.

4. Proof of Theorem 1.

In this section we deduce some consequences of the factorizations given in
Theorem 2 and we use those factorizations to prove Theorem 1.

Corollary. Suppose for some n that Tn,k(x) is irreducible over Q. Then
Tp,k(x) is irreducible if either of the following holds:

(i) dim Sk(1) is odd and p 6≡ ±1 mod 5 or p 6≡ ±1 mod 7, or
(ii) dim Sk(1) ≡ 2 mod 4 and p ≡ 3 or 5 mod 7.

Note that the Corollary applies to 1/2 of all pairs (k, p). Both the
Corollary and Theorem 1 follow from the factorizations in Theorem 2 and
the following proposition.

Proposition 2. Suppose Tn,k(x) is irreducible for some n. Then for each m
we have Tm,k(x) = f(x)r with f(x) irreducible and r ∈ N. Suppose Tn,k(x)
is irreducible and has full Galois group for some n. Then for each m either
Tm,k(x) is irreducible and has full Galois group, or Tm,k(x) = (x− a)dk for
some a ∈ Z.

Proof of the Corollary and Theorem 1. If Tp,k(x) = f(x)r then each root of
Tp,k(x) mod ` has multiplicity divisible by r. Using ` = 5 or 7 and the fac-
torizations in Theorem 2a gives r = 1 for all cases covered by the Corollary.

If Tp,k(x) = (x−a)r then Tp,k(x) has only one root mod `. By Theorem 2a
this does not hold in the cases covered by Theorem 1. �

Sketch of Proof of Proposition 2. The idea is to consider how the Galois
group of the field of Fourier coefficients of the cusp forms acts on the Hecke
basis.

Let Bk be the set of normalized Hecke eigenforms in Sk(1), let Kk/Q be
the field generated by the set of Fourier coefficients of the f ∈ Bk, and let
G = Gal(Kk/Q). If f(z) =

∑
anqn with {an} ⊂ Kk and σ ∈ G then set

σf(z) =
∑

σanqn.
Since Sk(1) has a rational basis, G acts on Sk(1). The group G also acts

on the set Bk because G commutes with the Hecke operators. This induces
an action on the roots of Tn,k(x) because those roots are the nth Fourier
coefficients of the Hecke eigenforms. That action is the same as the natural
action given by the inclusion of those roots in Kk. Thus, if G acts transitively
on Bk then G acts transitively on the roots of Tm,k(x), which implies the
first conclusion in the Proposition. If G acts as the full symmetric group on
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Bk, then G acts as the full symmetric group on the roots of Tm,k(x), which
implies the second conclusion in the Proposition.

To finish the proof, note that the Galois group of Tn,k(x) acts on Bk

by extending the action on the nth Fourier coefficients. Thus, if Tn,k(x) is
irreducible then Kk is the splitting field of Tn,k(x) and G is its Galois group.
This proves Proposition 2. �

It would be interesting to prove a version of Maeda’s conjecture of the form
“if Tn,k(x) is irreducible for some n, then it is irreducible for all n,” or even “if
Tn,k(x) is irreducible for some n, then T2,k(x) is irreducible.” The methods
used here are only able to establish such a result for a large proportion of
weights k. By combining Theorem 2b with the Corollary above, we have
that if Tn,k(x) is irreducible for some n and dim Sk(1) is not a multiple of
14, then T2,k(x) is irreducible, and if dim Sk(1) is not a multiple of 28, then
T2,k(x) or T3,k(x) is irreducible. Establishing factorizations of T2,k(x) mod `
for larger ` would increase the proportion of k for which such a result is
known. This is reminiscent of Lehmer’s conjecture that the Ramanujan
τ–function never vanishes, where the results in that direction come from
congruence properties of τ(n).
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