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This paper deals with the study of the e-regularization of
the mean curvature equation with Neumann boundary condi-
tions in one dimensional space. In particular, we measure the
convergence of the regularized problem’s solution to the vis-
cosity solution of the mean curvature problem in appropriate
topologies.

1. Introduction.

The topic of curve and surface evolution has recently generated great in-
terest in the mathematical community because of its various applications
such as crystal growth, flame propagation and image enhancement. The
computation of such motion and its rigorous justification have proved to be
difficult tasks. In particular, the motion of surface past singularities and
changes of topological type has been the focus of extensive studies, see also
[BSS, ES1, ESS].

1.1. The mean curvature flow problem. Consider the flow defined by

G = |VulV. (%) inQr=0x(0,7),
(L.1) Vur = 0 on Sy = 80 x (0,7),
u(.,0) = ¢ in Q,

where 2 is a smooth bounded domain of IR"™, v is the outer unit normal
to 0 and ¢ is a given data. Equation (1.1) is nonlinear, degenerated and
undefined when Vu (z,t) = 0. Evans and Spruck [ES1] and Chen et al.
[CGG] circumvent these technical problems using the theory of viscosity
solutions introduced by Crandall, Lions and Ishii [CLI]. In particular, they
regularize the singular problem (1.1) for £ in (0, 1) by the partial differential

equation
o = 2 4 = — 3
oE — /€2 + [Vu|” V. < 52+uVua|2> = 0 in Qr,

Vus,.v = 0 on ET,
ue(.,0) = ¢ in Q.

(1.2)
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Given a smooth function ¢ on {2 and under suitable assumptions on the
boundary of the domain €, the existence of a solution of (1.1) can be ob-
tained using the same type of arguments as in [ES1, ES4]| for Q = IR", and
in [SZ] for every smooth subset €2 of IR", first solving (1.2) and then passing
to the limit as € goes to zero.

It is easy to prove that (1.2) is equivalent to

(1.3)
Oug (U’&)xz (Ué)xj Oug
E(]I,t) — <5Z] - W (Ug)ximj = E(lﬁ,t) (Vug)x z;
where
a? (p) = 8 —

e+ [pl*
Evans and Spruck [ES1] interpret (1.2) geometrically as follows. Assume

ue (z,t) to be a smooth solution of (1.2) and write y = (z,2,11) € R""!
and define

(1.4) ve (7, 8) = ue (2,1) — eTn1.
Then |Vyu.| = €2 + |Vu.|, and thus the PDE (1.2) becomes
Ve (ve);(ve) .
aat (x,t) — (5ij - W) (Us)ylyj (x,t) = 0 in Qr
(1.5) Voue(y,t)v = 0 on St
ve(y,0) = ¢e(y) in Q

for ¢ (y) = ¢ () — expy1. The PDE (1.5) means that each level set of v
evolves according to its mean curvature. This is, in particular, the case for
the zero level set

{yGQx]R| ve (y,t —0}
But according to (1.4), each I'f is a graph, i.e.,

— 1
Iy = {y = (z,2n4+1) € XX R| xpy1 = e (x,t)} ,

and Ecker and Huisken [EH] have shown that the evolution of an entire
graph by mean curvature remains a smooth entire graph for all time. There-
fore it seems to be interesting to use this property to compute numerically u.
as an approximation of the viscosity solution u with respect to the parameter
E.

A corresponding finite element discretization of (1.2) with grid size h is
given by

/ Upt.0n + V. VﬁPh

V2 + [V ?

0, Yop € Xp, 0 <t <T,
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Up, (70) = ¢h7

where X}, is a suitable finite element space with grid size h. The regular-
ization parameter is choosen according to the grid size h, e.g., ¢ = h?. An
additional time discretization leads to a nonlinear system which is linearized
by a modified Newton’s method. This gives a nonsymmetric linear system.

This algorithm is based on the analogous algorithm for the mean curvature
flow for graphs (¢ = 1) which was treated in [W] and for which asymptotic
convergence has been proved in [DD].

Therefore, it would be interesting to know how fast u. converges to u as
€ goes to zero, i.e., find and prove an estimate of the norm |ju. — ul| < Ce®
with some power o > 0 for a suitable norm || .

Numerical computations [Fr] indicate a rate of convergence with respect
to the square of the parameter ¢, i.e., ||uc —ul| < Ce? with C a positive
constant.

The purpose of this article is to validate the numerical observations. Such
estimates are provided in [D99] for the one dimensional problem with Dirich-
let boundary conditions. We present here the extension of these results to
Neumann boundary conditions.

1.2. The one dimensional problem. We now consider the nonlinear
problem with nonhomogeneous Neumann boundary conditions in dimension
one

%uta (137 t) B 52+(85€ (z t))2 %2;25 (33, t) =0 V(x, t) €Qr
(1.6) ue(z,0) = ¢(x) Vrel0,l]
' due (1) = 22(0) Vtel0,T]
X ? 8;1; Y
Qus(1,1) = %2(1) vtel0,T],

where Q7=]0,1[x]0, T[.

For Neumann Condition, it is not possible to invoke the same type of
computations used in [D99]. In particular, we will use in (1.6) an arctan-
formulation.

Our goal now is to find an asymptotic expansion of the solution u. of
(1.6) with respect to the regularization parameter £ and to prove that this
asymptotic expansion converges to the viscosity solution ¢ of (1.1) in some
appropriate topology.

The paper is organized as follows. In §2, a short proof of the existence and
uniqueness of a local solution u. of (1.6) is given. In §3, a formal asymptotic
expansion of the solution u. in the powers of ¢ is proposed. Then in §4 and
§5 some estimates in appropriate topologies where the expansion of w,. is
available are established:

e in L? (Q7), when % never reaches zero on [0, 1],
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e in appropriate weighted L?-Sobolev spaces, when % vanishes at a

finite number of points in [0, [].

2. Local existence in Sobolev spaces.

For every T positive, we introduce the spaces L>(0,T; L*(0,1)) and
L2(0,T; H'(0,1)) (see [LSU]).

The Banach space X = L*(0,T;L?(0,1)) N L%(0,T; H*(0,1)) is endowed
with the norm

|3 = sup/ xtd:v—i—/ /( > (x,t)dxdt.
0<t<T

The existence and uniqueness result reads as follows:

Theorem 2.1. Assume ¢ belongs to H3(0,1). Then there exist T positive
and a unique solution u. of (1.6) which belongs to X . Moreover, u. belongs to
L2(0,T; H3(0,1)) N L>(0,T; H*(0,1)) and 8“5 belongs to L*(0,T; H?(0,1))N
L>(0,T; HY(0,1)).

Sketch of the proof. We use Banach’s fixed point Theorem as in [LSU]. In-
deed, for every positive € and M, we introduce the set

we X | u(w,0) = (x), F4(0,t) = 52 (0), J4(,1) =52 (1),
u € L2(0,T; H3(0,1)) N L*(0,T; H?(0,1)),
Vs = G € L2(0,T: H*(0,1)) N L>(0, T5 H'(0,1)),

H HLOOOTHl()l "“ HLZOTH2(OI))+

+HUHL2(O,T;H5(071)) + 7o oTm200) < Me.

Ve is a closed and convex subset of X. We then consider the transfor-
mation T defined on V. ps by: w. = Tu, where w, is the solution of the
following linear parabolic problem:

(2.7)
U 2 We _ 2’(1)5 2
(1+ 5 (32@.0)) Bt = G%@0+536) Y@t eQr
we(z,0) = 0 Va € [0,1]
Qus(0,t) = 0 vt € [0,T]
Wwe(l,t) = 0 vt € [0,T].

For every w in V; py we notice that

£2

<
e2 4+ (94)2(z,t)
Hence from [LSU], there exists a unique solution w, of (2.7) in X satisfying,
after some straightforward computations

V(z,t) €eQr: 0<
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2
Oow,

ot

2
ow
|5

o | o

Loo(0,T;H1(0,1)) L2(0,T;H2(0,0))
2 2
+ Hwa”%z(o,ip;m(o,l)) + [[wellzoe 0,752 (0,0)) < Cn 1D Mr30,) T

where C) is a constant independant of € but linearly dependant of M. If T’
is sufficiently small, (2.8) implies that w. belongs to V. »s. Moreover T is a
contraction. Finally, Banach’s fixed point Theorem implies the existence of
a unique solution u. of (1.6). O

We are now looking for an asymptotic expansion in powers of the param-
eter € and estimates concerning u. and its derivatives in order to justify this
asymptotic expansion in adequate Sobolev spaces.

3. The asymptotic expansion.

A variational formulation of (1.6) is
(3.9)
Iy Jo (2 + (%) ) %z pdadi—
2 ! Ol Pz 02 et = o Yo e L2 (0,T; HY(0,1))
9ue (0, ¢) = 22 (0), Vt > 0,
Bue (1,) = f’¢ (1), vt >0,
L us(x,())—qb( )—O, Vo € [0,1].

Let us suppose that u. formally admits the following asymptotic expan-
sion in powers of

e (, 1) = up(x,t) + euy (x, ) + 2ug(x, t) + - .

We replace u. and its derivatives in (3.9) by their formal asymptotic ex-
pansions. We then deduce, when identifying the coefficients of e-powers,
that:

e The £%term v satisfies
fo fo <8uo> 9ug Lodrdt = 0, Vo € L? (0, T; H' (0, l)) ,
w(2,0) = 6(x), Vaelol,
which implies ug(.,t) = ¢ in L?(Q7).
e Then the e-term u satisfies
Jr (g ) D odrdt = 0 Ve L2 (0,T; HY0,1))
up (z,0) = 0, Vxel0,l],

2
which implies (%) (x)ui(z,t) = 0, almost everywhere in Q7.



136 YVES DUMONT

e The £2-term uqy satisfies
(3.10)

( 2
W (22) B = [T f1(52)" ot
Vo € L (0,T; H'(0,1)),

ug (z,0) = 0 Vo € 0,1],
du(l,t) = 0 vt >0,
Gu(,t) = 0 vt >0,

which implies

09\’ 0%¢ .
(81‘) (w)uz(z,t) = tﬁ( x), almost everywhere in Qr,

when ‘%(aj)‘ > 0, for all x in [0,!], or

4 2
(gi (az)) uz(z,t) = (gi (v )) gj;b(l’)t, almost everywhere in Q,

when ‘%(w)‘ >0, for all x in [0,].
Finally, we have
(3.11) us(z,t) = ¢(x) + 2ug(z,t) + O(e3).

We now have to find the appropriate topology in which the asymptotic
expansion (3.11) takes place.

Let us define we(z,t) = us(z,t) — ¢(z). Then w, satisfies the nonlinear
problem

85;8 - 52+(355+gi>)2 (88255 + Lﬁ) = 0 inQr,
(3.12) we(z,0) = 0 Vz€]0,l],
e (0, 1) 0 Vtelo,T],
Q(lt) = 0 Vtelo,T]

A variational formulation of (3.12) is
(3.13)

S L 2w ot 4 L G fo S (22)? 02 ot —

—Jo fs (5% + M) pdxdt =0 Yy € L2 (0,T; H'(0,1)) .

In §4, we study the case ’ ¢ ’ positive for all z in [0, ], and in §5 we study

the case ‘g—ﬁ(x)‘ nonnegative for all z in [0, ].
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4. The first case.

Using (3.13) with adequate test functions and after straightforward compu-
tations [D], we obtain:

Lemma 4.2.

=

1) The sequence ( 8“’5)5 is bounded in L*(Qr) N L>(0,T; L*(0,1)).

e Oz
2) The sequence (E%agf)e is bounded in L?(Qr).
3) The sequence (g%o.zs)E is bounded in L*(Qr) N L*°(0,T; L?(0,1)).

From the previous Lemma, we deduce:

Theorem 4.3. If ¢ belongs to H3(0,1) and ’%’ is positive in [0,1], the

sequence (a%ws)€ converges weakly in L*(Qr) to the solution ug of (3.10).

4.1. Further estimates and strong convergence. In order to make sure
that the asymptotic expansion (3.11) is available in L?(Q7), we define 9. =
ue — ¢ — £2ug. Our purpose is to derive some estimates on . which satisfies
the nonlinear problem

(4.14)

9. 20us g2

+e€
t t 2
B e(Frgee)

x<§§f+§27‘é’+82?;;‘22> = 0 VY(z,t)€Qr
Ue(x,0) = 0 Vz€]0,(]
e (0,1) 0 Vtelo,T]

Pe(l,t) = 0 Vtel0,T).

Using (4.14) with adequate test-functions and some straightforward compu-
tations [D], we deduce the following:

Theorem 4.4. Assuming that ¢ belongs to H3 (0,1) and ’%’ is positive in
[0,1], we have

1) the sequence (E%wg)g converges strongly in L*(Qr) to the solution ug
of (3.10),
2) the asymptotic expansion (3.11) is available in L*(Qr).

5. The general case.

We suppose that ¢ at least belongs to H3(0,1) and we allow % to vanish at a
finite number of points of [0, !]. We are first going to prove some intermediate
a priori estimates on w. = us — ¢, in order to obtain similar results to the
ones obtained in the first case. The proofs are quite long and for reader’s
convenience we only develop some of them.
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Lemma 5.5.
1) Assuming that the solution w. of (3.12) is smooth enough, it satisfies
the following inequality
Owe
Yot
2) Assuming that the solution u. of (1.6) is smooth enough, it satisfies
the following inequalities

>0, a.e., in Qr.

0¢ Ou, .
— > .€e. .
gz ot =0 aein Qr
Proof.
1. Define
B @8% 0%¢ Ow, g2 0%¢ 0%u,

Ve = o =+ = — 373 A2 Y (z,t) € Qr.
ox? ot ox? Ot 62_’_(%) ox? Ox

Since u. (x,0) = ¢ (x), we get ve (x,0) > 0 for all z in [0,1]. We differentiate
the previous equation with respect to ¢ (assuming that u. is smooth enough).

2
After some computations and multiplying by (%) , we obtain
2 Oue 2 @ 281)5_52 2y Oug 2 627<b 282115
Ox Ox? ot Ox 0x2) 0z
ou\2\ 82030 [ 926\ ? Oue O%u. \ v
2 2 2 £ - r= v i € € €
e ((6 +<8x> >8x28x3+(8x2> Or 0xz? | Oz
dug\ 2 PBo\: 0% 8%
2 2 €
= o) _Z27X7 "
© (5 * (896) ) ( <8x3> 924 92 |
03¢ 0%¢ Ou. 0%u.

023 022 0z 02 °

Let wey (z,t) = €“tv. (2,t), with o < 0. Then we, is the solution of
2 Oug 2 @ 2 OWeqy 2 O Wey
Ox Ox? ot Ox?
du\2\ 920 93¢ (926 ? Ou. 0u. \ Ow
9 2 2 € v Yy v v ¥ 3 £ eo
e ((6 +<8ZL‘> >0$28x3+<8x2) Jr 0x? | Ox
dus \ 2 Bo\? 9 8%
2 [ 2 €
= o (%) _Z2¥7 % i
c (E +<8£€) > ( (8x3> 924 922 |

3¢ 92¢ du. 0%u ou-\2\ [9%0\>
20 QO @ 5 € 2 € o9
* <2€ 023 022 0x 022 O\ T <033> (8:52) Weo

—1—252
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Assuming that we, is smooth enough, we choose |o| large enough such
that the right hand side of the last equality is negative, at least at the

points where 3272’ # 0. At t = 0, wes (2,0) is nonnegative. Suppose that

wey becomes negative in Qp. Then it reaches a minimum 3 at some point
(Zeo,ter). Due to the boundary conditions, we derive

Weo (0,8) =0 = weo (I,t) and wey (z,0) > 0,
which imply that (z.,,t.») belongs to ]0,1[ x ]0,T]. At this point, we have

ow ow
8;0 (3750'7 tEO') < 0, a;U (xaow taa) =0,
0w
Weo (1'5077560) = B < 0, Wga (-Tsoatsa) > 0.

This contradicts the fact that w., satisfies the equation above. Then wg, is
nonnegative in )7, hence v., which implies

0%¢ Ow, B 0%¢ Ou,

_r N > ; .
or2 ot~ ox2 ot~ M eT
Since w (z,0) = 0, we deduce
9% 9*0\° o,
Z T > ; e Owe . '
o2 We =2 07 m QT - <8x2) We ot m QT

2

Finally, using the fact that (%) vanishes at a finite number of points, we
obtain the desired result. Il
2. The proof of this assertion is very similar to the previous one; it suffices
to consider

¢, | Oue
= L)

ox ot

ve(x, t) (x,t), V(x,t) € Q.

O

5.1. Some estimates. Let us start the proofs of the estimates on (we). .

Lemma 5.6.
1) (we), is bounded in L*(Qr) N L> (0,T;L?(0,1))
2) (%)5 is bounded in L*(Qr) and in L™ (0,T;L? (0,1))
3) (l‘%f aa“f)e is bounded in L*(Qr).

e Ox

Proof.
1.2.3. We set ¢ = 85"; in (3.13) and some straightforward computations
imply the results. O
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Lemma 5.7.
1) (Z25%w.) is bounded in L*(Qr)NL> (0,T: L2 (0,1)) and in LY(Qr)"
L*> (0,T; t (0,1)) .
L%%‘%) is bounded in L*(Qr) N L*> (0,7 L*(0,1)) .

1/4
(1/ 8—¢ “’%ue) is bounded in L*(Qr) and in L* (0,T; L*(0,1)) .
L
e3/4

7¢> 8(;?5%) is bounded in L?(Qr).

(53/4 %If 67(75 E> is bounded in L*(Qr) and in L™ (0,T; L (0,1)) .
3
(1/ s 5> is bounded in L*(Qr) N L*> (0,7 L*(0,1)) .
>
Proof. 1. Using the equality

g2 0%u, B 2 arcta aug
82_‘_(%)2 022 Cox \MM 2o

a variational formulation of (3.12) can be written as

(5.15) foT Ol 6525 pdrdt = 5fOT f(f a% (arctan (é%ﬁ;)) wdzdt,
Vo € L?(0,T; H' (0,1)) .

4
Setting ¢ = <%) w? and integrating by parts with respect to x, we obtain
4 T 4 7!
:/ sarctan( 8u5> <8¢)> w3 dt
L4(0,l) 8:6 al’ 0
10u.\ 8% [0¢\° 3
4 b
5/ / arctan (6 o ) 922 \ 92 w2dzxdt
4
— 35/ / arctan (6 85;:) (gi) %ﬁawgda:dt.

Since 8“6 (0,t) = ET(b (0) and 65;; (I,t) = g—ﬁ (1), we have

l
1ou:\ [0\*
lsarctan( 6;) (81‘) w?]o

:/15232‘;5 <5¢)4w3dx
0 224 (g%)anQ Ozx €

! 109\ 8%¢ (96\°
+45/0 arctan< 89:) 92 <8$> widx
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t 1 0 06\ * dw
+ 3¢ | arctan ¢ —¢ £ 2d
0 cedxr ) \ox) Oz

4

Then

1|99
4| 0x LA(0,])

_45/ / <arctan <6¢> — arctan <6%§>> 92 ( > 3dxdt
—1-35/ / <arctan <¢> — arctan (5882;8> <8¢> (?;;6 2cl dt
2 92 4
/ /0 26;25 (8?) widadt.

Z‘

we (., 1)

Since -5 T <arctanz < ” , we estimate

P\ 10u.\\ 8%¢ (06)° K
45/ /(arctan () arctan (5 8x>> 922 \ ap Cdxdt
4
< 0152 —I—/ @we dt,
0 |0z L4(0,])

77¢ _ Ou, 00\~ Owe 2
35/ / <arctan< ) arctan< 81‘)) <a$> &U cdxdt
4
< Che? + / %we dt,
o |0z L4(0,])

due to Lemma 5.6 1).
Then, using the fact that 62“172362 < 1 for every real x, we compute

4

2 T
/ / (8¢> a—?wﬁ’dwdt < Cse? + / %wg dt.
0 82 ox ox 0 ox L4(0,l)
At last, we obtaln
1 4 4
n Ha(ﬁwif ('a T) < C’452 + 3/ a¢ dtv
L4(0,0) 0 8$ L4(0,l)

from which we deduce, using Gronwall’s Lemma, that (\1[ g¢ w5> is bounded
in L*(Q7) N L> (0,T; L* (0,1)) and then in L*(Q7) N L> (0,T; 12 (0,1)).
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2. Setting p = <@> aa“f in (3.13), we have

2
(5.16) / ¢ &,us 0¢ Ju. Ow, gt
0 8$ at L2 Ol 8:1: 51: at LQ(OJ)
9¢ Ow, 2 /T L Ow, O 02 B,
T 2 i
’ 0 0 N aon T2 N Sy 0r 0w 0wz ar

0%¢ 0w,
/ /(835) 922 Ot ddt.

We compute

Tl Qw, 8¢ 92 dw, T du. O 82¢ dw,
2 —- = 2 -
/0 | Oz oz 022 ot ‘vt /0 | Ox o 022 o1

o () e

We combine the last term of the previous equality with the right hand side
of (5.16) and we estimate these two terms in the following way

L ou, 8(/5 0%¢ Ow:
022 6t
0¢ dug O

9¢ Jue Owe dt + Ce?,
Ox Ox Ot £2(0,0)

0%¢ 0w,
< ) 0 O

0 0?
/0<3i> a—ﬁwa(.,T)dxdt

since ¢ belongs to H3(0,1) and (\[ Bfw5> is bounded in L* (0,T; L? (0,1)),

Lemma 5.7 1). Finally, we have

dx dt‘

0
<1/
_2520

=3 < Cav/e,

T 2 T 2
/ % Ow, b+ % / 87¢ Oue Ow, gt
0 aLU 8t LQ(OJ) 28 0 8:13 333 325 LQ(O l)
2
+ 5 ' a¢ 80)6 < 03\/57
Oz Or £2(0,0)

from which we deduce that (L/aﬁ
L*(Qr).

) is bounded in L (0, T3 L2 (0,1)) N
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3. 4. Setting ¢ = (@) (we)zagf in (3.13), we have

dt + — dt

520

(5.17)
9 2
% " Ow,
ox ° ot

/T
0 L2(0,0)
Tl Ow:\? [0\ * dw.
2 3 =
aff () () S
T w06\ 0w,
+/0 L on ) <8m) e

T b gw. o (06> 8% Ow,
4 DY =) —
* /0 0 Oz (we) <8a¢> 0x? ot dudt

0%¢ 0w,
/ / <8:c> a22 o vt
We compute the third and fourth terms of (5.17) as
Owe o, 0w
/ / () (we) o atd xdt
Ow, 0¢\ "~ Ow,
w2 [ [ (5 (5)

ey (22) et 2

L2(0,1)

L (G) () by

Using the fact that w5 a‘uﬁ >0, a.e. in Qp, see Lemma 5.5 1), the last term

of the previous equahty is positive. Then, using the equality 8“’5 = % — %,

we compute the fifth term of (5.17)
Oue 99\ °® 92¢ Ow.
/ / ) <8:1:> ox? Ot dwdt
8u5 06 \> 926 Ow,
— 4 _ __
/ / we) <6x> ox? Ot dwdt
82¢> Owe

% e O ?
oz oxr Ot

L2(0,])

1
2
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The previous terms can be combined with the right hand side of (5.17)
Then, having in mind Lemmas 5.6 3) and 5.7 1), we estimate

aug 89\ * 82¢ dw.
/ / we) (m) 922 op vt

0%¢ 0w,
(83}) dxdt

< 03527

o2 Ot
B 3 o9\ " 0%¢
3 /0 (@e)" (- T) <8x) 8x2d
§C4€ﬁ.

Finally, we have

2 2
/T 9\?  Ouw. P /T 99\ ? du. dw. W
o \az ) “ o = or) or ot
L2(0,0) L2(0,0)
06\2 0 ’
We
- . (., < .
((%) 5 (D (4 T) Csev/e
L2(0,1)

This implies that (631/4 (%ﬁ) %“;Ewg> is bounded in L2(Qr) N L*(0,T;
L%(0,1)) and then <831/4 (@) 85)’5 wg) is bounded in L?(Qr).
3

ox

4
5. 6. Using the same test-function ¢ = (%) w? aé‘;f, we now compute

2 2
/T 9\?  Ouw. it / oue (0\?  Ouw.
0 Bx We 8t 52 0 “

ox \dz) ~° ot
L2(0,1) L2(0,1)

Bue 96\ 2 ’
3| et (52) et

dt

L2(0,0)

foler Owe
< > ey dxdt
o\’
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s ((g¢ <z>)5w§ 1.0 % 1.0 - (52 <o>) 2 (0,1 % <o,t>> i,

since ‘3“5’; = gi?ft? ‘987;5 (I,t) = 8¢ = (1), 8“5 (0,t) = (O) Using the fact that
we(z,0) = 0 and assuming that we is smooth enough we have
(5.18)
2 2
Tl 06\?  Ow. Ou: (09\®  Ow.
/0 (6&0) “= ot d+ /0 0z (m) “= ot dt
L2(0,0) L2(0,1)
~3 |50 (32)
L2(0,l)
4
Ty
2
by
ot
= 2/ / ( ) Owe 8wadxdt
Ox
9¢ > 9¢ 2
. ((a o) un-(2o) zon).
We estimate the second term of (5.18)
Oug 4 Ow,
[ (G) () s
2
1 8U5 8¢ 8&15 2
~4e? Jy || Oz <8x) T dt + Cie”,
L2(0,1)

see Lemma 5.6 2). The third term of the right hand side of (5.18) is estimated

2
8u5 <> 0% 28w5d @t

or ) 0x2 We ot
9 2
Oug 67¢ " Ow,
oxr \ Ox ° ot

L2(0,1)

1
_452 0

dt + Che?,

since ¢ belongs to H3(0,L) and due to Lemma 5.7 1). Then we estimate
the fourth term of the right hand side of (5.18)
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8ug ( ) 8% 8% dndt
ox

837 ° ot

1
_452 0

Oug 8<Z> 0w€

2
9z 02 ot di+ Cse”,

L2(0,0)

since (%“; )E is bounded in L?(Qr), Lemma 5.6 2). Using the equality % =

%Q;j — %‘f, we rewrite the last term of the right hand side of (5.18)

;((g%) 2en-(Lo) 3<o,t>)
:2/5(2;‘;) 005 (1) da +/l (‘2’;§>4%f<.,T>%";€<.,T>w3<.,T>dx

! 4 2
0¢ Ow, 9
— — W ST dz.
[ (5) (52) ot ema
Using Lemma 5.7 1), we estimate

l 8¢ 82¢ 3
<8:):> 2% 2 (z,T) dx

< C4€f

since (\}giwg) is bounded in L (O,T; L* (O,Z)) N L*™® (O,T; L? (O,Z)).

Then, having in mind Lemma 5.7 3), we deduce

! o 4 Ou, Ow, Ow, 9
/0 <8:c> <8x (,T)— e (.,T)) . (., T)w: (z,T) dz
) 96\ 2 ?
Ue
Se ) (52) )
Finally, we have

(222 2
0 ax wg@t

L2(0,1)

+ 058\/2;.
£2(0,0)

9 2
Oue % " Ow,
Oxr \ Oz ° ot
L2(0,])

1
dt + —
+420

2
Ou. o\ >
o (,T) <a$> we (., T)
L2(0,0)

dt

< 065\/5.

2
We deduce that (631/4%% (%) w5> is bounded in L*(0,T;L?(0,1)) N
£
L? (Qr). Using the previous estimate and Lemma 5.7 3), we deduce that

3
(1 (@) ws) is bounded in L>(0,T; L?(0,1)) N L? (Q7). O

)
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Lemma 5.8.

W= ) s bounded in L*(Qr).

is bounded in L*(Qr).

is bounded in L>(0,T; L*(0,1)) N L*(Q7).

=) %

2) <E71/487f (%)6 35;) is bounded in L?(Qr).
)
)

n (3.13) we obtain

8 2
Ow, Ow,
—_— t
( 81‘) £y ——dxd

[ Gy (Ge) () oty
/ / ax?( ) @? weddl
[ (%) (%) v

Using the fact that w, 85’; takes nonnegative values on QQr, we observe that
the first two terms of (5.19) are nonnegative. The fourth term of (5.19) leads

to
Lo%¢ dwe \ 2
o 022 <8x> ( Oz > wedadt

4
8(15 &ug
or ox

L4(0,1)

dt + Chev/e,

=12

due to Lemma 5.7 6). We compute the third term of (5.19) using an inte-

gration by parts and the equality a“’s = %1;5 — %

// 0 <ax> (%ﬁs)Qwsdzndt

4
1 00\~ Owe
—3/0 (&;) s dt
L4(0,0)
8¢ T 0w\ ? Oue
/ / 0x? <3a:> <8x) Oz wedwdt
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9% Owe \ 2
_/ / o <a$> (&6) wedadt.
Then we estimate
9% dwe \? du,
/ / 02 <) <8x> oz wedwdt

<a¢>> ow. |
ox ox
L4(0,0)
9%¢ Ow. \ 2
/ /8332 (696) <8w> wedwdt
(22|
ox ox
L4(0,0)

3 2
since (531/4 (%) w€> and (53/4 %1;5 (g—i) w5> are bounded in L?(Q7),
&€ 3
Lemma 5.7 5), 6). Finally we deduce

0 &us
6 /0 <6m) Ox

2
which implies that (531/3 (%) %“:’;) is bounded in L*(Qr).

< — dt
>~ 24 + 025\/57

< — dt
= 94 0 +C3E\/g7

dt < Cyev/e,
LA(0,])

12
2. 3. 4. Setting now ¢ = (%) 65”; in (3.13), we have, integrating by

€T
parts the third integral of (3.13)

2
TN 70\ dw.
/0 <8x) ot dt+5/o

L2(0,0) L2(0,1)
L ow, 9%¢ [0\ &ug &ug 06\ % 92w,
T l 92 12
B ¢ (99\"? Ouw.
= / / 022 (ax) gy Gt

Using the equality % 8“’5 = % — az, the previous equation can be rewritten

in the following manner
dt + —
2 /0

(5.20)
26\ % dw. ||°
<8x> ot

/T
0 £2(0,)

dt

6 2
Oou, % Ow,
Ox \ Ox ot

dt

6 2
Ou, % Ow,
ox ot
L2(0,])

Ox
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Tl ou. 926 [0\ B, Ow,
+12/0 /(%(%2(%) ddt+/ /

T 9% (99" dw

Then we estimate the third term of (5.20)

(

9¢

ox

Poue 026 0\ Ow.
(a) %
1 ou. [96\° ow. ||
L Ug vy We 2
=22 J, ||z (m) at at+ Ce%,
L2(0,])

)

since ¢ belongs to H3(0,1) and the fourth term of (5.20) gives

dzdt| =

awg 9\ P,
Ox otox

(%)

1
2

(-

The right hand side of (5.20) can be computed as follows

12
(5.21) 13/ /<a¢> 8%852% dt

B 826 due (9p\" dw.
—13/0 /Oaxzax <aa:> ot Mt

/T Y92 Ou. Buw. <8¢>10 Ow.
—~13 ~— -
0 ot

o [ [P () (20" 0
o Jo 0x% \ Ox ox

o 0x2 dx Ox \ Oz

dxdt

dzdt.

2
T)

L2(0,1)

12
0%w,

otox

Then we estimate the different terms in the right hand side of (5.21)

T 1926 Ou. [0\ dw.
13 /0 /Oaxzax <ax> gt dwdt

2
< L e (222
~4e? Jy || Oz \Ox ) Ot

L2(0,1)

0z2 0z Ox \ Oz ot

6 2
Ou, <8¢>> Ow,

or \ 0z ) ot

1 /T
< —
_482/0

L2(0,1)

T pl 92 10
13/ 0% Qu, Ow: (E)d)) 8w5d &t
o Jo

dt + 0182,

dt + Cse?,

149

dxdt
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T I 92 2 10
0°¢ [ Owe 0¢ Ow,
13/0 Aw(aﬁ (ax) gy Gt
<1 * o

2
since ¢ belongs to H3(0, L) and (531/8 <g—i) 85;5) is bounded in L*(Qr),
g

dt + Csev/e,
L2(0,0)

Lemma 5.8 1). Finally we have

2 2

T 6 T 6
/ 87¢ Ow, b+ 1 / Oug % Ow, gt
0 or) Ot 22 Jy || 0z \Oox /) Ot
L2(0,1) L2(0,1)
26\ % 0 ?
We
H(5) GEem|  sceva
£2(0,0)

6 6
which implies that <€71/ . (%x 881;5 85;:5> and (831/4 (%) 65;5> are bound-
&g 15
6
ed in L?(Qr) and <531/4 g—) %“;;) is bounded in L°°(0,7; L?(0,1)) N
L*(Qr). 0

3
1) (1 @) w5> is bounded in L*(Qr) N L (0, T; L*(0,1)) .

is bounded in L*(Qr) N L™ (0,7 L*(0,1)).

4
85‘25 w5> is bounded in L?(Qr).
> is bounded in L*(Qr) N L™ (0,75 L*(0,1)) .

)
)

o (12 ()
)5 w5> is bounded in L*(Qr) N L> (0,7 L*(0,1)) .

Proof.
12
1. Setting ¢ = (8—‘75> w2 in (5.15) and using the same type of computations

oz
T 3 |4
<Ce? +/ <%> We
0 83:

as in Lemma 5.7 1), we obtain
L4(0,])

00\’ ool
H(ax> e ()

L4(0,1)

dt,




THE e-REGULARIZATION OF THE MEAN CURVATURE FLOW 151

3
from which we deduce, using Gronwall’s Lemma, that | —i; 96 we | is
g3/4 \ O
3

bounded in L*(Qr) N L> (0,T; L* (0,1)) .

2. 3. Setting ¢ = (@) (wa)wg’; in (3.13), and using the same type of

computations as in Lemma 5.7 3), 4), we obtain

[y o] as o () 2eoel
0 ox © ot 2e2 J, “\ox/) o0x ot
L2(0,1) L2(0,1)
96\ * 0 ’
We 2
—_— . . < .
(81’) 8J;(,T)wg(,T) < Ce

L2(0,1)

oxr

This implies that <; (@) Qe %) is bounded in L (0,73 L?(0,1)) N

€

L*(Qr) and also that (; (%) 35’; w6> is bounded in L(Q7).

8
[s20} 2 0w
%) We g
6)

, we prove that

4. 5. Using the same test-function ¢ = ( and using the same

type of computations as in Lemma 5.7 5),

T 4 2 4 2
/ élb " Ow, it + 1 Oug 87<b " Ow, gt
0 ox ° ot 4e? Jo || 0z \ Oz © ot
L2(0,1) L2(0,0)
1o 96\ * ’
UE 2
- - <
+ 11122 (,T) <3x> we(.,T) < Ce”.
L2(0,0)

4
Then, we deduce that (1 (%) w5> is bounded in L>(0,T; L?(0,1)) N
3

e Oz

L% (Qr). This estimate with that of Lemma 5.9 2) imply that <; (%)5 wg)
is bounded in L>°(0,T;L?(0,1)) N L? (Q7). DE
Lemma 5.10.
1) (\} (gf) %“;) is bounded in L*(Qr).
€

8
2) (812881;5 (%) 85’;) 18 bounded in Lz(QT)-
€
8
3) (; (%) 8525) is bounded in L*(Qr).
1>
8
4) (; (%) %“f) is bounded in L*(0,T; LQ(O,Z)) N L2(QT)‘
€
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Proof.
. ol 12 Bw. \ 2 . .
1.  Setting ¢ = (%> (8—;) we in (3.13) and using the same type of

computations as in Lemma 5.8 1), we prove the desired result.

2. 3. 4. Setting ¢ = (@) 9w= i) (3.13) and after some computations, we

ot
obtain
T 8 2 8 2
1 / @ Ow, it + 1 Oug 87¢ Ow, it
2 Jo or) Ot 4e2 Jo || Oz \Ox /) Ot
L2(0,) L2(0,0)
1]l /06\* 0 ?
wWe 9
- -7 . <
2 <3:z:) oz (- T) < Cse”,
£2(0,)

which implies that <12 <a—¢> 8“; a(;f) and ( <gi’> ag”;) are bounded in
g

L*(Qr) and ( (34’) m) is bounded in L>(0,T; L?(0,1))NL*(Qr). O

Lemma 5.11.

1) (; <%>4w5> is bounded in L*(Qr) N L™ (O,T; L (O,Z)) .

ox

2) (1 (gﬁ) ad“;s we) is bounded in L*(Qr) and in L> (0,15 L* (0,1)) .
3

7
( < 8525 wg) is bounded in LQ(QT)-

(et

8
( (Td) w€> is bounded in L*(Qr) N L*> (0,7 L*(0,1)) .

T

)
<@> we) is bounded in LZ(QT) nL> (07T§ L? (OJ)) :
)

Proof.
16
1. Setting ¢ = (@) w? in (5.15) and using the same type of computations

oz
T o 4 4
< Ot —l—/ <¢> We
0 8$
L4(0,0)
4
from which we deduce using Gronwall’s Lemma that (i (g—i) we) is bo-
€

unded in L*(Q7) N L> (0,T; L* (0,1)).

as in Lemma 5.7 1), we have

4
we (., 71) dt

L4(0,1)

(&)
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2. 3. Setting ¢ = <@> (ws)zaé‘f in (3.13), and using the same type of

computations as in Lemma 5.7 3), 4), we have

/T ) " . ? it 1 /T ¢ " Q. dw. i &t
o \oz) “= o 2c2 J, "\ oz ) oz ot
L2(0,1) L2(0,1)
1706\ 0 ?
We 3
— — . . < .
+2 <8a;> (%U(’T)WE(’T) < Cse
L2(0,1)

This implies that <a\1/5 (%) %“g’fwg> is bounded in L (O,T; L? (O,Z)) N
g

2(Qr) and also that L (99 " ow. w. | is bounded in L?*(Q7).
f ox ot
g

0¢ 2 Owe

€ ot
type of computations as in Lemma 5.7 5), 6), we obtain

4. 5. Using the same test-function ¢ = ( w and using the same

2 2
TN 706\"  Ow. 1 (T oue 06\ Ow.
/0 (m) Vepr dt+252/0 oz (ax> Vg | ot
L2(0,0) L2(0,)
1o 96\ ?
Ue
L2(0,0)
P TP
<C’/ Ue <> We dt + Cge’.
L2(0,0)

7
We deduce that (18“8 <@> w5> is bounded in L*(0,T; L*(0,1)) N
3

ey/e Oz \ Ox
L*(Qr).
Moreover, using this estimate and Lemma 5.11 2), we deduce that the

8
sequence | —- 96 we | is bounded in L>(0,T; L?(0,1)) N L? (Qr). O
ey/e \ Oz
3

Lemma 5.12.
4
(;/4 (2)'s
5
50/4 ( ) w5> is bounded in L>(0,T; L*(0,1)) N L* (Q7).

9

> is bounded in L*(Qr).

%“;5w5> is bounded in L*(Qr) and in L™ (0,T;L?(0,1)) .

)

w
N~—
TN N N
mm‘,_,

VS
Q->
8 &

N———

9
E% (%) 852%)5) is bounded in L?(Qr).

£
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1
) (22

(1
2
Proof.
. ¢ 16 Hw. \ 2 . .
1.  Setting ¢ = (%> (8;) we in (3.13) and using the same type of

9
= (%) “"8) is bounded in L*(Qr) N L™ (0,T; L (0,1)) .

8—¢) w5> is bounded in L*(Qr) N L™ (0,T; L*(0,1)).

computations as in Lemma 5.8 1), we obtain the result.

T

(%) wiom]

L4(0,0)
T 20
= / € arctan 10ucy (00 w2 dt
0 € Ox ox 0
2 19
— 205/ / arctan (1 8u8> % <gi> widadt
20
—35/ / arctan<18u6> <gi> %we 2dadt.

Since 8“6 0,t) = (0) and 8“5 (1,1)

€ arctan 8ug
8

¢
= 2 _—
05 arctan ( b

20
2. Setting p = (%) w3 in (5.15) and integrating by part with respect to

r, we obtain

1
1

8—¢(l) we compute
19

ﬁ(gj) widx

+/0€2+<8¢> 62( T

: 10¢ (06\* 0wz ,
+35/0 arctan <58w <8x> 83: cdz.
Thus, we have

06\ ° !
<8$) We (7T)
L4(0,0)

T rl 1@ _ 2 19
o Jo \ —arctan (1 e ) Ox* \ Ox

\/

4
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T 20
arctan x) 8¢> Ow, 2
— 3¢ 1 3(;5 — Zdxdt
— arctan 78— 893
1>
/ /0

<a¢> w?dzdt.
Noticing that

" 1 0u, ¢ 10¢ " 1 1 Owe
arctan ( ——— ) —arctan [ —— | = arctan | —————————
e Oz e 0z £1 4 L090us g

€2 0z O

we have

>0
oxr —

. (1 1 8%) Ow.
arctan | —————
1 0¢ Jue
1+ &2 Oz 81;: Oz
and since 6¢ 8“5 >0 a.e., on Qp, Lemma 5.5 2), we get

1 Ow. \ dw. (06\*
35/ /arctan <51+ 1 06 ous 8x> o <8:c> wzdxdt > 0

€2 Oz Ox

Thus, we obtain

96\ ° !
<8I> We (-7T)
L4(0,0)

1 Owe \ dw. (06\ 2
+35/ / arctan( %d—¢ &U) oy (835> wZdxdt
T [l ; 2 )
< 20e / / arctan 6 0 ¢ gd:cdt
- arctan ) 513

4

‘e»-i—

M—IQJ

83:2

/ /0 8— <a¢ widxdt.

Since -5 <arctanx < g, we estimate

/ / (arctan <¢> — arctan (5881;€>> 22;3 (83@5) widadt

4
T 96 5
< 5 -
< Cie +/0 (61‘) We

LA(0,0)

20e

dt,
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due to Lemma 5.11 5), and since 82“372362 < 1 for every real x, we have

[ G () e
o <Zi>%f

dt + Cae",
L4(0,0)
due to Lemma 5.11 5). Finally, we obtain

T 5
< 0385 + 3/ (a(b> We
0 8$

5
and we deduce, using Gronwall’s Lemma, that (551/4 (g—ﬁ) w€> is bounded
g
in L*(Qr) N L> (0,T; L* (0 ).

4

dt,
L4(0,1)

LA(0,0)

3. 4. Setting ¢ = <@> (ws)zaa“f in (3.13), and using the same type of
computations as in Lemma 5.7 3), 4), we have
9 2
% Oue Ow,
Ox /) Ox Ot

2
TWroe\°  Ow. 1 /T
/0 (ax> ear | At as /0 e
L2(0,1) L2(0,0)
06\ ° dw,

This implies that <1 (gi) %“f w5> is bounded in L*° (O,T; L? (O,Z)) N
g

dt

2

< et
£2(0,))

L?*(Qr) and also that < L (gﬁ) 85‘25 w5> is bounded in L?(Q7).
3

18
5. 6. Using the same test-function ¢ = (%) w? 85;5 in (3.13), and using

T

the same type of computations as in Lemma 5.7 3), 4), we obtain

T 9 2 T 2
/ % Owe b+ 1 / Ou, (9gz5 Owe
o \oz) “= o 2:2 J, |0z \oz) “* o
L2(0,1)
Oue 1 (%Y |
or "’ ox eL

L2(0,0)
2
TN /06\? Ou.
< T
- Cl/ <3:1:> we ox
0 L2(0,))

dt

L2(0,)

1
4

dt + 0064.
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9
We deduce that <1au5 (g—i) wa> is bounded in L°(0,T;L*(0,1))N
3

g2 Ox
L?(Qr). Using the last estimate with Lemma 5.12 3), we deduce that
10
<512 (%) w€> is bounded in L>(0,T; L%(0,1)) N L? (Qr). O
g

Lemma 5.13. <; e <a¢> ) is bounded in L*(Qr).

£

Proof. We set ¢ = (a¢> (%‘;E)Qwe in (3.13) and we use the same type of
computations as in Lemma 5.8 1) to obtain the result. (]
Lemma 5.14.

1) ( ! (gf) %“3’; %“f) is bounded in L*(Qr).
3

12
2) (512 (%) 85‘?) is bounded in LQ(QT)-
€

Proof.
1. We set p = a—i 85;5 825)2 in (3.13) and compute
/T owe (00N ow |1 Tou 0w, oo\ ow [T
o || 0z \ Oz ot e Jo || 0z Oz \ Oz ot
L2(0,L) L2(0,L)
2 99\ 92¢ Ow.
=S () () Gatre
1 ) 6\ >
2//& (% ))(a) ot
0%¢ 09\ * dw.
//8(m<8x>8ddt
which implies
(5.22) 2 2
/T Owe [0\ ' duw. gia L / Ou: dw. (9" Ouw: 0
o || 0z \ Oz ot e2 Jy || 0z oz \ox ot
L2(0,L) L2(0,L)

Ow.- 09\ * 0% Owe |
G (5) Gt
Ow- o\ *
—4/0 <8x> (x,T) <8$> (x)dx
T 1920 (0w \? [0\ 2" Oue Ow:
_/0 /08562<8:E) <856> oz 8tdxdt’
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since % = %“E 8“5 . We estimate the first term in the right hand side

member of (5.52)
3 21 a2
19/ / Ow, @ %8w€dl‘dt
Ox ox? Ot
2
< Ciet + 1 /T (%)H Owe Ow,
< 2 ),

ox) Ox Ot
due to Lemma 5.13. Then, having in mind Lemma 5.10 4), we estimate the

fifth term of (5.22)
2 21
Lo2¢ (8w5> <8¢)> Ou, awed i@t

dt,

L2(0,L)

8:62 ox ox Oz Ot

< 025 4+ — dt.

or) Ox Oxr ot

2
<a¢> U Oue Ow. dw,
2% 2

L2(0,L)
Finally we get

2 2
/T 9\ " Ow: Ouw. e L /T 9\ " Ou. Ow. dw. i
0 ox dxr Ot e J, ox dr Ox Ot
L2(0,L) L2(0,L)
2
1 0o\ " [ 0w\ A
Z - . <
*% <3m) <89}> (~T) at < Cse’,
L2(0,L)

11
which implies that ( ! (gi) %“f 85’;) is bounded in L?(Qr).
3

11
2. Using the above estimate and the boundedness of < ! (gﬁ) %f%‘f)
1>

in L?(Qr), through Lemma 5.10 2), since % belongs to L>°(0,1), we prove
that the sequence (512 (gi) 85";) is bounded in L?(Qr). O
€

5.2. The weak convergence.

12
Theorem 5.15. The sequence (E%wg)s converges weakly in L2( (%) ,
QT) to the solution uy of (3.10).

Proof. In Lemmas 5.14 2) and 5.12 6), we proved that the sequences
10
(1 (gf) 85’;) and <€12 (g—i’) w8> are bounded in L°>°(0,T; L*(Q7))N
g €
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12
L*(Qr). Hence (aizwa)a and (E%aa‘f)a are bounded in L? <(§j§) ,QT).

Thus it is possible to prove the existence of x in this space such that
1 O\ 12
—ws —¢—0 X weakly in L2 —¢ ,Qr
g2 Oz
1 dw,

L x o [(00)"
?W e—0 E Weakly in L <<8x> 7C?T .

From (3.12) we deduce that for ¢ every in C°(0,T;C(0,1)) we have
(5.23)

LG Sronrt [ [
L L) S5

Since %"; —|— a ‘”5

/ / <8x) Qa;m drdt
_ O <8¢) 6@‘:5 gid dt—lZ/T/Olgj:; <gi)n %;EQdedt
[ ()
Then using the equality
2 2 2
(&) - (5) (%) 55
2
- (5) + oG e

the right hand side term of (5.23) can be computed

the second term of (5.23) can be computed as
Oug \ ~ Owe
oG ) (m) ar 7
14
L)
€
Ow. Oue (062 duw.
52//axax< > gt ¥hvdt
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Ow,

ST

Thus we obtain the following equality

YVES DUM

(3)

IONT

13
Ow,
pdxdt.
ot

(5. 24)
12 14
< ) Owe ddt+/ /<a¢) L —
12
1/ /&usﬁus 3¢ Owe odudt
g2 Or Ox ot
1 Owe [0\ dw.
z// <)adﬁ
a¢> 12 w:0p T 1 92¢ 9\ dw.

//Wf?dﬁ

Using Lemmas 5.7 2), 5.10 2) and 5.14 2), we estimate

a//W>

Or Ox
&ug
52
which implies
12
[ () o

14
Owe odzdt

dxdt

pdxdt

52/ /<8¢)
g//WY%%%
o (5e) o
62/ / ajx” awftago
J (%) 5 e
_12/0 A‘;if(gi)n %‘f@dmdt

12 Ow, Oue Ow,

o) wdwdt| < Cie/?,
B Ow, 1
< Chelld
ot ¥ S Cge™l
—e—0 0

e [ s

—:-00
—:-00
—:-00

—e—0 0.

Therefore, when e goes to 0 in (5.24), the above convergences imply
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Tt rag\ M ox a¢>1282¢
= odzd dad
/o/o<a> = //( 92 7Tl
Yo € C°0,T;C0,1)).

Hence, by a density argument, this proves the convergence indicated in the
Theorem. U

5.3. Further estimates and strong convergence. In order to make sure
P
that the asymptotic expansion (3.11) is available in L? ((%) ,QT>, for

some exponent p, we define 9. = u. — ¢ — e2us, which satisfies the nonlinear
problem

(5.25)
W | 96 ,0u 2\ 89,
//(1+( 2 4t 52)") e
9. 8¢ LOuz\?\ Ouy
2 2 UU2
—i—//(e +<8az 8x+€ ax>>atg0dxdt

2 2 2

0x2 Ox?
Lemma 5.16. Suppose that ¢ belongs to H*(0,1). Then

10
1) (512 (%) 7}5) is bounded in L*(Qr) N L> (0,T;L*(0,1)).
3

2) (; (%)5 %%) is bounded in L*(Qr).
3
3) (i (%)8 %%) is bounded in L*(Qr) N L*> (0,7 L*(0,1)).
4) (551/4 (%)5 19&) is bounded in L*(Qr) N L> (0,13 L*(0,1)) .
3
Proof.

10
1. Using the fact that 9. = w. —c%us and that (512 (%ﬁ) w5> is bounded
g
in L*(Qr) N L*> (0,7 L*(0,1)), Lemma 5.12 6), we have

10 10 10
@), =G (5)
X

10
Since <%) ug belongs to L2(Qr) N L™ (0, T; L? (0, l)), the last inequality
proves the result.

+ &2
L*(Qr)

Ve

We

L2(Qr) L2(Qr)
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2. Since %ﬁs = %“; 52%22 and < (gi) %‘f) is bounded in L*(Qr),
3

Lemma 5.13, we have
9" du
Oz Oz

99\ ° 99, 99\ ° O
or ) Ox -
L4(Qr)
3. Using a similar argument and the fact that ( (gi) %“;5> is bounded in
15

ox

Y

L4Y(Qr)

LY Q)
which implies the result.

8
L2(Qr)NL>® (0,T; L? (0,1)) , Lemma 5.10 4). and assuming that (%) Buy

r

8
belongs to L*(Qr) N L™ (O,T; L? (O,Z)), we prove that (; (%) %i5> is
bounded in L?(Qr) N L™ (0, T; L? (0, l))
5
4.  Noticing that <€51/4 <%) w5> is bounded in L (O,T; L (O,Z)) N
g

L*(Qr), Lemma 5.12 2) and writing
96\’ , 99’ 99’
Ox : oz ) “* oz ) "

5
we prove the last result, assuming that (%) uy belongs to LY (Qr). O

+ g2
LY(Qr)

<

LY(Qr)

LY(Qr)

Lemma 5.17. Suppose that ¢ belongs to H*(0,1). Then

%ﬁj) is bounded in L*(Qr) N L™ (0,15 L*(0,1)).
3

( ) 805) 1s bounded in LQ(QT)-
€
13
3) (1 (iﬁ) 8“66195> is bounded in L*(Qr).
£
4) <512 (%) 195> is bounded in L*(Qr) N L™ (0,15 L* (0,1)).

Proof.
26
1. 2. 3. We set p = <%) 865 in (5.25)

(5.26)
1 e, 09 H0u 2\ 706\ [09.\?

[ /(H( i m))((%) 9 o

/ / Phe | D¢ 0%us\ (0 99,

022 "oz TS 02 ) \ox) o
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T ol Y. 0o Ous\ 2\ dus (82 9V,
2 g e 27 e
+/0/0<€+<6x+8x+6 83:) ot <6x> ot

Using the fact that ug satisfies

[ L) o [ ()" o

for every ¢ in L%(0,T; H'(0,1)), we simplify (5.26) as

1 06 »0u\*\ (06 (99\*

/ / <1+ ( oz " ° 8x> > (837 ot ) et
o Oug \ Oug\ Oug [ O

2 €4 2772 e) =22 (22
+//<6+< x+€ 6x>8x> ot <0:L‘) 8
/ / L 202 Qus (09 2 99,
833 Ox ) Ot \ Oz ot
/ / 929, 26%2 0\ % 90, .
8x2 0z oz ot B

26
We then integrate by parts the integral fOT é %2;926 <%) agf dzdt with re-
spect to the x variable

[ 15 (5) %

0z2 \ Oz ot

B 0\ ?° 02¢ 09,

__26/ / ox <8x> 922 Ot
8¢ 26

G ()

Thus we obtain

Tl 79\ " 09, Oue [ 0d\ " 90,
(5:27) /0 <3:U> ot dt +52/0 oz <0x> ot dt
L2(0,0) L2(0,1)
1] 06\ a9 ?
Y a.. 8(‘7T)
2 ox ox
L2(0,1)

_ 2 / / duz <g¢> e i
/ / < QauQ> du uy <a¢>26 9.

or ot \ Oz ot
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T l b o, Oug\ dug 09,
SVACNC wﬁmm

726 / <a¢)25 9%¢ 00 9.

) 022 Oz Ot
e / / 205 <6¢>>26619
0z2 \ Oz ot

We estimate the different terms in the right-hand side of (5.27). The first

24
term is estimated using (3.10) with ¢ = (%) %Sf, assuming that this

function is smooth enough
LG
ot \ox ot

Tt 0% <a¢>)24 Y.

o " 022 \oz) ot

ox

1 (T /0o\" 09

< Ciet+ = - :

< Cie +4/0 ((%U) 5
Qu: 09 Owe

Since % +e2du2 — G — 5. = 5, we deduce the following estimate of the

ox
. 26
second term of (5.27) using once more (3.10) with ¢ = %% <%) d{;’f,

dt.
L2(0,1)

assuming this function is smooth enough
//8% 20un (99 dug 9.

o0 500 )\os) ot
/T " Que Qwe (99> 929 0V,
o Jo Ox Ox \ Oz ox? ot
<1/T dus (9 Y.
- 252 0

dx \ Oz ot
since ¢ belongs to H?(0,1) and ( (gi) %“;5) is bounded in L%*(Q7),

ox
3
Lemma 5.10 4). The third and fourth terms of this right hand side member
of (5.27) are computed in the following manner

06\ % 924 09, 09,
(5.28) —26/ /( ) 327 5 Bt

// 0\ (99 | 5 0us Dus DV
or | ° oz ) ot ot

dt + Coe?,
£2(0,0)
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:_27/ / <a¢>>25 926 09, 09
Ox2 dx Ot

0\ % Ouy 02¢ 99

/ / ( > Ox 0x? Ot

due to (3.10) with ¢ = (@) (aﬁf + g2 8"?) %. We observe that the last
term of the right hand side member of (5.28) is trivially evaluated by

09\ % 0% 9.

<5 (5) 5%
T /06N av. |
<8az> ot

12
since (%) % belongs to L2 (Q7) . Let us now estimate the first term of
the right hand side member of (5.28)

27/ / 9\ * 9%¢ 00 9.
ox2 Ox Ot

T 13
_ / d¢ 9. ||
- 0 83: 81‘

0% __ Owe 2 du 1 (0¢ Owe . . 2
since G = See — 252 < (61) - ) is bounded in L*(Qr), Lemma
€

1
!

dt + Coe?,
L2(0,1)

dt + Cse?,
L2(0,1)

5.14 2) and assuming that (%) 8"2 belongs to L?(Q7). Then the fifth
term of the right hand side member of (5.27) is evaluated in the following

manner
a6\ *® 09,
8:52 ox ot
1 [T\ /0s\" o0
<Oyt + = - <
< Cye™ + 4/0 (8x> 5

since the hypothesis on ¢ and (3.10) imply tha %2“22

dt,
L2(0,1)

()",

QT). Finally, we obtain

/T % 13 8'[95
0 ax 6t

dt

96\ " du. 0. ||
Oz Oz Ot
£2(0,0)

1 [T
dt+2/
€ Jo

L2(0,1)
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13 2 T
422 aﬁa(,,T) < Czet + 2/
ox ox 0
L2(0,1)

dt.
L2(0,1)

% 13 8195
ox ox

4
p)

13
d¢ o9 :
(%) 82:5 ) 18
€

13
bounded in LX(Qr) N L™ (0,T;L2(0,1)), <1 (%) 85’?) and
€

Using Gronwall’s Lemma, we deduce that the sequence (

g2 T

13
(613 (%) %?%%) are bounded in L?(Qr).
€

13
2] Ve :
4. This is a consequence of the boundedness of < L ( ai’) aat ) in L2(Q7),
15
through a Cauchy-Schwarz inequality with respect to the time variable. [J

Lemma 5.18.

)
N~—
N
(L)
3=
~|
N
/N
QI
SRS
~
i
w
<
(L)
Q
9
N~
o~
&»
<
S
<
3
QU
m
ISH
o~
3
~
N
—
Q
S
N~—

Proof. Set ¢ = <%) V2 8{% in (5.25). This leads to

dt
L2(0,1)

(5.29)

T 13 T

L (e () () e
- L () o

09\ due ) 0.
Ox o ° Ot
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We compute the fourth term of (5.29) as
_/T/ 82’&5 % 26192319
ox? \ Oz ° ot
_ / / Ou, agb % 02%2619
Ox? " ° Ot
Oue (99\*° 9. | 9.
2 f [ (w) T
ue [0\ 02w,
o 5 () g
ue (0p\° 5 0%uy
+5// <a$) 1958 = dadt
u. (9\* 00,
_/0 [696 <8x> 92 5 dxdt.
The second term of (5.30) is evaluated as

aue a¢ 5 924 192819
dx2 ¢ ot

(5.30)

S 0169/2’

5
since <851/4 (%) 195> is bounded in L* (Qr) N L™ (O,T; L* (0, l)), Lemma
E

5.16 4), and (512 (gg) Oue 85’}) is bounded in L?(Qr), Lemma 5.17 3).
3
We now estimate the third term of (5.30)

8u5 <a¢>26 99, 99,

oc ) or U ot < Gy,

5
since <551/4 <%) 195> and ( (gi) 8;) are bounded in L* (Qr) N
1> 15
13
L% (0,T; L% (0,1)), Lemma 5.16 2), 4), and<1 (%) %%%) is bounded

in L2(Qr), Lemma 5.17 3). We compute the fourth term of (5.30) integrating

by parts and using the equality gi“g; = gigi

ous (9p\ % 02w,
/ / (81‘) Uz wr Hdt

Que () (8¢)130< ol
8.17 .y % e\
£2(0,0)

1
2
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[ (5 (@) %

The last term of the previous equality can be estimated as

LG (@) 5
[

13
since (613 (%) awaﬂa) is bounded in L?(Qr), Lemma 5.17 3). The fifth

06\ " ou. ||’ ]
% ax ,198 dt + 045 B
£2(0,0)

oxr Ot
€

term of (5.30) becomes

aug P\ ., 0%uy
(a> 9202 gy

T
</
0

dt + Cseb,

a9 13 8u€19 2
Ox or °©
L2(0,])

since

m =

5
%i) 19€> is bounded in L? (Q7), Lemma 5.16 4), and assuming
13
9

that (g—i) g & belongs to L (QT)
(3

Using (3.10) with ¢ = <@) V2 agf in the first part of the fifth term of

(5.29), we have

Bt Ox ° ot
827425 % B 92 00
g 0x2 \ Ox ° ot

99
= 2/ <8w) e 0t

26
due to Lemma 5.16 1). Using (3.10) with ¢ = (%)2 (%) 192% and the

dt + Cgeb,
£2(0,0)

T

fact that ¥, = w. — €%uz, we have in the second part of the fifth term of

(5.29)
aus S Ouy (06\* 1,00
ot \ox) ° ot
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2% (9N 920
(%U 022 \ Oz ¢ ot
96\ due , 9.
ox dx ° ot

dt + Creb,
L2(0,0)

1 T
<
_282/0

due to Lemma 5.12 5). The third term of (5.29) can be computed in the
following way

5
since <651/4 @> 195> is bounded in L* (0,T;L*(0,1)), Lemma 5.16 4),

0
and (12 (“l‘ﬁ> 195> is bounded in L% (0,T; L2 (0,1)), Lemma 5.16 1).

OO\ (99, .

3/ (83) (ax (9.) ) (. T)dz

since <1/ (a ) > is bounded in L* (O,T; L* (O,Z)), Lemma 5.16 4),
&95)

o (2 (2)

Finally, we have

Tl 7o\ "™ 09, 1 /T
) v t
/0 <6x) ° ot d + 52/0
L£2(0,0)

Que () (%)1319( |
ax .y % e\
£2(0,0)

< 0969/27

is bounded in L (O,T; L? (O,Z)), Lemma 5.17 1).

dt
L2(0,1)

90\ due , 0.
Ox or ° Ot
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T 13 |2
§4/ Ou, % 9.
0 8113 817

L2(0,1)
13
From Gronwall’s Lemma, we deduce that (18“5 (6—‘25> 195> is bounded
g

dt + Choe”/?.

g9/4 0z \ Oz

in L2(Qr)NL* (0,T; L2 (0,1)). Moreover, (1/ (@) 19585’;;> is bounded
I3
in L2(Qr). a

L L (2)"9.) s bounded in 12
emma 5.19. | 75 (%> ¢ | is bounded in L*(Qr).
3

Proof. Set p = (ﬁ) 19?8819; in (5.25)

o\ " . 9. 1 (7
<ax> = ot d+ /0
L2(0,0)
/ / 82u. a¢ 26 9209,
Ox? ° ot
du uy (06\*° 00,
2 € 2 (V¥ 2 —
+/0/0<5+<89:)>8t <8x> U=y dwdt =0.
Using the equality u. = w. + ¢, the third term of (5.31) leads to
(5.32)

/ /82% o\ %6 192819
oz \ oz ot
/ /82% d¢ 26?92619 / /8% 2928?9

0 ox2 \ oz dx2 \ Ox ° ot

We estimate the last previous term as follows

L2 (ng)%ﬁ?(‘)ﬂ

(5.31)

’

dt
L2(0,1)

09\ due , 00
Ox or ° Ot

< 0169/27

o 022 \ oz )

T

5
since <€51/4 (%) 195> is bounded in L*(Qr), Lemma 5.16 4) and
3

1 8¢ 13 oY . . 2 . .
= (%) 5 | is bounded in L*(Q), Lemma 5.17 2). Using the equality
€

88’9; = % 288“152, the first term of the right hand side member of (5.32) is
evaluated as
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B /T / Pw: (06\* 500
0 ox? \ Oz ° ot
Tt 0w, (06\* 0w
5.33 — e 2 0e
(5:33) /0 / 922 <8x> V=gp et
Tt 92w, (09N ,0us
2 e (¥ 2772
“/0 /0 922 <8x> Ve gy et
We compute the first term of (5.33)
T 92w, (0p\* 0w,
_/ / 0z <3m> Ve 8td vdt
dw. [0\ > 82¢ 20we
[ (3) St
26
+2/ /<a“€> (&z)) 9.2% qzat
ot
(5.34) 96\ 26 au o
2 OWe
2¢e / /< > “ % ot dxdt
/ / Ow, aqb 26 319
ot

Qe oy (‘%) 9. (., T) 2

oz oz ’
L2(0,0)
since 88 = %“f g2 83“2 We estimate the second term of (5.34)
dwe 06\ ?® 8%¢ 0w,
2
6/ / <8Jr> 83:2195 ot ddt
T 11 5
< C/ 09 0w, Owe ¢ 9. gt
0 or Oxr Ot Ox
L2(0,1) LA(0,0)

é C259/27

5
since (512 (gi) %“; 85";) is bounded in L? (Qr) and <€51/4 (%) 195> is
&€ 13
bounded in L*(Qr), Lemmas 5.14 1), 5.16 4). We estimate the third term
and the fifth term of (5.34)

(5.35) //(8“’5) ( ) ﬁaa%dxdt
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5 ) e
LG )
o () () e

since ¥. = w. — €2uy. Then, using (3.10) with ¢ = (%) Je (88“;5)2, the
second term in the right hand side of (5.35) gives

IO
() () S

Tt (0w \? (00\* %9
2 e
26/0 /0<8a;> <8x> o o Vedzdl
2
T 8¢ 5 a¢ 10
< Og? s s
<= [1)(%) (5:)
< 03567
5

since (; (g—i) %“g’;) is bounded in L*(Q7), Lemma 5.13, (;2 (gi) 295>

is bounded in L? (Qr), Lemma 5.16 1). Using % 8‘”5 = % - %, we estimate
the first term in the right hand side of (5.35)

OO

since ( (gi) 8;) is bounded in L* (Qr), Lemma 5.13, (551/4

and

dt
L2(0,1)

LA(0,0)

< C 617/4

13
is bounded in L* (Q7) VL™ (0,T; L* (0,1)), Lemma 5.16 4), ( 1 (00 am)
€

~

=
—
=
@
k=

13
and ( ! (gf) %7“;5 ag;) are bounded in L?(Q7), Lemma 5.17 2),
g
we estimate the fourth term of (5.34)

<a¢> % g Oz Dwe O

< (2972
“ox Or Ot < G,

dxdt
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since (1 (gﬁ) %“f%‘f) is bounded in L?*(Qr), Lemma 5.14 1),
3

(\} (gi) 195> is bounded in L*(Q7) N L*> (0,T;L*(0,1)), Lemma 5.9
3

1) and assuming ( ¢> 8"2 belongs to L* (Qr). Finally we estimate the

2

24
third term of (5.33) by setting ¢ = %“’5 (a—f) 92 in (3.10) and integrating
by parts with respect to x

(5.36) / / e ( (%) 702 drt
Pw. (9p\* 0%
_ .2 e (09 2
5/ / 92 <8x> 1958 dzdt
dwe [0\ 3¢
(/ / (5s) 2gmest
aws o\ 2 a2¢ )
awg oo\ ** 8% V.
+2/ / (52) gt ctam)
We estimate the different terms in the right hand side of the previous equality
24 a3
‘—5/ /8% (C%) 8%%5 dt
Ox3
Tl 16\ ow. . |
g/ <a> 35’95 dt + Cee®,
0 . T ez
Gwa 0o\ [020\*
T 13 2
g/ (g(ﬁ> (‘35)5196 dt + Creb
0 v T 2o
) //awg 99\ * 0%¢ ) 9.
y 0x) 922 ° 0z
T 13 2
L)
0

ox ox
L2(0,0)

dt + Cgeb,
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due to Lemma 5.16 3). Then, we estimate the fourth term of (5.31)
T rl 62 N aug 2 % % 26 192 8195
0 0 ox ot ox € ot
_ |2 /T/ %6 (06\* 929V
92 \ Oz ° ot

/ / 2% (99N 9200

(%c 0x2 \ O ° ot

2

1 90\ due , 9.
T 4e? oz or ° Ot

dt + 0966,
12(0,0)

due to Lemma 5.16 1). Finally, we have
1 (T o 17
4/ (?) Eaa: di+ 42/
0 I oy 0
2
1| 0we (0"
= — » T
2 || Ox (81‘) V- (1)

£2(0,0)
13
<3¢> awsﬂa
o0z

dt
L2(0,1)

06\ due , 9.
Ox or ° Ot

dt + 010517/4.
£2(0,)

) 1 09 13 Owe :
From Gronwall’'s Lemma, we deduce that 775 92 e is
g
bounded in L?(Qr) N L*® (O,T; L? (O,Z)). Using the boundedness of
13
<€91/4 (%) %“;m) in L2(Qr) N L= (0,T; L2 (0,1)) , Lemma 5.18 2), we
deduce the result. : O

We thus conclude with the following:

Theorem 5.20. Assume that ¢ belongs to H*(0,1). Then:
14
1) The asymptotic expansion (3.11) is available in L> ((gf) ,QT).

p 14
2) (E%wg)s converges strongly to ug in L? ((gi) ,QT> .
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Remark 5.21. The previous results are available for the anisotropic mean
curvature flow [D]. The extension of these results to higher dimension will
be developed in a forthcoming paper.
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