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Let G ⊂ GC be a connected reductive linear Lie group with
a Cartan subgroup B which is compact modulo the center
of G. Then G has discrete series representations. Further,
since G is linear the characters of discrete series representa-
tions can be averaged over the Weyl group to obtain stable
discrete series characters which are constant on orbits of GC

in G′, and can be regarded as the restrictions of certain class
functions on the regular set G′

C of GC. The main theorem
of this paper expresses these class functions on G′

C as “lifts”
of analogous class functions on two-structure groups for GC.
These are connected reductive complex Lie groups which are
not necessarily subgroups of GC, but which “share” the Car-
tan subgroup BC with GC. Further, all of their simple factors
have root systems of type A1 or B2 ' C2.

1. Introduction.

Let G ⊂ GC be a connected reductive linear Lie group with a Cartan sub-
group B which is compact modulo the center of G. Then G has discrete
series representations. Further, since G is linear the characters of discrete
series representations can be averaged over the Weyl group to obtain stable
discrete series characters which are constant on orbits of GC in G′, and can
be regarded as the restrictions of certain class functions on the regular set
G′

C of GC. The main theorem of this paper expresses these class functions
on G′

C as “lifts” of analogous class functions on two-structure groups for
GC. These are connected reductive complex Lie groups which are not nec-
essarily subgroups of GC, but which “share” the Cartan subgroup BC with
GC. Further, all of their simple factors have root systems of type A1 or
B2 ' C2.

Let GC be a connected complex reductive Lie group and fix a Cartan
subgroup BC of GC. Let G be a real form of GC such that B = G ∩
BC is a relatively compact Cartan subgroup of G; that is B is compact
modulo the center of G. Then G has (relative) discrete series representations
parameterized by the set L′B of Harish-Chandra parameters. Let Θλ denote
the discrete series character of G parameterized by λ ∈ L′B, and let Φ denote
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188 REBECCA A. HERB

the set of roots of the Lie algebra of GC with respect to that of BC. The
Weyl group W (Φ) corresponding to Φ acts on L′B, and there is a stable
discrete series character Θλ of G parameterized by λ which is given, up to
a constant, by

∑
w∈W (Φ) Θwλ. These stable characters can be regarded as

the restrictions of certain class functions on GC. That is, given a discrete
series parameter λ ∈ L′B, there is a class function Tλ on G′

C, the set of
regular semisimple elements of GC, so that if G is any real form of GC with
G∩BC = B, then the restriction of Tλ to G′ = G∩G′

C is equal to Θλ up to
a sign which depends on the real form. We call Tλ the stable discrete series
class function on GC parameterized by λ ∈ L′B.

Two-structures were first defined in [H1] and were used to prove an iden-
tity for the constants occuring in stable discrete series character formulas.
In this paper we use this identity to prove a formula expressing the stable
discrete series class functions Tλ, λ ∈ L′B, on G′

C as “lifts” of the analo-
gous class functions on groups corresponding to two-structures. The set of
two-structures for Φ and two-structure groups are defined as follows.

A root subsystem ϕ ⊂ Φ is called a two-structure for Φ if it satisfies the
following two properties.

(i) Every irreducible factor of ϕ is of type A1 or B2 ' C2.
(ii) Let ϕ+ be any choice of positive roots for ϕ. Then if w ∈W (Φ) with

wϕ+ = ϕ+ we have detw = 1.
Two-structures exist for any root system Φ, and are all conjugate via

W (Φ). We let T (Φ) denote the set of all two-structures for Φ.
Fix ϕ ∈ T (Φ), and write ϕ = ϕ1 ∪ . . . ∪ ϕk for its decomposition into

irreducible factors. Each ϕi, 1 ≤ i ≤ k, is an irreducible subroot system of
Φ and so corresponds naturally to a connected simple subgroup Gi,C of GC

with Cartan subgroup Bi,C = BC ∩ Gi,C. Let bC denote the Lie algebra
of BC. We also define G0,C = B0,C = exp(b0,C) where b0,C = {H ∈ bC :
α(H) = 0 ∀ α ∈ ϕ}. Since the irreducible factors of ϕ are of type A1 or B2,
each of the groups Gi,C, 1 ≤ i ≤ k, is locally isomorphic to either SL(2,C)
or SO(5,C). The group G0,C is abelian.

Let G0,C × G1,C × · · · × Gk,C denote the abstract direct product of the
groups Gi,C, 0 ≤ i ≤ k. Since Bi,C ⊂ BC, 0 ≤ i ≤ k, and BC is abelian, the
mapping

f : B0,C × · · · ×Bk,C → BC given by f(b0, . . . , bk) = b0 · · · bk,
bi ∈ Bi,C, 0 ≤ i ≤ k,

is a group homomorphism. Let Z denote the kernel of this homomorphism.
It is a central subgroup of G0,C × · · · ×Gk,C. Define

Gϕ,C = (G0,C × · · · ×Gk,C)/Z, Bϕ,C = (B0,C × · · · ×Bk,C)/Z.

ThenGϕ,C is a connected complex reductive Lie group with Cartan subgroup
Bϕ,C, and the mapping fB : Bϕ,C → BC induced by f is an isomorphism
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onto BC. We will use the isomorphism fB to identify Bϕ,C and BC. Thus
we will think of BC as a Cartan subgroup of both GC and Gϕ,C.

Note that the different subgroups Gi,C do not necessarily commute with
each other inside GC. This is because, although roots in different irreducible
factors of ϕ are orthogonal to each other, they need not be strongly orthog-
onal as elements of Φ. Thus Gϕ,C can not necessarily be embedded as a
subgroup of GC. However, we can define an orbit mapping from Gϕ,C to
GC and a lifting of class functions from Gϕ,C to GC as follows.

For any g ∈ GC, let OC(g) denote the orbit of g in GC. Similarly, let
Oϕ,C(x), x ∈ Gϕ,C, denote the orbit of x in Gϕ,C. Let x ∈ G′

ϕ,C, the set of
regular semisimple elements of Gϕ,C. Then there exists b ∈ BC (not unique)
such that b ∈ Oϕ,C(x). We define

Fϕ,C(Oϕ,C(x)) = OC(b),

and prove that the orbit OC(b) is independent of the choice of b ∈ BC ∩
Oϕ,C(x).

For x ∈ GC, write det(t − 1 + Ad(x)) = D(x)tn+ terms of higher de-
gree, where t is an indeterminate. Then D is a class function on GC, and
x is regular just in case D(x) 6= 0. We also write Dϕ(x), x ∈ Gϕ,C, for
the corresponding function on Gϕ,C. Let x ∈ G′

ϕ,C, g ∈ G′
C such that

Fϕ,C(Oϕ,C(x)) = OC(g). Then we define the transfer factor

DΦ
ϕ (x) = |D(g)|−

1
2 |Dϕ(x)|

1
2 .

For g ∈ G′
C, we let Xϕ,C(g) denote a complete set of representatives for the

Gϕ,C orbits which map to OC(g) under the orbit correspondence Fϕ,C.
Let Θ be a class function defined on G′

ϕ,C. Now for g ∈ G′
C, we define

(LiftΦϕΘ)(g) =
∑

x∈Xϕ,C(g)

DΦ
ϕ (x)Θ(x).

Then LiftΦϕΘ is a class function on G′
C.

Let Φ+ denote a choice of positive roots for Φ and let ϕ+ = Φ+∩ϕ. Then
we have

ρ =
1
2

∑
α∈Φ+

α, ρϕ =
1
2

∑
α∈ϕ+

α.

Then L′B, the set of discrete series parameters for real forms G of GC with
G ∩ BC = B, is the set of all λ ∈ ib∗ such that eλ−ρ is well-defined on B
and 〈α, λ〉 6= 0 for all α ∈ Φ. For each λ ∈ L′B, let Tλ be the corresponding
stable discrete series class function on G′

C.
Assume that Φ contains no irreducible factors of type A2k, k ≥ 1. Then

by [H4, Theorem 5.7], ρ−ρϕ is in the root lattice of Φ, so that eρ−ρϕ is well-
defined on BC. Thus for any λ ∈ L′B, eλ−ρϕ = eλ−ρ eρ−ρϕ is well-defined on
B and < α, λ >6= 0 for all α ∈ ϕ. Thus every λ ∈ L′B is also a discrete series
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parameter for real forms Gϕ of Gϕ,C such that Gϕ ∩BC = B. Now for each
λ ∈ L′B we have the stable discrete series class function Tϕλ on G′

ϕ,C. In §4
we will define a sign εΦϕ(λ) = ±1 corresponding to each ϕ ∈ T (Φ), λ ∈ L′B.
Since L′B is stable under W (Φ), we can also define

Sϕλ = [W (Φ, ϕ)]−1
∑

w∈W (Φ)

εΦϕ(wλ) Tϕwλ

where W (Φ, ϕ) = {w ∈W (Φ) : wϕ = ϕ}.
Let G′′

C denote the set of all strongly regular elements of GC. It is the
set of all elements g ∈ GC such that the centralizer of g in GC is a Cartan
subgroup, and is a dense open subset of G′

C. The main result of this paper
is the following theorem.

Theorem 1.1. Assume that Φ has no irreducible factors of type A2k, k ≥ 1,
and let λ ∈ L′B, g ∈ G′′

C. Then

Tλ(g) =
∑

ϕ∈T (Φ)

εΦϕ(λ) (LiftΦϕT
ϕ
λ )(g).

Equivalently, for any ϕ ∈ T (Φ),

Tλ(g) = (LiftΦϕS
ϕ
λ )(g).

The formulas in Theorem 1.1 can be interpreted as follows. The functions
Tλ, λ ∈ L′B, have two invariance properties. First, they are class functions on
G′

C. Second, Twλ = Tλ for all w ∈ W (Φ). For each ϕ ∈ T (Φ), λ ∈ L′B, the
functions Sϕλ have the second invariance property. When we lift from Gϕ,C
to GC, they become class functions on GC. Thus LiftΦϕS

ϕ
λ has the same two

invariance properties as Tλ. The lifts LiftΦϕT
ϕ
λ will also be class functions on

G′
C. However, they will not have the second invariance property of Tλ. We

will see in §5 that for any w ∈W (Φ),

εΦϕ(wλ) LiftΦϕT
ϕ
wλ = εΦw−1ϕ(λ) LiftΦw−1ϕT

w−1ϕ
λ .

Thus ∑
ϕ∈T (Φ)

εΦϕ(λ) LiftΦϕT
ϕ
λ

is also invariant under λ 7→ wλ,w ∈W (Φ).
Suppose that Φ contains an irreducible factor of type A2k, k ≥ 1. Then

there is an invariant neighborhood Ω of the identity in GC with the following
properties. Let ϕ ∈ T (Φ) and let Ω′

ϕ denote the union of all orbits in G′
ϕ,C

which map into Ω ∩ G′
C via the orbit correspondence Fϕ,C. Then for any

λ ∈ L′B we can define a class function Tϕλ on Ω′
ϕ which is related to stable

discrete series characters for real forms of a two-fold cover of Gϕ,C. Further,
we can define LiftΦϕT

ϕ
λ in Ω∩G′

C, and the formulas of Theorem 1.1 are valid
for g ∈ Ω ∩G′′

C.
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In [H4] we proved a formula similar to Theorem 1.1 for discrete series
characters. In this case we started with a connected reductive Lie group
G (not necessarily linear) with a relatively compact Cartan subgroup B,
roots Φ = Φ(g

C
, bC), and discrete series parameters L′B. Corresponding to

each ϕ ∈ T (Φ) we defined a connected reductive group Gϕ with a relatively
compact Cartan subgroup Bϕ ' B, an orbit mapping from certain good
regular semisimple orbits of Gϕ to orbits of G, and a lifting of class functions
from G′

ϕ to G′. When Φ has no irreducible factors of type A2k, every λ ∈ L′B
is a discrete series parameter for Gϕ, so that we had discrete series characters
Θλ of G and Θϕ

λ of Gϕ corresponding to λ. Theorem 6.5 of [H4] said that

Θλ(g) = c(g)
∑

ϕ∈T (Φ)

εGϕ (λ) (LiftGϕΘϕ
λ)(g), g ∈ G′′.

Here as in Theorem 1.1, G′′ is a dense open subset ofG′ and εGϕ (λ) = ±1. The
c(g), g ∈ G′′, are integers which are constant on G-orbits, and on connected
components of Cartan subgroups.

When G is linear, we can use this theorem to write∑
w∈W (Φ)

Θwλ(g) = c(g)
∑

ϕ∈T (Φ)

∑
w∈W (Φ)

εGϕ (wλ) (LiftGϕΘϕ
wλ)(g)

= c(g)
∑

ϕ∈T (Φ)

∑
v∈W (ϕ)

∑
w∈W (ϕ)\W (Φ)

εGϕ (vwλ) (LiftGϕΘϕ
vwλ)(g).

Now εGϕ (vwλ) = εGϕ (wλ), v ∈W (ϕ), so that∑
w∈W (Φ)

Θwλ(g)

= c(g)
∑

ϕ∈T (Φ)

∑
w∈W (ϕ)\W (Φ)

εGϕ (wλ)

LiftGϕ

 ∑
v∈W (ϕ)

Θϕ
vwλ

 (g).

Thus we have expressed the stable character
∑

w∈W (Φ) Θwλ in terms of lifts
of stable characters

∑
v∈W (ϕ) Θϕ

vwλ. However, the orbit mapping and lifting
theory for real groups are much more complicated than those for complex
groups, and Theorem 1.1 gives a much simpler formula than this stabilized
formula. Thus it is worthwhile knowing that in the linear case, the stable
theory can be obtained directly using the simpler orbit mapping for complex
groups. Moreover, in the linear case, the Shelstad’s theory of endoscopy
[S1, S2, S3] can be used to recover formulas for individual discrete series
characters given formulas for stable discrete series characters.

The organization of this paper is as follows. In §2 we define the stable
discrete series class functions Tλ, λ ∈ L′B, onG′

C. In §3 we recall the formulas
for stable discrete series characters on real forms of GC and prove that they
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are obtained via restriction from the functions Tλ. In §4 we define the two-
structure groups Gϕ,C, the orbit mappings Fϕ,C, and the lifting of class
functions from G′

ϕ,C to G′
C. Then we restate Theorem 1.1 in more detail as

Theorems 4.7, 4.8, and 4.11. In §5 we give the proofs for Theorems 4.7, 4.8,
and 4.11.

2. Definition of Tλ.

Let GC be a complex connected reductive Lie group. Given any subgroup
HC of GC we will use the corresponding lower case German letter hC for the
Lie algebra of HC. Let BC be a Cartan subgroup of GC, and let Φ denote
the roots of g

C
with respect to bC. For any root subsystem Ψ ⊂ Φ we write

W (Ψ) for the Weyl group of Ψ.
Fix a real subalgebra b ⊂ bC such that

(2.1) bC = b⊕ ib and α(H) ∈ iR ∀ H ∈ b, α ∈ Φ.

Since GC is reductive, g
C

= zC +[g
C
, g

C
] where zC is the center of g

C
. For

each α ∈ Φ we let Hα be the element of ib ∩ [g
C
, g

C
] dual to α. If GC is

semisimple, b =
∑

α∈Φ RiHα is uniquely determined by (2.1). In general, a
choice of b corresponds to the choice of a real form of zC.

Recall that a subset S of Φ is called strongly orthogonal if for any α, β ∈
S, α± β 6∈ Φ. Let SOC(Φ) denote the set of all strongly orthogonal subsets
of Φ. For S ∈ SOC(Φ) we define

(2.2a) tS = {H ∈ b : α(H) = 0 ∀ α ∈ S}; bS =
∑
α∈S

iRHα.

Then b = tS ⊕ bS . Define

(2.2b) B = exp(b) ⊂ BC; T 1
S = {t ∈ B : eα(t) = 1 ∀ α ∈ S}.

The identity component of T 1
S is T 0

S = exp(tS). Finally, we set

(2.2c) B(S) = {b ∈ BC : b = t exp(iH), t ∈ T 1
S ,H ∈ bS}.

For S, S′ ∈ SOC(Φ), we write S ≡ S′ if tS = tS′ . This is equivalent to
the condition that S and S′ span the same linear subspace of ib∗. Let G′

C
denote the set of regular semisimple elements of GC, and write B′(S) =
B(S) ∩G′

C, S ∈ SOC(Φ).

Lemma 2.1. Let S, S′ ∈ SOC(Φ), b ∈ B(S)∩B(S′). Then there are unique
H ∈ bS ∩ bS′ and t ∈ T 1

S ∩ T 1
S′ such that b = t exp(iH). Further, if B′(S) ∩

B′(S′) 6= ∅, then S ≡ S′.

Proof. Let b ∈ B(S) ∩ B(S′). Then there are t ∈ T 1
S , t

′ ∈ T 1
S′ ,H ∈ bS ,H

′ ∈
bS′ such that b = t exp(iH) = t′ exp(iH ′). Let α ∈ Φ. Then |eα(t)| =
|eα(t′)| = 1. Further, α(iH) and α(iH ′) are real. Thus

eα(t) exp(α(iH)) = eα(t′) exp(α(iH ′))
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implies that α(H) = α(H ′). Since H and H ′ are in b∩ [g
C
, g

C
], this implies

that H = H ′ ∈ bS ∩ bS′ . Now we must also have t = t′ ∈ T 1
S ∩ T 1

S′ .
Now suppose that b ∈ B′(S) ∩ B′(S′), and write b = t exp(iH) where

H ∈ bS ∩ bS′ and t ∈ T 1
S ∩ T 1

S′ . Let

Ψ = {α ∈ Φ : eα(t) = 1}.
Then S, S′ ⊂ Ψ. Let

wS =
∏
α∈S

sα, wS′ =
∏
α∈S′

sα

where for any α ∈ Φ, sα denotes the reflection in α. Then wS , wS′ ∈
W (Ψ), w2

S = w2
S′ = 1, and

bS = {H ∈ b : wSH = −H}, bS′ = {H ∈ b : wS′H = −H};

tS = {H ∈ b : wSH = H}, tS′ = {H ∈ b : wS′H = H}.
Since H ∈ bS ∩ bS′ we must have wSwS′H = −wSH = H. Let α ∈ Ψ. Since
b ∈ G′

C,
eα(b) = exp(α(iH)) 6= 1,

so that α(H) 6= 0. Thus H is regular with respect to Ψ so that wSwS′H = H
implies that wSwS′ = 1. Thus wS = wS′ so that bS = bS′ , tS = tS′ . �

Note that the case S = S′ ∈ SOC(Φ) of Lemma 2.1 shows that for b ∈
B(S), there are unique t ∈ T 1

S and H ∈ bS such that b = t exp(iH). When
we write b = t exp(iH) ∈ B(S), we will always mean that t ∈ T 1

S ,H ∈ bS .
Let S ∈ SOC(Φ) and define

ΦR(S) = {α ∈ Φ : α(H) = 0 ∀ H ∈ tS}.
Then S ⊂ ΦR(S) and rank ΦR(S) = [S]. For b = t exp(iH) ∈ B(S), we
define

(2.3) Φb,S = {α ∈ ΦR(S) : eα(t) = 1}; Φ+
b,S = {α ∈ Φb,S : α(H) > 0}.

Then S ⊂ Φb,S ⊂ ΦR(S), and since rank ΦR(S) = [S], we also have rank
Φb,S = [S]. Thus S is a set of strongly orthogonal roots spanning Φb,S .
Write

(2.4) B(Φ) = ∪S∈SOC(Φ) B(S), B′(Φ) = B(Φ) ∩G′
C.

Let b ∈ B′(Φ), and let S ∈ SOC(Φ) such that b ∈ B′(S). Then we write

(2.5) Φb = Φb,S , Φ+
b = Φ+

b,S .

Note that if b ∈ B′(S) ∩ B′(S′), by Lemma 2.1 we have S ≡ S′ so that
ΦR(S) = ΦR(S′) and Φb,S = Φb,S′ . Thus the definition of Φb does not
depend on the choice of S with b ∈ B′(S). Further, as in the proof of
Lemma 2.1, for α ∈ Φb, α(H) 6= 0. Thus Φ+

b is a choice of positive roots for
Φb.
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Note that if b ∈ B(S) and w ∈ W (Φ), we have wS ∈ SOC(Φ) and
wb ∈ B(wS). Thus B(Φ) is a W (Φ)-invariant subset of BC. For g ∈ GC,
let OC(g) = {xgx−1 : x ∈ GC} denote the orbit of g in GC. Define

(2.6) G′
C(Φ) = {g ∈ GC : OC(g) ∩B′(Φ) 6= ∅}.

We will see in Lemma 3.4 below that G′
C(Φ) is the set of all g ∈ G′

C such
that there is a real form G of GC with G ∩BC = B and OC(g) ∩G 6= ∅.

Fix a set of positive roots Φ+ for Φ and let

ρ = ρ(Φ+) =
1
2

∑
α∈Φ+

α.

Let L′B denote the set of all λ ∈ ib∗ such that

(2.7) eλ−ρ is well-defined on B and 〈α, λ〉 6= 0 ∀ α ∈ Φ.

If g is semisimple, then our assumption that α(H) ∈ iR for all α ∈ Φ
guarantees that the kernel of exp : bC → BC is contained in b. However,
when the center zC of g

C
is non-trivial, this need not be true. Thus the fact

that eλ−ρ is well-defined on B does not necessarily imply that it has a well-
defined extension to BC. However we can extend to B(Φ). Let b ∈ B(Φ).
Then b = t exp(iH) ∈ B(S) for some S ∈ SOC(Φ). For λ ∈ L′B, define

eλ−ρ(b) = eλ−ρ(t) e(λ−ρ)(iH).

Since t ∈ T 1
S ⊂ B and H ∈ bS are unique by Lemma 2.1, and do not depend

on the choice of S, this gives a well-defined extension of eλ−ρ to B(Φ).
As in [K, XIII, §4], stable discrete series constants c(λ : Ψ+) can be

defined for any λ ∈ E′(Φ) = {τ ∈ ib∗ :< τ, α >6= 0 ∀ α ∈ Φ}, root subsystem
Ψ ⊂ Φ which is spanned by strongly orthogonal roots, and choice Ψ+ of
positive roots. They are uniquely determined by the following properties:

(2.8a) c(λ : ∅) = 1 ∀ λ ∈ E′(Φ);

(2.8b) c(λ : Ψ+) = 0 if 〈λ, α〉 > 0 ∀ α ∈ Ψ+;

(2.8c) c(λ : Ψ+) + c(sαλ : Ψ+) = 2c(λ : Ψ+
α )

where α is a simple root for Ψ+ and Ψ+
α = {β ∈ Ψ+ : 〈β, α〉 = 0}. As a

consequence of this uniqueness, it is easy to see that

(2.8d) c(wλ : wΨ+) = c(λ : Ψ+) ∀ w ∈W (Φ).

Now L′B ⊂ E′(Φ) and for any b ∈ B′(Φ), Φb ⊂ Φ is a root system spanned
by strongly orthogonal roots. Thus the stable discrete series constants
c(λ : Φ+

b ), λ ∈ L′B, b ∈ B′(Φ), are defined.
Write

(2.9) ∆′(Φ+ : b) =
∏
α∈Φ+

(1− e−α(b)), b ∈ BC;
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(2.10) ε(Φ+ : λ) = sign
∏
α∈Φ+

〈α, λ〉, λ ∈ L′B.

For λ ∈ L′B we can now define a class function on G′
C as follows. For

b ∈ B′(Φ), set

(2.11) Tλ(b) = ε(Φ+ : λ)
∑

w∈W (Φ)

∆′(Φ+ : wb)−1eλ−ρ(Φ
+)(wb) c(λ : Φ+

wb).

From the formula it is clear that Tλ is a W (Φ)-invariant function on B′(Φ),
and so can be extended uniquely to a class function on G′

C which is zero for
g 6∈ G′

C(Φ).

Lemma 2.2. Let λ ∈ L′B. Then the definition of Tλ in (2.11) does not
depend on the choice Φ+ of positive roots for Φ. Further, we have Twλ = Tλ
for all w ∈W (Φ).

Proof. Let u ∈ W (Φ) so that uΦ+ is another choice of positive roots for Φ.
Then for any b ∈ B′(Φ), λ ∈ L′B, it is easy to check from the definitions that

ε(uΦ+ : λ) = detuε(Φ+ : λ),

∆′(uΦ+ : b) eρ(uΦ
+)−ρ(Φ+)(b) = detu∆′(Φ+ : b).

Thus the definition is independent of the choice of Φ+.
Now since Tuλ is independent of the choice of Φ+, we can use uΦ+ in

(2.11) to write

Tuλ(b)

= ε(uΦ+ : uλ)
∑

w∈W (Φ)

∆′(uΦ+ : wb)−1euλ−ρ(uΦ
+)(wb) c(uλ : Φ+

wb)

= ε(Φ+ : λ)
∑

w∈W (Φ)

∆′(Φ+ : u−1wb)−1eλ−ρ(Φ
+)(u−1wb) c(uλ : Φ+

wb).

Now the result follows from a change of variables w 7→ uw since using (2.8d),

c(uλ : Φ+
uwb) = c(uλ : uΦ+

wb) = c(λ : Φ+
wb).

�

We will show in the next section how Tλ is related to stable discrete series
characters on real forms of GC.

3. Stable Discrete Series Characters.

Define b as in (2.1), and let G be a real form of GC such that G∩BC = B =
exp(b). Given any subgroup H of G we will use the corresponding lower case
German letter h for the real Lie algebra ofH, and hC for its complexification.
We will write HC for the connected subgroup of GC corresponding to hC.
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By our choice of b, α(H) ∈ iR for all α ∈ Φ,H ∈ b. Thus B is compact
modulo the center ZG of G, and we can pick a Cartan involution θ of G
as in [W] so that B is contained in the fixed point set K of θ. In the case
that G has compact center, K is a maximal compact subgroup of G and
B ⊂ K is a compact Cartan subgroup of G. In general, K and B contain
ZG and are compact modulo ZG. Let ΦK = Φ(kC, bC) denote the roots of
bC in kC. Roots in ΦK are called compact roots of G. Since B ⊂ K is
a Cartan subgroup for both K and G, we have rank G = rank K so that
G has discrete series representations. In the case that ZG is not compact,
these are sometimes called relative discrete series representations.

The discrete series representations of G are parameterized by the set L′B
defined in (2.7). For λ ∈ L′B, let Θλ denote the discrete series character of
G corresponding to λ. We know that Θwλ = Θλ for any w ∈ W (ΦK). We
define a stable discrete series character corresponding to λ by

(3.1) Θλ =
∑

w∈W (ΦK)\W (Φ)

Θwλ = [W (ΦK)]−1
∑

w∈W (Φ)

Θwλ.

In this section we will prove the following theorem.

Theorem 3.1. For all g ∈ G′,

Θλ(g) = (−1)qGTλ(g)

where qG = 1/2 dim(G/K).

Let
SO(Φ) = {S ∈ SOC(Φ) : S ⊂ Φ\ΦK}.

Each S ∈ SO(Φ) corresponds to a Cartan subgroup HS of G as follows.
For each noncompact α ∈ Φ fix a Cayley transform cα as in [K, p. 418].

Fix S ∈ SO(Φ) and let cS =
∏
α∈S cα. Define tS and bS as in (2.2a). Then

HS is the Cartan subgroup of G with Lie algebra

(3.2) hS = tS ⊕ aS where aS = cS(ibS).

It satisfies (hS)C = cS(bC). Define TS = HS ∩K and AS = exp(aS). Then
HS = TSAS . Note that TS need not be connected. The identity component
T 0
S of TS is contained in B, but in general not every connected component

of TS will lie in B. By [H4, Lemma 2.1],

TS ∩B = T 1
S = {b ∈ B : eα(b) = 1 ∀ α ∈ S}.

Write H1
S = T 1

SAS . When we write h = ta ∈ H1
S we always mean that t ∈ T 1

S
and a ∈ AS . Recall from [H4, Lemma 2.4] that every regular semisimple
element of G can be conjugated into H1

S for some S ∈ SO(Φ).

Lemma 3.2. Let S ∈ SO(Φ). Then there is yS ∈ GC such that Ad(yS) =
cS, H1

S = ySB(S)y−1
S , and for h = ta ∈ H1

S, y
−1
S hyS = t exp(c−1

S log a).
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Proof. For each α ∈ S, by [K, p. 418] there are Xα ∈ (g
C

)α, Yα ∈ (g
C

)−α
such that cα = Ad exp(π/4)(Yα − Xα). Let yα = exp(π/4)(Yα − Xα) ∈
GC and yS =

∏
α∈S yα. Then Ad(yS) = cS , and since eα(t) = 1 for all

α ∈ S, t ∈ T 1
S , yS centralizes TS . Thus ySB(S)y−1

S = yST
1
S exp(ibS)y−1

S =
T 1
S exp(cSibS) = H1

S . �

Proof of Theorem 3.1. Suppose first that GC is simply connected. In this
case G is acceptable, that is eρ(Φ

+) is well-defined on B, and we have the
formula for Θλ given in [K, (13.39)]. Note that Knapp’s Θ∗

λ = (−1)qG
ε(Φ+ : λ)Θλ. Let λ ∈ L′B, S ∈ SO(Φ), h = ta ∈ H1

S ∩G′. Write

b = c−1
S h = t exp(c−1

S log a) ∈ B′(S).

Then in our notation [K, (13.39)] can be written as

∆(Φ+ : b)Θλ(h) = (−1)qG ε(Φ+ : λ)
∑

w∈W (Φ)

detw ewλ(b) c(wλ : Φ+
b )

where ∆(Φ+ : b) = eρ(Φ
+)(b)∆′(Φ+ : b). Since ∆(Φ+ : w−1b) = detw

∆(Φ+ : b), w ∈ W (Φ), and c(wλ : Φ+
b ) = c(λ : Φ+

w−1b
) using (2.8d), we can

rewrite this as

Θλ(h)

= (−1)qG ε(Φ+ : λ)
∑

w∈W (Φ)

∆(Φ+ : w−1b)−1eλ(w−1b) c(λ : Φ+
w−1b

)

= (−1)qG ε(Φ+ : λ)
∑

w∈W (Φ)

∆′(Φ+ : wb)−1eλ−ρ(Φ
+)(wb) c(λ : Φ+

wb).

Now suppose that GC is arbitrary. Then for λ ∈ L′B, λ is also a discrete
series parameter for the covering of G contained in the simply connected
covering of GC, and the formula on the cover is given as above. But the
formula has been written so that all terms are well-defined on G, and so is
valid on G as well.

For g ∈ G′, let OG(g) = {xgx−1 : x ∈ G}. Fix g ∈ G′. Then there are
S ∈ SO(Φ) and h ∈ H1

S such that g ∈ OG(h) ⊂ OC(h). But using Lemma
3.2, OC(h) = OC(b) where b = c−1

S h ∈ B′(S) ⊂ B′(Φ). Thus

Θλ(g) = Θλ(h)

= (−1)qG ε(Φ+ : λ)
∑

w∈W (Φ)

∆′(Φ+ : wb)−1 eλ−ρ(wb) c(λ : Φ+
wb)

and from formula (2.11)

Tλ(g) = Tλ(b) = ε(Φ+ : λ)
∑

w∈W (Φ)

∆′(Φ+ : wb)−1eλ−ρ(wb) c(λ : Φ+
wb).

�
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Lemma 3.3. Let S ∈ SOC(Φ). Then there is a real form G of GC such
that G ∩BC = B and S consists of noncompact roots for G.

Proof. Let G0 denote a maximally split real form of GC containing B, and
let S0 be a set of strongly orthogonal noncompact roots of Φ such that HS0

is a maximally split Cartan subgroup of G0. Then S0 is of maximal rank
in SOC(Φ), that is [S0] ≥ [S′] for all S′ ∈ SOC(Φ). Let S ∈ SOC(Φ) be
of maximal rank. Then S = wS0 for some w ∈ W (Φ). Let xw ∈ NGC

(BC)
represent w. Now G = xwG0x

−1
w is a real form of GC containing B, and the

roots in S = wS0 are noncompact for G. Thus the lemma is true when S is
of maximal rank.

Now suppose S is an arbitrary element of SOC(Φ). By [H4, Lemma 5.9]
there is ϕ ∈ T (Φ) such that S ⊂ ϕ. Let S0 be a basis for ϕ consisting
of one root from every irreducible factor of type A1 and two orthogonal
long roots from every irreducible factor of type B2. Then by [H4, Lemma
5.1], S0 ∈ SOC(Φ) and is of maximal rank. Let G0 be a real form of GC

containing B so that the roots in S0 are noncompact. Let α ∈ S. If α is in
an irreducible factor of type A1 of ϕ, or is a long root in an irreducible factor
of type B2 of ϕ, then ±α ∈ S0, so that α is noncompact. Suppose that α is
a short root in an irreducible factor ϕ0 of type B2. Since ϕ0 is spanned by
strongly orthogonal noncompact roots, one short root of ϕ0 is compact and
one is noncompact. Now S ∩ ϕ0 = {α}, and there is v ∈ W (ϕ0) such that
vα is noncompact. Thus there is w ∈W (ϕ) ⊂W (Φ) such that wS consists
of noncompact roots for G0. Now as above, G = xwG0x

−1
w is a real form of

GC containing B, and the roots in S are noncompact for G. �

Lemma 3.4. Let g ∈ G′
C. Then g ∈ G′

C(Φ) if and only if there is a real
form G of GC such that G ∩BC = B and OC(g) ∩G 6= ∅.

Proof. Let G be a real form of GC such that G ∩ BC = B, and let x ∈
OC(g)∩G. Since x ∈ G′, as in the proof of Theorem 3.1, there are S ∈ SO(Φ)
and h ∈ H1

S such that x ∈ OC(h) = OC(c−1
S h) where c−1

S h ∈ B′(S) ⊂ B′(Φ).
Thus c−1

S h ∈ OC(g) ∩B′(Φ), so that g ∈ G′
C(Φ).

Conversely, suppose that g ∈ G′
C(Φ). Then there are S ∈ SOC(Φ), b ∈

B′(S), such that b ∈ OC(g). By Lemma 3.3 there is a real form G of GC such
that G∩BC = B and S consists of noncompact roots for G. Now, using the
notation of Lemma 3.2, h = ySby

−1
S ∈ H1

S ⊂ G. Thus h ∈ G ∩ OC(g). �

4. Two-structure Groups.

Let Φ be any root system. Then a root subsystem ϕ ⊂ Φ is called a two-
structure for Φ if it satisfies the following two conditions.

(i) Every irreducible factor of ϕ is of type A1 or B2 ' C2.
(ii) Let ϕ+ be any choice of positive roots for ϕ. Then if w ∈W (Φ) with

wϕ+ = ϕ+ we have detw = 1.
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Let T (Φ) denote the set of all two-structures for Φ.
The sets T (Φ) for irreducible Φ can be described as follows. If Φ has one

root length or is of type G2, then T (Φ) consists of all root subsystems of Φ
of type Ak1 where k is the size of a maximal set of orthogonal roots in Φ. If
Φ is of type B2k, C2k, k ≥ 1, or F2k, k = 2, then T (Φ) consists of all root
subsytems of Φ of type Bk

2 . Finally, if Φ is of type B2k+1, C2k+1, k ≥ 1, then
T (Φ) consists of all root subsytems of Φ of type Bk

2 ×A1.
Note that ϕ ∈ T (Φ) is a root subsystem of Φ, that is a subset of Φ which

is closed under its own reflections. A root subsystem ϕ ⊂ Φ is called a
subroot system of Φ if for α, β ∈ ϕ, α± β ∈ ϕ if and only if α± β ∈ Φ.

Lemma 4.1. Let ϕ ∈ T (Φ). Then every irreducible factor of ϕ is a subroot
system of Φ. Further, if Φ contains no irreducible factors of type Bn, n ≥ 3,
or F4, then ϕ is a subroot system of Φ.

Proof. Let ϕ0 be an irreducible factor of ϕ, and let Φ0 denote the intersection
of Φ with the linear subspace of ib∗ spanned by ϕ0. Then Φ0 is a subroot
system of Φ with the same rank as ϕ0. Since there are no root systems of
the same rank properly containing a root system of type A1 or B2, we must
have ϕ0 = Φ0.

For the second part, we may as well assume that Φ is irreducible, not of
type Bn, n ≥ 3, or F4. Suppose that α, β ∈ ϕ with α ± β ∈ Φ. By the
first part, if α, β are in the same irreducible factor of ϕ, we have α± β ∈ ϕ.
Suppose they are in different irreducible factors of ϕ. Then α and β are
orthogonal roots in Φ with α ± β ∈ Φ. This can’t occur when Φ has one
root length, is of type G2, or when at least one of α, β is long and Φ of is of
type Cn. Suppose that Φ is of type Cn. Then each short root is contained
in a unique subroot system of type C2, and is strongly orthogonal to any
short root outside that subroot system. Thus in this case we also can’t have
α± β ∈ Φ when α, β are in different irreducible factors of ϕ. �

Let GC be any complex connected reductive Lie group and fix a Cartan
subgroup BC of GC. Let Φ denote the roots of g

C
with respect to bC. We

want to associate to every ϕ ∈ T (Φ) a complex group Gϕ,C with a Cartan
subgroup Bϕ,C isomorphic to BC and root system ϕ. Fix ϕ ∈ T (Φ), and
write ϕ = ϕ1 ∪ ... ∪ ϕk for its decomposition into irreducible factors. Each
ϕi, 1 ≤ i ≤ k, is a subroot system of Φ by Lemma 4.1, and so corresponds
to a Lie subalgebra g

i,C
of g

C
as follows.

For each α ∈ Φ we have the root space (g
C

)α of g
C

and the root vector
Hα ∈ bC ∩ [g

C
, g

C
] dual to α. Now define

bi,C =
∑
α∈ϕi

CHα; g
i,C

= bi,C +
∑
α∈ϕi

(g
C

)α.
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Since ϕi is of type A1 or B2 ' C2, gi,C is isomorphic to either sl(2,C) or
so(5,C) ' sp(4,C). We also define

g
0,C

= b0,C = {H ∈ bC : α(H) = 0 ∀ α ∈ ϕ}.

Let Gi,C be the connected subgroup of GC corresponding to g
i,C

, Bi,C =
exp(bi,C) = Gi,C ∩ BC. Let G0,C × G1,C × · · · × Gk,C, respectively B0,C ×
· · ·×Bk,C, denote the abstract direct product of the groupsGi,C, respectively
Bi,C, 0 ≤ i ≤ k. Define f : B0,C × · · · ×Bk,C → BC by

f(b0, . . . , bk) = b0 · · · bk, bi ∈ Bi,C, 0 ≤ i ≤ k.

Here b0 · · · bk denotes the product in BC of the elements bi ∈ Bi,C ⊂ BC.
Since BC is abelian, f is a group homomorphism. Let Z denote the kernel
of this homomorphism, and let Zi denote the center of Gi,C, 0 ≤ i ≤ k.

Lemma 4.2. f : B0,C×· · ·×Bk,C → BC is surjective and Z ⊂ Z0×· · ·×Zk
is a central subgroup of G0,C × · · · ×Gk,C.

Proof. The proof is the same as that for [H4, Lemma 4.1]. �

Define

(4.1) Gϕ,C = (G0,C × · · · ×Gk,C)/Z, Bϕ,C = (B0,C × · · · ×Bk,C)/Z.

Then Gϕ,C is a complex connected reductive Lie group and Bϕ,C is a Car-
tan subgroup of Gϕ,C. The Lie algebra g

ϕ,C
=

∑k
i=0 gi,C of Gϕ,C can be

identified with a subset, but not necessarily a subalgebra, of g
C

. By Lemma
4.1, in the case that Φ contains no irreducible factors of type Bn, n ≥ 3, or
F4, ϕ is a subroot system of Φ, so that g

ϕ,C
is a subalgebra of g

C
and Gϕ,C

can be identified with a subgroup of GC.
Let exp denote the exponential mapping from g

C
into GC, and expϕ

denote the exponential mapping of g
ϕ,C

into Gϕ,C. The Cartan subalgebra

bC =
∑k

i=0 bi,C can be identified with the Lie algebra of Bϕ,C and is a Cartan
subalgebra of g

ϕ,C
. Further, Φ(g

ϕ,C
, bC) = ϕ. The Weyl group W (ϕ) can

be identified with a subgroup of W (Φ).

Lemma 4.3.
(i) The mapping fB : Bϕ,C → BC induced by f is an isomorphism.
(ii) fB(expϕ(H)) = exp(H) for all H ∈ bC.
(iii) fB(vb) = vfB(b) for all b ∈ Bϕ,C, v ∈W (ϕ).

Proof. (i) Since Z is the kernel of f , f factors through Bϕ,C to give an
isomorphism.

(ii) For any H =
∑

0≤i≤kHi ∈ bC,

fB(expϕ(H)) = f(exp(H0), ..., exp(Hk)) = exp(H0) · · · exp(Hk) = exp(H).
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(iii) For H ∈ bC, b = expϕ(H), v ∈W (ϕ), using (ii),

fB(vb) = fB(expϕ(vH)) = exp(vH) = vfB(b).

�

Because of Lemma 4.3 we will identify BC and Bϕ,C using the isomor-
phism fB. Thus even though Gϕ,C is not necessarily a subgroup of GC, we
will think of BC as being a Cartan subgroup of both Gϕ,C and GC. This
identification respects the exponential map from bC to BC and the action
of W (ϕ) ⊂W (Φ).

Let G′
ϕ,C denote the set of regular semisimple elements of Gϕ,C. For any

x ∈ Gϕ,C, let Oϕ,C(x) denote the orbit of x in Gϕ,C. Let x ∈ G′
ϕ,C. Then

there exists b ∈ BC ∩ Oϕ,C(x). We define

(4.2) Fϕ,C(Oϕ,C(x)) = OC(b).

Suppose that b, b′ ∈ Oϕ,C(x) ∩ BC. Then there is v ∈ W (ϕ) such that
b′ = vb. Now W (ϕ) ⊂ W (Φ) and by Lemma 4.3 the actions are consistent
with our identification of Bϕ,C and BC. Thus OC(b′) = OC(b) and so the
orbit mapping is independent of the choice of b.

An element g ∈ GC is called strongly regular if its centralizer in GC is a
Cartan subgroup. In particular, if b ∈ BC is strongly regular, its centralizer
in GC is BC. Thus b is regular and no non-trivial element of W (Φ) fixes b.
Write G′′

C for the set of strongly regular elements in GC, B
′′
C = BC ∩G′′

C.

Lemma 4.4. For b ∈ B′
C, we have

F−1
ϕ,C(OC(b)) = {Oϕ,C(wb) : w ∈W (Φ)}.

If b ∈ B′′
C, then for w,w′ ∈W (Φ),

Oϕ,C(wb) = Oϕ,C(w′b)

if and only if w′ ∈W (ϕ)w.

Proof. Every orbit in G′
ϕ,C can be represented by an element b′ ∈ BC. Now

Fϕ,C(Oϕ,C(b′)) = OC(b′) = OC(b)

just in case there is w ∈ W (Φ) such that b′ = wb. Now for w,w′ ∈ W (Φ),
Oϕ,C(wb) = Oϕ,C(w′b) if and only if there is v ∈W (ϕ) such that w′b = vwb.
But if b is strongly regular, w′b = vwb implies that w′ = vw. �

For x ∈ GC, write det(t− 1 +Ad(x)) = D(x)tn+ terms of higher degree,
where t is an indeterminate. Then D is a class function on GC, and x is
regular just in case D(x) 6= 0. We also write Dϕ(x), x ∈ Gϕ,C, for the
corresponding function on Gϕ,C.

Let x ∈ G′
ϕ,C, g ∈ G′

C such that Fϕ,C(Oϕ,C(x)) = OC(g). Then we define

(4.3) DΦ
ϕ (x) = |D(g)|−

1
2 |Dϕ(x)|

1
2 .
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Since D is a class function on GC and Dϕ is a class function on Gϕ,C, this
definition is independent of the choice of g and gives a class function on
Gϕ,C. For g ∈ G′

C, we let Xϕ,C(g) denote a complete set of representatives
for the Gϕ,C orbits which map to OC(g) under the orbit correspondence
Fϕ,C.

Let Θ be a class function defined on G′
ϕ,C. Now for g ∈ G′

C, we define

(4.4) (LiftΦϕΘ)(g) =
∑

x∈Xϕ,C(g)

DΦ
ϕ (x)Θ(x).

Since DΦ
ϕ and Θ are class functions on Gϕ,C, the definition does not depend

on the choice of Xϕ,C(g). If g, g′ ∈ G′ with OC(g) = OC(g′) we can take
Xϕ,C(g) = Xϕ,C(g′). Thus LiftΦϕΘ is a class function on G′

C.
Fix a real subalgebra b ⊂ bC satisfying the conditions of (2.1). In §2, we

used b to define a subset G′
C(Φ) of G′

C and class functions Tλ, λ ∈ L′B, on
G′

C. Let ϕ ∈ T (Φ). Since Gϕ,C is a connected complex reductive Lie group
with Cartan subgroup BC, we can carry out all the constructions of §2 for
the group Gϕ,C. Note that SOC(ϕ) is not necessarily a subset of SOC(Φ)
since S ⊂ ϕ can be strongly orthogonal in ϕ, but not in Φ. For S ∈ SOC(ϕ)
we can define tS , bS , T 1

S , B(S) as in (2.2). Write

(4.5a) B(ϕ) = ∪S∈SOC(ϕ) B(S), B′(ϕ) = B(ϕ) ∩G′
ϕ,C.

Define

(4.5b) G′
C(ϕ) = {g ∈ Gϕ,C : Oϕ,C(g) ∩B′(ϕ) 6= ∅}.

Lemma 4.5. For any ϕ ∈ T (Φ), B(ϕ) ⊂ B(Φ).

Proof. We may as well assume that Φ is irreducible. Let S ∈ SOC(ϕ). If
Φ is not of type Bn, n ≥ 3, or F4, by Lemma 4.1 ϕ a subroot system of Φ.
Thus S is also strongly orthogonal in Φ, and so B(S) ⊂ B(Φ).

Suppose Φ is of type Bn, n ≥ 3, or F4. Then if β1, β2 are any orthogonal
short roots of Φ, β1 ± β2 are both long roots of Φ. Let β1, . . . , βk denote
the short roots in S and βk+1, . . . , βn denote the long roots in S. For
1 ≤ i ≤ r = [k/2], set α2i−1 = β2i−1 + β2i, α2i = β2i−1 − β2i. Then S′ =
{α1, . . . , α2r, β2r+1, . . . , βn} is an orthogonal subset of Φ which contains at
most one short root, and hence is a strongly orthogonal subset of Φ. Further
bS = bS′ , and T 1

S ⊂ T 1
S′ , so that B(S) ⊂ B(S′) ⊂ B(Φ). �

Let Φ+ denote a choice of positive roots for Φ and let ϕ+ = Φ+∩ϕ. Then
we define

ρ = ρ(Φ+) =
1
2

∑
α∈Φ+

α,(4.6)

ρϕ = ρ(ϕ+) =
1
2

∑
α∈ϕ+

α,
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ρ(Φ+, ϕ) = ρ(Φ+)− ρ(ϕ+).

Recall from (2.7) that L′B denotes the set of all λ ∈ ib∗ such that eλ−ρ is
well-defined on B = exp(b) and 〈α, λ〉 6= 0 for all α ∈ Φ. Assume that Φ
contains no irreducible factors of type A2k, k ≥ 1. Then by [H4, Theorem
5.7], ρ(Φ+, ϕ) is in the root lattice of Φ, so that eρ(Φ

+,ϕ) is well-defined on
BC. Thus for any λ ∈ L′B, eλ−ρϕ = eλ−ρ eρ(Φ

+,ϕ) is well-defined on B and
〈α, λ〉 6= 0 for all α ∈ ϕ. Thus we can define a class function Tϕλ on G′

ϕ,C as
in (2.11). It is supported on G′

C(ϕ) and satisfies
(4.7)
Tϕλ (b) = ε(ϕ+ : λ)

∑
v∈W (ϕ)

∆′(ϕ+ : vb)−1eλ−ρϕ(vb) c(λ : ϕ+
vb), b ∈ B′(ϕ).

Here, as in §2,

(4.8a) ∆′(ϕ+ : b) =
∏
α∈ϕ+

(1− e−α(b)), b ∈ BC;

(4.8b) ε(ϕ+ : λ) = sign
∏
α∈ϕ+

〈α, λ〉, λ ∈ L′B.

Further, for S ∈ SOC(ϕ), b = t exp(iH) ∈ B′(S) = B(S) ∩G′
ϕ,C, we have

(4.9) ϕb = {α ∈ ϕ : eα(tt0) = 1 ∀ t0 ∈ T 0
S}, ϕ+

b = {α ∈ ϕb : α(iH) > 0}.
As in §3, the restriction of Tϕλ to any real form Gϕ of Gϕ,C with Gϕ∩BC = B
is, up to a sign, a stable discrete series character.

Associated to each ϕ ∈ T (Φ) and choice of positive roots Φ+ for Φ is a
sign ε(ϕ : Φ+) = ±1 defined as in [H4, (5.1)], [K, p. 501]. Define

(4.10) εΦϕ(λ) = ε(ϕ : Φ+) ε(ϕ+ : λ) ε(Φ+ : λ).

Lemma 4.6. εΦϕ(λ) is independent of the choice Φ+ of positive roots.

Proof. This follows from [H4, Lemma 6.4]. �

The main results of this paper are the following theorems.

Theorem 4.7. Assume that Φ has no irreducible factors of type A2k, k ≥ 1,
and let λ ∈ L′B. Then for all g ∈ G′′

C,

Tλ(g) =
∑

ϕ∈T (Φ)

εΦϕ(λ)(LiftΦϕT
ϕ
λ )(g).

Theorem 4.7 can be reformulated as follows. Fix ϕ ∈ T (Φ). Since L′B is
stable under the action of W (Φ), for each λ ∈ L′B we can define

(4.11) Sϕλ = [W (Φ, ϕ)]−1
∑

w∈W (Φ)

εΦϕ(wλ)Tϕwλ

where W (Φ, ϕ) = {w ∈W (Φ) : wϕ = ϕ}.
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Theorem 4.8. Assume that Φ has no irreducible factors of type A2k, k ≥ 1,
and let λ ∈ L′B. Then for all g ∈ G′′

C,

Tλ(g) = (LiftΦϕS
ϕ
λ )(g).

Suppose that Φ contains an irreducible factor of type A2k, k ≥ 1. Then
as in [H4, Theorem 5.7], ρ(Φ+, ϕ) is not in the weight lattice of Φ so that
eλ−ρϕ is not well-defined on B for any λ ∈ L′B. However, we can still define
Tϕλ and LiftΦϕT

ϕ
λ near the identity in G′

ϕ,C and G′
C respectively as follows.

This construction is valid for general Φ, but is needed only in the case that
Φ contains irreducible factors of type A2k, k ≥ 1.

Define
(4.12a)
ω = {X ∈ g

C
: |Imλ| < π for every eigenvalue λ of ad X}, Ω = exp(ω).

Then as in [HC1, §3], ω is an invariant neighborhood of the identity in
g
C

, and Ω is an invariant neighborhood of the identity in GC. Define Ω′ =
Ω ∩G′

C. For any ϕ ∈ T (Φ), we define

(4.12b) Ω′
ϕ = {x ∈ G′

ϕ,C : Fϕ,C(Oϕ,C(x)) ⊂ Ω′}.

Clearly Ω′
ϕ is an invariant subset of G′

ϕ,C and BC ∩ Ω′
ϕ = BC ∩ Ω′. The

following lemma is a direct consequence of the definition of Ω′
ϕ.

Lemma 4.9. Let g ∈ Ω′. Then Xϕ,C(g) ⊂ Ω′
ϕ.

Because of Lemma 4.9, if Θ is any class function on Ω′
ϕ, we can define a

class function on Ω′ by

(4.13) (LiftΦϕΘ)(g) =
∑

x∈Xϕ,C(g)

DΦ
ϕ (x)Θ(x), g ∈ Ω′.

Lemma 4.10. Let b ∈ Ω′ ∩ BC. Then there is H ∈ ω ∩ bC such that
b = exp(H). Suppose that H,H ′ ∈ ω ∩ bC such that b = exp(H) = exp(H ′).
Then α(H) = α(H ′) for all α ∈ Φ.

Proof. Let b ∈ Ω′ ∩ BC. Then there is H ∈ ω such that b = exp(H). Now
H ∈ Cg

C
(b) = bC so that H ∈ ω ∩ bC. Now suppose that b = exp(H) =

exp(H ′),H,H ′ ∈ ω ∩ bC. Let α ∈ Φ. Then α(H − H ′) ∈ 2πiZ since
exp(H −H ′) = 1. But since H,H ′ ∈ ω,

|Im α(H −H ′)| ≤ |Im α(H)|+ |Im α(H ′)| < 2π,

so that α(H −H ′) = 0. Thus α(H) = α(H ′). �

Let Φ+ be a choice of positive roots for Φ and define ρ(Φ+, ϕ) as in (4.6).
Because of Lemma 4.10 we can define eρ(Φ

+,ϕ) on BC ∩ Ω′ as follows. Let
b ∈ Ω′ ∩ BC. Then there is H ∈ ω ∩ bC such that b = exp(H). Define
eρ(Φ

+,ϕ)(b) = exp(ρ(Φ+, ϕ)(H)). By Lemma 4.10 this is independent of the
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choice of H. Now for any λ ∈ L′B, eλ−ρ is defined on B(Φ), so we can define
eλ−ρϕ on B(ϕ) ∩ Ω′

ϕ ⊂ B(Φ) ∩ Ω′ by

(4.14) eλ−ρϕ(b) = eλ−ρ(b) eρ(Φ
+,ϕ)(b).

Thus for each λ ∈ L′B we can define a class function Tϕλ on Ω′
ϕ which is

supported on G′
C(ϕ) ∩ Ω′

ϕ and satisfies
(4.15)
Tϕλ (b) = ε(ϕ+ : λ)

∑
v∈W (ϕ)

∆′(ϕ+ : vb)−1eλ−ρϕ(vb) c(λ : ϕ+
vb), b ∈ B(ϕ)∩Ω′

ϕ.

Tϕλ corresponds to stable discrete series characters of real forms of a two-
fold cover of Gϕ,C. That is, there is a two-fold cover π : G̃ϕ,C → Gϕ,C
such that eλ−ρϕ is well defined on B̃ = π−1(B). Now λ ∈ L′

B̃
and the usual

construction gives a class function T̃ϕλ on G̃ϕ,C which restricts to stable
discrete series characters of real forms of G̃ϕ,C with Cartan subgroup B̃. Let
Ũ and U denote neighborhoods of the identity in G̃ϕ,C and Gϕ,C respectively
so that the restriction πU of π to Ũ gives an isomorphism onto U . Then

Tϕλ (x) = T̃ϕλ (π−1
U (x)), x ∈ U ∩ Ω′

ϕ.

We can also define

(4.16) Sϕλ = [W (Φ, ϕ)]−1
∑

w∈W (Φ)

εΦϕ(wλ)Tϕwλ

on Ω′
ϕ.

Theorem 4.11. Let λ ∈ L′B and g ∈ G′′
C ∩ Ω. Then

Tλ(g) =
∑

ϕ∈T (Φ)

εΦϕ(λ)(LiftΦϕT
ϕ
λ )(g)

and for any ϕ ∈ T (Φ),

Tλ(g) = (LiftΦϕS
ϕ
λ )(g).

5. Proof of Theorems 4.7, 4.8, and 4.11.

In this section we will prove Theorems 4.7, 4.8, and 4.11. In order to handle
both cases at the same time, we will let Ω be defined as in (4.12a) when Φ
contains an irreducible factor of type A2k, k ≥ 1. If Φ contains no irreducible
factors of type A2k we set Ω = GC.

Let ϕ ∈ T (Φ). Fix a set of positive roots Φ+ and define ρ(Φ+, ϕ) as in
(4.6). If Φ contains no irreducible factors of type A2k, k ≥ 1, ρ(Φ+, ϕ) is
in the root lattice of Φ by [H4, Theorem 5.7]. Thus eρ(Φ

+,ϕ) gives a well-
defined character of BC = BC ∩ Ω. Otherwise, we can define eρ(Φ

+,ϕ) on
B′

C ∩ Ω as in (4.14) using Lemma 4.10.



206 REBECCA A. HERB

Now for b ∈ B′
C ∩ Ω, we can define

(5.1a) ∆(Φ+, ϕ, b) = ∆′(Φ+ : b)−1 ∆′(ϕ+ : b) e−ρ(Φ
+,ϕ)(b);

(5.1b) δ(Φ+, ϕ, b) = |∆(Φ+, ϕ, b)| ∆(Φ+, ϕ, b)−1.

Then as in [H4, Lemma 6.6], we have

(5.2) DΦ
ϕ (b) = |∆(Φ+, ϕ, b)| = δ(Φ+, ϕ, b) ∆(Φ+, ϕ, b), b ∈ B′

C ∩ Ω.

Lemma 5.1. Let ϕ ∈ T (Φ), b ∈ B′′
C ∩ Ω, λ ∈ L′B. Then for any choice Φ+

of positive roots for Φ,

εΦϕ(λ) (LiftΦϕT
ϕ
λ )(b)

= ε(Φ+ : λ) ε(ϕ : Φ+)
∑

w∈W (Φ,ϕ,b)

∆′(Φ+ : wb)−1 eλ−ρ(Φ
+)(wb)

· δ(Φ+, ϕ, wb) c(λ : ϕ+
wb),

where
W (Φ, ϕ, b) = {w ∈W (Φ) : wb ∈ B(ϕ)}.

Proof. Since b ∈ B′′
C, by Lemma 4.4 we can take Xϕ,C(b) = {wb} where

w runs over a set of coset representatives for W (ϕ)\W (Φ). Now using the
definitions (4.4) and (4.10) we have

εΦϕ(λ) (LiftΦϕT
ϕ
λ )(b)

= ε(Φ+ : λ) ε(ϕ+ : λ) ε(ϕ : Φ+)
∑

w∈W (ϕ)\W (Φ)

DΦ
ϕ (wb) Tϕλ (wb).

But Tϕλ (wb) = 0 unless wb ∈ B(ϕ), that is w ∈ W (Φ, ϕ, b). Since B(ϕ)
is invariant under W (ϕ), we will have w ∈ W (Φ, ϕ, b) if and only if vw ∈
W (Φ, ϕ, b) for all v ∈W (ϕ). Let w ∈W (Φ, ϕ, b). Then by (4.7) or (4.15),

DΦ
ϕ (wb) Tϕλ (wb)

= ε(ϕ+ : λ)
∑

v∈W (ϕ)

DΦ
ϕ (vwb)∆′(ϕ+ : vwb)−1eλ−ρϕ(vwb) c(λ : ϕ+

vwb).

Now, for all v ∈W (ϕ), using (5.1) and (5.2),

DΦ
ϕ (vwb) ∆′(ϕ+ : vwb)−1 eλ−ρϕ(vwb)

= δ(Φ+, ϕ, vwb) ∆′(Φ+, vwb)−1 eλ−ρ(vwb).

Thus

εΦϕ(λ) (LiftΦϕT
ϕ
λ )(b)

= ε(Φ+ : λ) ε(ϕ : Φ+)
∑

w∈W (ϕ)\W (Φ,ϕ,b)

∑
v∈W (ϕ)

δ(Φ+, ϕ, vwb)

·∆′(Φ+ : vwb)−1 eλ−ρ(vwb) c(λ : ϕ+
vwb)
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= ε(Φ+ : λ) ε(ϕ : Φ+)
∑

w∈W (Φ,ϕ,b)

δ(Φ+, ϕ, wb)

·∆′(Φ+ : wb)−1 eλ−ρ(wb) c(λ : ϕ+
wb).

�

For b ∈ BC, define

(5.3) T (Φ, b) = {ϕ ∈ T (Φ) : b ∈ B(ϕ)}.

Lemma 5.2. Let b ∈ B′′
C ∩ Ω, λ ∈ L′B. Then for any ϕ0 ∈ T (Φ),∑

ϕ∈T (Φ)

εΦϕ(λ) (LiftΦϕT
ϕ
λ )(b)

= (LiftΦϕ0
Sϕ0

λ )(b)

= ε(Φ+ : λ)
∑

w∈W (Φ)

∆′(Φ+ : wb)−1 eλ−ρ(wb)

·
∑

ϕ∈T (Φ,wb)

ε(ϕ : Φ+) δ(Φ+, ϕ, wb) c(λ : ϕ+
wb).

Proof. For any ϕ ∈ T (Φ), w ∈ W (Φ), w ∈ W (Φ, ϕ, b) if and only if ϕ ∈
T (Φ, wb). Thus using Lemma 5.1 we have∑

ϕ∈T (Φ)

εΦϕ(λ) (LiftΦϕT
ϕ
λ )(b)

= ε(Φ+ : λ)
∑

ϕ∈T (Φ)

ε(ϕ : Φ+)

·
∑

w∈W (Φ,ϕ,b)

δ(Φ+, ϕ, wb) ∆′(Φ+ : wb)−1 eλ−ρ(wb) c(λ : ϕ+
wb)

= ε(Φ+ : λ)
∑

w∈W (Φ)

∆′(Φ+ : wb)−1 eλ−ρ(wb)

·
∑

ϕ∈T (Φ,wb)

ε(ϕ : Φ+) δ(Φ+, ϕ, wb) c(λ : ϕ+
wb).

Further, since lifting is clearly linear, we have using definition (4.11) or
(4.16)

(LiftΦϕ0
Sϕ0

λ )(b) = [W (Φ, ϕ0)]−1
∑

s∈W (Φ)

εΦϕ0
(sλ) (LiftΦϕ0

Tϕ0

sλ )(b).

Fix s ∈ W (Φ). Then, using Lemma 5.1 to evaluate εΦϕ0
(sλ) (LiftΦϕ0

Tϕ0

sλ )(b)
with the positive roots sΦ+, we have

εΦϕ0
(sλ) (LiftΦϕ0

Tϕ0

sλ )(b)
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= ε(sΦ+ : sλ) ε(ϕ0 : sΦ+)

·
∑

w∈W (Φ,ϕ0,b)

∆′(sΦ+ : wb)−1 esλ−ρ(sΦ
+)(wb)

· δ(sΦ+, ϕ0, wb) c(sλ : (ϕ0)+wb).

But it is easy to check that

ε(sΦ+ : sλ) = ε(Φ+ : λ), ∆′(sΦ+ : wb) = ∆′(Φ+ : s−1wb)

δ(sΦ+, ϕ0, wb) = δ(Φ+, s−1ϕ0, s
−1wb).

Further, by [H4, Lemma 5.4] and (2.8d),

ε(sΦ+ : ϕ0) = ε(Φ+ : s−1ϕ0), c(sλ : (ϕ0)+wb)

= c(λ : s−1(ϕ0)+wb) = c(λ : (s−1ϕ0)+s−1wb
).

Thus we have

εΦϕ0
(sλ) (LiftΦϕ0

Tϕ0

sλ )(b)

= ε(Φ+ : λ) ε(s−1ϕ0 : Φ+)
∑

w∈W (Φ,ϕ0,b)

∆′(Φ+ : s−1wb)−1 eλ−ρ(Φ
+)(s−1wb)

· δ(Φ+, s−1ϕ0, s
−1wb) c(λ : (s−1ϕ0)+s−1wb

).

But w ∈ W (Φ, ϕ0, b) if and only if wb ∈ B′(ϕ0) if and only if s−1wb ∈
B′(s−1ϕ0) if and only if s−1w ∈W (Φ, s−1ϕ0, b). Thus

εΦϕ0
(sλ) (LiftΦϕ0

Tϕ0

sλ )(b)

= ε(Φ+ : λ) ε(s−1ϕ0 : Φ+)
∑

w∈W (Φ,s−1ϕ0,b)

∆′(Φ+ : wb)−1 eλ−ρ(Φ
+)(wb)

· δ(Φ+, s−1ϕ0, wb) c(λ : (s−1ϕ0)+wb)

= εΦs−1ϕ0
(λ) (LiftΦs−1ϕ0

T s
−1ϕ0

λ )(b)

by Lemma 5.1. Now every ϕ ∈ T (Φ) is of the form s−1ϕ0 for some s ∈W (Φ),
and when we sum over s ∈ W (Φ), each ϕ ∈ T (Φ) occurs [W (Φ, ϕ0)] times.
Thus

(LiftΦϕ0
Sϕ0

λ )(b) =
∑

ϕ∈T (Φ)

εΦϕ(λ) (LiftΦϕT
ϕ
λ )(b).

�

Let Ψ be any root system. We define rank T (Ψ) to be the common rank
of all ψ ∈ T (Ψ). Then rank T (Ψ) ≤ rank Ψ and the two are equal just in
case Ψ is spanned by orthogonal roots. We let Taug(Ψ) denote the set of all
root subsystems ψ ⊂ Ψ such that

(i) every irreducible factor of ψ is of type A1 or B2;
(ii) rank ψ = rank T (Ψ).

Then T (Ψ) ⊂ Taug(Ψ). Suppose that Ψ is irreducible. If two-structures of Ψ
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are of type Ak1, then Taug(Ψ) = T (Ψ). However if two-structures of Ψ contain
irreducible factors of type B2, then T (Ψ) is a proper subset of Taug(Ψ),
since Taug(Ψ) contains all root subsystems of Ψ of type Br

2 × As1, 2r + s =
rank T (Ψ).

Define T (Φ, b), b ∈ BC, as in (5.3).

Lemma 5.3. Let ϕ ∈ T (Φ), b ∈ B′(Φ). Then ϕ ∈ T (Φ, b) if and only if
ϕ ∩ Φb ∈ Taug(Φb).

Proof. Let b ∈ B′(Φ), ϕ ∈ T (Φ), and let ψ = Φb ∩ϕ. Then every irreducible
factor of ψ is of type A1 or B2. Further, Φb is spanned by strongly orthogonal
roots, so that rank T (Φb) = rank Φb. Thus ψ ∈ Taug(Φb) if and only if rank
ψ = rank Φb.

Suppose that ϕ ∈ T (Φ, b). Then b ∈ B(ϕ), so there is S ∈ SOC(ϕ)
such that b = t exp(iH) ∈ B(S). As in the proof of Lemma 4.5, there is
S′ ∈ SOC(Φ) such that [S] = [S′], tS = tS′ , and b ∈ B(S′). Thus rank
Φb = [S′] = [S]. Now for α ∈ S, t0 ∈ T 0

S′ , e
α(tt0) = 1 since t ∈ T 1

S and
t0 ∈ T 0

S′ = T 0
S . Thus S ⊂ Φb, and so S ⊂ ψ = ϕ ∩ Φb. Thus [S] ≤ rank ψ ≤

rank Φb = [S], and ψ ∈ Taug(Φb).
Now suppose that ψ ∈ Taug(Φb). Let S be a basis for ψ consisting of one

root from every irreducible factor of ψ of type A1 and two long orthogonal
roots from every irreducible factor of ψ of type B2. Since rank ψ = rank
Φb, we know that [S] = rank Φb. Further, S is strongly orthogonal in ψ.
Suppose that S is not strongly orthogonal in ϕ. Then there are α, β ∈ S
with α ± β ∈ ϕ. But α, β ∈ Φb, α ± β ∈ Φ implies that α ± β ∈ Φb. Thus
α ± β ∈ ψ. This contradicts the fact that α, β are strongly orthogonal in
ψ. Thus S ∈ SOC(ϕ). Since b ∈ B(Φ) there is S′ ∈ SOC(Φ) so that
b = t exp(iH) ∈ B(S′). Now since S ⊂ Φb, eα(t) = 1 for all α ∈ S. Thus
t ∈ T 1

S . Further, since S and S′ are both orthogonal subsets of Φb with
[S′] = [S] = rank Φb, they must have the same linear span. Thus bS = bS′ ,
and so b ∈ B(S) ⊂ B(ϕ). �

For b ∈ B′(Φ) ∩ Ω and ψ ∈ Taug(Φb), define

T (Φ, ψ) = {ϕ ∈ T (Φ) : ϕ ∩ Φb = ψ}.

By Lemma 5.3,

(5.4) T (Φ, b) = ∪ψ∈Taug(Φb) T (Φ, ψ).

Lemma 5.4. Let b ∈ B′(Φ)∩Ω and ψ ∈ Taug(Φb). Then for any choice Φ+

of positive roots for Φ,∑
ϕ∈T (Φ,ψ)

ε(ϕ : Φ+) δ(Φ+, ϕ, b) =

{
ε(ψ : Φ+

b ) if ψ ∈ T (Φb);
0 if ψ 6∈ T (Φb).
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Proof. Fix b ∈ B′(Φ) ∩ Ω and let S ∈ SOC(Φ) such that b ∈ B′(S). By
Lemma 3.3 there is a real form G of GC such that G ∩ BC = B and S
consists of noncompact roots for G. Thus as in Lemma 3.2 we have b =
y−1
S hyS , h = ta ∈ H1

S . Now in the notation of [H4, §6], we have δ(Φ+, ϕ, b) =
δ(Φ+, ϕ, h),Φb = Φt, and Φ+

b = Φ+
R(h). Thus the lemma follows directly

from [H4, Lemma 7.2]. �

Finally, we will need the following theorem which was proven in [H1,
Theorem 1]. Let E be a real vector space, let Ψ ⊂ E be a root system
spanned by strongly orthogonal roots, and let Ψ+ be a choice of positive
roots for Ψ. Let E′(Ψ) = {λ ∈ E :< λ,α >6= 0 ∀ α ∈ Ψ}.

Theorem 5.5. For all λ ∈ E′(Ψ),

c(λ : Ψ+) =
∑

ψ∈T (Ψ)

ε(ψ : Ψ+) c(λ : ψ ∩Ψ+).

Proof of Theorems 4.7, 4.8 and 4.11. By Lemma 5.2, Theorems 4.7 and 4.8
are equivalent and the two parts of Theorem 4.11 are equivalent. Since both
sides are class functions on G′

C ∩Ω, it suffices to prove the theorems for all
b ∈ B′′

C ∩ Ω. Then using Lemma 5.2, for any b ∈ B′′
C ∩ Ω, we have∑

ϕ∈T (Φ)

εΦϕ(λ)(LiftΦϕT
ϕ
λ )(b) = ε(Φ+ : λ)

∑
w∈W (Φ)

∆′(Φ+ : wb)−1 eλ−ρ(Φ
+)(wb)×

∑
ϕ∈T (Φ,wb)

ε(ϕ : Φ+) δ(Φ+, ϕ, wb) c(λ : ϕ+
wb).

Suppose that b 6∈ B′′(Φ). Then Tλ(b) = 0. Let w ∈ W (Φ). Then
wb 6∈ B(Φ) so that wb 6∈ B(ϕ) for all ϕ ∈ T (Φ) by Lemma 4.5. Thus
T (Φ, wb) = ∅, so that ∑

ϕ∈T (Φ)

εΦϕ(λ) (LiftΦϕT
ϕ
λ )(b) = 0.

Now suppose that b ∈ B′′(Φ). Comparing the formula from Lemma 5.2
to that for Tλ(b) in (2.11), we see that it is enough to prove that for all
w ∈W (Φ), ∑

ϕ∈T (Φ,wb)

ε(ϕ : Φ+) δ(Φ+, ϕ, wb) c(λ : ϕ+
wb) = c(λ : Φ+

wb).

Equivalently, we must show that for all b ∈ B′′(Φ) ∩ Ω,∑
ϕ∈T (Φ,b)

ε(ϕ : Φ+) δ(Φ+, ϕ, b) c(λ : ϕ+
b ) = c(λ : Φ+

b ).

Fix b ∈ B′′(Φ)∩Ω. For every ϕ ∈ T (Φ, b), we have ϕ+
b = ϕ∩Φ+

b = ψ∩Φ+
b

where ψ = ϕ ∩ Φb ∈ Taug(Φb) by Lemma 5.3.
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Thus for any choice Φ+ of positive roots and any λ ∈ L′B, using (5.4) we
can write ∑

ϕ∈T (Φ,b)

ε(ϕ : Φ+) δ(Φ+, ϕ, b) c(λ : ϕ+
b )

=
∑

ψ∈Taug(Φb)

c(λ : ψ ∩ Φ+
b )

∑
ϕ∈T (Φ,ψ)

ε(ϕ : Φ+) δ(Φ+, ϕ, b).

Now by Lemma 5.4 and Theorem 5.5,∑
ψ∈Taug(Φb)

c(λ : ψ ∩ Φ+
b )

∑
ϕ∈T (Φ,ψ)

ε(ϕ : Φ+) δ(Φ+, ϕ, b)

=
∑

ψ∈T (Φb)

ε(ψ : Φ+
b ) c(λ : ψ ∩ Φ+

b )

= c(λ : Φ+
b ).

�
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