Pacific Journal of Mathematics

ISOPERIMETRIC INEQUALITIES FOR SECTORS ON SURFACES

HYOUNGSICK BAHN AND SUNGPYO HONG

Volume 196 No. 2

December 2000

ISOPERIMETRIC INEQUALITIES FOR SECTORS ON SURFACES

HYOUNGSICK BAHN AND SUNGPYO HONG

We discuss sectors on a surface of curvature bounded above by a constant and derive an isoperimetric inequality for a proper sector on such a surface. With this isoperimetric inequality we derive an inequality involving the total length of the cut locus of a point on a closed surface.

1. Introduction.

There have been extensive studies on isoperimetric inequalities on a Riemannian manifold of dimension 2 (shortly, a *surface*) [Al, BdC, CF, Fi]. C. Bandle derived an isoperimetric inequality for a sector in the Euclidean plane \mathbb{E}^2 [Ba1, Ba2]: Let D be a sector in \mathbb{E}^2 , which is a simply connected region enclosed by two line segments γ_1, γ_2 starting at a point p and a piecewise smooth simple curve segment Γ joining the end points of γ_1, γ_2 . Let θ_0 denote the interior angle of D at p. C. Bandle showed that for a sector Dwith $\theta_0 \leq \pi$,

$$L^2(\Gamma) \ge 2 \theta_0 A(D)$$

with equality if and only if D is a circular sector, where $L(\Gamma)$ denotes the length of Γ and A(D) the area of D.

In this paper, we consider an isoperimetric inequality for a sector on a surface M with curvature K bounded above by a constant C. By a sector on a surface M we mean a region of M enclosed by two geodesic segments γ_1, γ_2 and a piecewise smooth curve segment Γ , which together constitute a simple closed curve $\Gamma^* = \gamma_1 \cup \Gamma \cup \gamma_2$. On a general surface M, a sector needs not be simply connected nor bounded (e.g., the cylinder $\mathbb{R} \times \mathbb{S}^1$), or could be the whole surface (e.g., the torus T^2). On the other hand, such a simple closed curve Γ^* may enclose two bounded sectors (e.g., the sphere \mathbb{S}^2). For our purpose, we will restrict our attention to sectors on a surface M that are closed, simply connected and bounded ones. We will call such a sector by a proper sector, denoted by $D(\Gamma)$ or just D. We take parametrizations of two geodesic segments γ_i and a piecewise smooth curve segment Γ as $\gamma_i: [0,r_i] \to M \ (i=1,2) \text{ and } \Gamma: [a,b] \to M \text{ such that } \gamma_1(0) = \gamma_2(0) \text{ and }$ $\Gamma(a) = \gamma_1(r_1), \ \Gamma(b) = \gamma_2(r_2)$ so that $\Gamma^* = \gamma_1 \cup \Gamma \cup \gamma_2$ is a simple closed curve with a suitable orientation. The vertex of D is the point $\gamma_1(0) = \gamma_2(0)$ where γ_1 and γ_2 cross. Our main result is the following:

Isoperimetric Inequality for a Sector. Let M be a surface with curvature K bounded above by a constant C. Let D be a proper sector on M with interior angle $\theta_0 \leq \pi$ at the vertex. Then

$$L^2(\Gamma) \ge 2\theta_0 A(D) - C A^2(D).$$

Equality holds only when D is isometric to a geodesic sector on a surface of constant curvature C.

Generally, the cut locus $\operatorname{Cut}(p)$ of p on a closed surface M is a local tree which may have infinitely many edges [M1, M2, GS]. So, the Hausdorff 1-measure is used to measure a subset of $\operatorname{Cut}(p)$. It is known that every compact subset of $\operatorname{Cut}(p)$ of p on a complete surface M has finite total length (Hausdorff 1-measure) [He2, I]. As an application of our isoperimetric inequality, we derive an inequality involving the total length of the cut locus of a point on a closed surface.

2. Sectors on a Surface.

Definition 2.1. Let A be a subset of M and $p, q \in A$. The distance between p and q in A is defined by

$$d_A(p,q) = \inf_{c \in \Omega_{p,q}^A} \int_c ds,$$

where $\Omega_{p,q}^A$ is the set of all piecewise smooth curve segments contained in A joining p and q. Let $B \subset M$ such that $A \cap B \neq \emptyset$. Then $d_A(p, B) = \inf_{q \in A \cap B} d_A(p, q)$ denotes the distance from p to B in A.

Note that $d_A(\cdot, \cdot) \ge d_M(\cdot, \cdot)$ for any set $A \subset M$.

Definition 2.2. Let A be a compact subset of M and G a subset of the boundary ∂A of A. For $t \geq 0$, the *parallel* G_t of G in the distance t in A is defined by

$$G_t = \{q \in A : d_A(q, G) = t\}.$$

For a proper sector $D(\Gamma)$ in M, the parallel Γ_t of Γ in $D(\Gamma)$ is a piecewise smooth simple curve for small t > 0. As t gets larger, Γ_t can have several components.

Relative Cut Locus. Let $D(\Gamma)$ be the proper sector with two geodesics γ_1, γ_2 on M and a piecewise smooth simple curve segment $\Gamma : [a, b] \to M$ with corners $\Gamma(s_i) = x_i$ at $a = s_1 < s_2 < \cdots < s_{n+1} = b$. Let N(s) be the inward unit normal vector field along Γ with the right/left limits $N(s_i^{\pm})$ at the corners x_i of Γ , $i = 1, \ldots, n+1$. With notational conventions, $N(s_1^{\pm}) = -\gamma'_1(r_1)$ and $N(s_{n+1}^{\pm}) = -\gamma'_2(r_2)$, let \mathcal{N}_i be the set of all inward

unit tangent vectors in $T_{x_i}M$ between $N(s_i^-)$ and $N(s_i^+)$. Let

$$\mathcal{N} = \bigcup_{i=0}^{n+1} \mathcal{N}_i,$$

where $\mathcal{N}_0 = \{N(s) : s \in [a, b]\}$. For each $v \in \mathcal{N} \cap T_q M$, $q \in \Gamma$, let $\gamma_v : [0, r] \to M$ be a geodesic such that $\gamma_v(0) = q$ and $\gamma'_v(0) = v$. The point $z = \gamma_v(t)$ where γ_v stops minimizing the distance $d_{D(\Gamma)}(\gamma_v(t), \Gamma)$ is called the *relative cut point* of $v \in \mathcal{N}$ in $D(\Gamma)$. The set of all such relative cut points of $v \in \mathcal{N}$ in $D(\Gamma)$. The set of all such relative for angle of Γ in $D(\Gamma)$. If the exterior angle of Γ at a corner x_i is positive, then for all $v \in \mathcal{N}_i$, the relative cut point of v in $D(\Gamma)$ is x_i itself. Note also that $C_{\text{rel}}(\Gamma)$ need not be a connected set.

Geodesic Sectors. For a point $p \in M$, let \mathcal{U} be a (simply connected) normal neighborhood of p, and take *polar coordinates* (r, θ) on $\mathcal{U} \setminus \{p\}$ such that the metric can be written as

$$ds^2 = dr^2 + f^2 \ d\theta^2$$

where $f = f(r, \theta)$ is the positive-valued function satisfying the initial conditions

$$\lim_{r \to 0} f(r, \theta) = 0, \qquad \lim_{r \to 0} \frac{\partial f}{\partial r}(r, \theta) = 1.$$

Let $\gamma_1, \gamma_2 : [0, r] \to M, i = 1, 2$, be two geodesics starting at p with the angle $0 < \theta \leq \pi$ and $\beta : [0, \theta] \to \mathcal{U} \subset M$ a geodesic circular arc given by $\beta(s) = (r, s)$ in \mathcal{U} . The proper sector enclosed by γ_1, γ_2 and β is called a *geodesic sector* denoted by $S_{r,\theta}$. We will call β the *circular boundary* of $S_{r,\theta}$. The area $A_{r,\theta}$ and the arc length $L_{r,\theta}$ of the circular boundary of $S_{r,\theta}$ are respectively given by

(2.1)
$$A_{r,\theta} = \int_0^\theta \int_0^r f(t,s) \, dt ds, \quad L_{r,\theta} = \int_0^\theta f(r,s) \, ds.$$

Remark 2.3. A geodesic sector with vertex p may cross the usual cut locus $\operatorname{Cut}(p)$ of p. One can easily construct a geodesic sector $S_{r,\theta}$ crossing the cut locus $\operatorname{Cut}(p)$ of p on the cylinder $\mathbb{R} \times \mathbb{S}^1$.

Let $S_{r,\theta}^C$ denote a geodesic sector of radius r and angle θ on a surface M_C of constant curvature $K \equiv C$. Let $A_{r,\theta}^C$ and $L_{r,\theta}^C$ denote its area and the arc length of the circular boundary, respectively. The explicit expressions are:

(2.2)
$$C: \quad a^{2} > 0 \qquad 0 \qquad -a^{2} < 0$$
$$A_{r,\theta}^{C}: \quad 2\theta \frac{\sin^{2} \frac{ar}{2}}{a^{2}} \quad \frac{1}{2}\theta r^{2} \quad 2\theta \frac{\sinh^{2} \frac{ar}{2}}{a^{2}}$$
$$L_{r,\theta}^{C}: \quad \theta \frac{\sin ar}{a} \qquad \theta r \qquad \theta \frac{\sinh ar}{a}.$$

One can easily verify the following formula:

(2.3)
$$(L_{r,\theta}^C)^2 = 2\theta A_{r,\theta}^C - C (A_{r,\theta}^C)^2.$$

For the geodesic sectors on a surface with curvature $K \leq C$, we may have the following lemmas as immediate consequences of the formulas (2.1) and Lemma 7 in [Os]:

Lemma 2.4. Let M be a surface with curvature $K \leq C$. Let $S_{r,\theta}$ be a geodesic sector on M of radius r and angle θ . Then

 $A_{r,\theta} \ge A_{r,\theta}^C$

with equality if and only if $S_{r,\theta}$ is isometric to $S_{r,\theta}^C$ on a surface M_C of constant curvature C.

Lemma 2.5. Under the same assumptions as in Lemma 2.4, we have

$$L_{r,\theta} \ge L_{r,\theta}^C.$$

If $L_{\xi,\theta} = L_{\xi,\theta}^C$ for all $\xi \in (0,r]$, then $S_{r,\theta}$ is isometric to $S_{r,\theta}^C$ on a surface M_C of constant curvature C.

3. Isoperimetric Inequalities for Sectors on a Surface.

Let $\beta : [a, b] \to M$ be a unit speed simple curve, and let **n** be a unit normal vector field along β . Then one can find a variation $\mathcal{X} : [a, b] \times (-\delta, \delta) \to M$ of β given by

(3.1)
$$\mathcal{X}(s,\xi) = \exp_{\beta(s)} \xi \mathbf{n}(s)$$

for some $\delta > 0$.

Let $L_{\mathcal{X}}(\xi)$ denote the arc length of the curve $\beta_{\xi}(s) = \mathcal{X}(s,\xi)$, which will be called a *geodesic parallel* of β . Then, from the first variation formula

$$L'_{\mathcal{X}}(0) = \int_{a}^{b} g(\beta', \nabla_{\beta'} \mathbf{n}) \, ds = -\int_{a}^{b} \kappa \, ds,$$

where ∇ is the Levi-Civita connection of M, we have

(3.2)
$$L_{\mathcal{X}}(\xi) = L_{\mathcal{X}}(0) - \xi \int_{\beta} \kappa \, ds + o(\xi),$$

where κ is the geodesic curvature of β .

For the computation of the length of the parallel Γ_t of Γ , we write $\Gamma = \sum_{i=1}^n \beta^i$ where β^i (i = 1, ..., n) are smooth curves with inward unit normal N. For t > 0 small, the parallel Γ_t of Γ in $D(\Gamma)$ consists of parts of the geodesic parallels β_t^i of β^i in $D(\Gamma)$ together with the geodesic circular arcs of radius t. Let

$$t_* = \sup_{p \in \Gamma, \ q \in \mathcal{C}_{\rm rel}(\Gamma)} d_{D(\Gamma)}(p,q),$$

and for $0 \leq t \leq t_*$, let

$$D(\Gamma_t) = \{ q \in D(\Gamma) : d_{D(\Gamma)}(q, \Gamma) \ge t \}.$$

Notice that $D(\Gamma_t)$ may not be a proper sector since it is not a connected set in general. We will denote the arc length of Γ_t by L(t) and the area of $D(\Gamma_t)$ by A(t) as functions of t.

Lemma 3.1. Let M be a surface with curvature $K \leq C$. Let $D(\Gamma)$ be a proper sector on M with interior angle $\theta_0 \leq \pi$ at the vertex. Then

 $L'(0) \le CA(0) - \theta_0.$

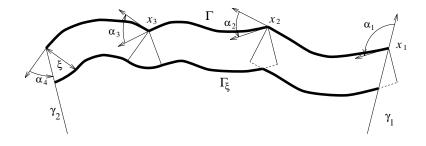


Figure 1.

Proof. Let x_i (i = 1, 2, ..., n + 1) be the corners of Γ including end points and let α_i denote the exterior angle of Γ^* at the corner x_i (See Figure 1). We may assume that $\alpha_i \neq \pi$. Let $S = \{2, ..., n\}$, and let $\mathcal{A} = \{i \in S : \alpha_i \leq 0\}$ and $\mathcal{B} = \{j \in S : \alpha_j > 0\}$. For sufficiently small $\xi > 0$, using the linear approximations for dotted parts of β_{ξ}^i (say, at x_2 in Figure 1), we have, with the help of (3.2),

$$L(\xi) = L(0) - \xi \int_{\Gamma} \kappa ds - \sum_{i \in \mathcal{A}} \xi \alpha_i - \sum_{j \in \mathcal{B}} 2\xi \tan(\alpha_j/2) -\xi \widetilde{\alpha}_1 - \xi \widetilde{\alpha}_{n+1} + o(\xi),$$

where κ is the geodesic curvature of Γ and

$$\widetilde{\alpha}_k = \begin{cases} \alpha_k - \pi/2 & \text{if } \alpha_k \le \pi/2, \\ \tan(\alpha_k - \pi/2) & \text{if } \alpha_k > \pi/2. \end{cases}$$

Using that $\tan \alpha \geq \alpha$ for $\alpha \geq 0$ and $\widetilde{\alpha}_k \geq \alpha_k - \pi/2$, we have

$$L'(0) = -\int_{\Gamma} \kappa ds - \sum_{i \in \mathcal{A}} \alpha_i - \sum_{j \in \mathcal{B}} 2 \tan(\alpha_j/2) - \widetilde{\alpha}_1 - \widetilde{\alpha}_{n+1}$$
$$\leq -\int_{\Gamma} \kappa ds - \sum_{i=1}^{n+1} \alpha_i + \pi.$$

Since γ_1, γ_2 are geodesics, by the Gauss-Bonnet formula,

$$L'(0) \le \int_{D(\Gamma)} K \, dA - \theta_0.$$

Finally, we have

$$L'(0) \le CA(0) - \theta_0$$

from the curvature condition that $K \leq C$.

Note that, for sufficiently small t > 0, Γ_t has one component of a piecewise smooth non-closed simple curve segment. Computation as in Lemma 3.1 thus gives that

(3.3)
$$L'(t) \le CA(t) - \theta_0$$

for sufficiently small t > 0.

Note also that Γ_t could be the union of at most finite number of piecewise smooth non-closed curves, piecewise smooth closed curves and points in general. For a piecewise smooth closed curve, by the same way as in Lemma 3.1 we have the following:

Lemma 3.2. Let M be a surface with curvature $K \leq C$ and D a nondegenerate compact subset of M with the boundary $\partial D = G$ which is a piecewise smooth simple curve. Let G_{ξ} denote the parallel of $G = \partial D$ in D and $\ell(t) = L(G_t)$. Then

$$\ell'(0) \le CA(D) - 2\pi.$$

The following facts come from the results of [**Fi**, pp. 303-332] by a slight modification (also see [**CF**, p. 86]): L(t) is continuous for all but at most a finite number of t in $[0, t_*]$ at which L(t) has a jump discontinuity, however A(t) is continuous; A'(t) = -L(t) for almost all $t \in [0, t_*]$ (cf. [**Ha**, p. 706]).

Theorem 3.3. Let M be a surface with curvature $K \leq C$. Let $D(\Gamma)$ be a proper sector on M with interior angle $\theta_0 \leq \pi$ at the vertex. Then

(3.4) $L'(t) \le CA(t) - \theta_0$

for almost all $t \in [0, t_*]$.

Proof. Let n_t and m_t be the numbers of components of piecewise smooth non-closed curves Γ_t^i and piecewise smooth closed curves Ω_t^j of Γ_t , respectively. For almost all $t \in [0, t_*]$, we may write

$$\Gamma_t = \sum_{i=1}^{n_t} \Gamma_t^i + \sum_{j=1}^{m_t} \Omega_t^j.$$

Note that each end point of Γ_t^i is either on γ_1 or on γ_2 so that Γ_t^i and γ_1 and/or γ_2 bound a simply connected compact set, denoted by $D(\Gamma_t^i)$. Each

262

 Ω_t^j itself also bounds simply connected compact set, denoted by $D(\Omega_t^j)$. Thus we may write

(3.5)
$$D(\Gamma_t) = \left(\bigcup_{i=1}^{n_t} D(\Gamma_t^i)\right) \bigcup \left(\bigcup_{j=1}^{m_t} D(\Omega_t^j)\right).$$

For the sake of brevity, we use the notations: $L_i(t) = L(\Gamma_t^i)$, $A_i(t) = A(D(\Gamma_t^i))$, $\ell_j(t) = L(\Omega_t^j)$ and $B_j(t) = A(D(\Omega_t^j))$. Then by the same computation as (3.3) we have

(3.6)
$$L'_i(t) \le CA_i(t) - \theta_i,$$

where $\theta_0 \leq \theta_i \leq \pi$. By Lemma 3.2,

(3.7)
$$\ell_j'(t) \le CB_j(t) - 2\pi$$

Thus,

$$L'(t) = \sum_{i}^{n_t} L'_i(t) + \sum_{j}^{m_t} \ell'_j(t)$$

$$\leq \sum_{i}^{n_t} (CA_i(t) - \theta_i) + \sum_{j}^{m_t} (CB_j(t) - 2\pi)$$

$$\leq CA(t) - \theta_0$$

for almost all $t \in [0, t_*]$.

Theorem 3.4. Let M be a surface with curvature $K \leq C$. Let $D(\Gamma)$ be a proper sector on M with interior angle $\theta_0 \leq \pi$ at the vertex. Then

(3.8)
$$L^{2}(s) - L^{2}(t) \ge 2\theta_{0}(A(s) - A(t)) - C(A^{2}(s) - A^{2}(t))$$

for $s < t \in [0, t_*]$.

Proof. By multiplying $A'(t) = -L(t) \leq 0$ to the inequality (3.4), we get

(3.9)
$$-L(t)L'(t) \ge CA(t)A'(t) - \theta_0 A'(t)$$

for almost all $t \in [0, t_*]$. Note that L(t) is continuous on $[0, t_*]$ except for a finite number of points $0 < t_1 < t_2 < \cdots < t_m < t_*$. Let $I_j = [t_{j-1}, t_j]$, $j = 1, 2, \ldots, m+1$, where $t_0 = 0$, $t_{m+1} = t_*$. For s < t in $[0, t_*]$, we may assume that $s \in I_i$ and $t \in I_j$ for some $i \leq j$. By direct computation, we have

$$-\int_{s}^{t} L(t)L'(t) dt = \frac{1}{2}(L^{2}(s) - L^{2}(t)) + \frac{1}{2}\sum_{k=i}^{j-1}(L^{2}(t_{k}^{+}) - L^{2}(t_{k}^{-})),$$

where $h(r^{\pm})$, as usual, stands for the right/left limits of a function h at r. Notice that $L(t_k^+) < L(t_k^-)$ and $A(t_k^+) = A(t_k^-)$. Thus we have

(3.10)
$$-\int_{s}^{t} L(t)L'(t)dt \leq \frac{1}{2}(L^{2}(s) - L^{2}(t)).$$

Similarly,

(3.11)
$$\int_{s}^{t} A(t)A'(t) dt = -\frac{1}{2}(A^{2}(s) - A^{2}(t)),$$

(3.12)
$$-\int_{s}^{t} A'(t) dt = A(s) - A(t).$$

Therefore, from (3.9)–(3.12), we have

$$L^{2}(s) - L^{2}(t) \geq -2 \int_{s}^{t} L(t)L'(t) dt$$

$$\geq 2C \int_{s}^{t} A(t)A'(t) dt - 2\theta_{0} \int_{s}^{t} A'(t) dt$$

$$= 2\theta_{0}(A(s) - A(t)) - C(A^{2}(s) - A^{2}(t)).$$

 \square

We are now ready to state and prove our main result.

Theorem 3.5. Let M be a surface with curvature $K \leq C$. Let $D(\Gamma)$ be a proper sector on M with interior angle $\theta_0 \leq \pi$ at the vertex. Then

(3.13)
$$L^{2}(\Gamma) \geq 2\theta_{0}A(D(\Gamma)) - CA^{2}(D(\Gamma)),$$

where equality holds only when $D(\Gamma)$ is isometric to a geodesic sector on a surface M_C of constant curvature $K \equiv C$.

Proof. By setting $t \to t_*$ in (3.8) of Theorem 3.4, we get

(3.14)
$$L^2(s) \ge 2\theta_0 A(s) - CA^2(s).$$

Now at s = 0, we get the inequality (3.13).

For a geodesic sector on a surface M_C of constant curvature $K \equiv C$, it is quite clear that the equality holds in (3.13) by (2.3).

Suppose now that the equality $L^2(0) = 2\theta_0 A(0) - CA^2(0)$ holds. Then from (3.8) with s = 0 together with (3.14) we get

(3.15)
$$L^{2}(t) = 2\theta_{0}A(t) - CA^{2}(t),$$

for all $0 \le t \le t_*$. Since Γ_{t_*} is in the relative cut locus $C_{\text{rel}}(\Gamma)$ of Γ in $D(\Gamma)$, $D(\Gamma_{t_*})$ is contained in $C_{\text{rel}}(\Gamma)$. That is, $A(t_*) = 0$ and so by (3.15) $L(t_*) = 0$. By differentiation,

(3.16)
$$L'(t) = -\theta_0 + CA(t)$$

for all $0 \leq t \leq t_*$. Therefore, equalities hold for all $0 \leq t \leq t_*$ in inequalities in the proof of Theorem 3.3. This implies that, for $t < t_*$, the exterior angles at the end points of Γ_t are less than or equal to $\pi/2$ and there are no corners (which are not end points) on Γ_t at which the exterior angle of Γ_t^* is positive. In addition, for each $v \in T_q M \cap \mathcal{N}$, which is the set defined as in Section 2, the geodesic $\gamma_v : [0, t_*] \to M$ such that $\gamma_v(0) = q \in \Gamma$, $\gamma_v'(0) = v$ satisfies $d_{D(\Gamma)}(\gamma_v(t), q) = t$ and $\gamma_v(t) \in \Gamma_t$ for each $t \in [0, t_*]$. That is, $\mathcal{C}_{rel}(\Gamma) \subseteq \Gamma_{t_*}$. Therefore, $\mathcal{C}_{rel}(\Gamma) = \Gamma_{t_*}$ is the set of a single point, say $\{p\}$. Moreover, no geodesics starting at p intersect before the distance t_* in $D(\Gamma)$, so $D(\Gamma)$ is a geodesic sector of radius t_* and angle θ_0 centered at p. By (3.15) and (3.16), $L: [0, t_*] \to \mathbb{R}$ satisfies the following ODE

(3.17)
$$L''(t) = -CL(t), \quad L(t_*) = 0, \quad L'(t_*) = -\theta_0.$$

By comparing the solution of (3.17) with $L_{t,\theta}^C$ in (2.2) for a geodesic sector on M_C , one can see that $D(\Gamma)$ is isometric to S_{t_x,θ_0}^C by Lemma 2.5.

If $M = \mathbb{E}^2$ and we set C = 0, then Theorem 3.5 implies the result of C. Bandle [Ba1, Ba2]. Similar isoperimetric inequalities on Lorentzian surfaces were obtained by the authors [BH, B].

Remark 3.6. The condition that $\theta_0 \leq \pi$ in Theorem 3.5 is essential. One can construct a proper sector for which the isoperimetric inequality (3.13) does not hold in the following way: In \mathbb{E}^2 , consider a proper sector with $\Gamma = \Gamma^1 \cup \Gamma^2$, where Γ^1 is a semi-circle of radius r centered at q and Γ^2 is a circular arc of angle $0 < \varphi < \pi$ and radius αr ($0 < \alpha < 1$) centered at p (see Figure 2). Take C = 0, then

$$L^{2}(\Gamma) = (\pi + \varphi \alpha)^{2} r^{2} < (\pi + \varphi)(\pi + \varphi \alpha^{2})r^{2} = 2\theta_{0}A(D(\Gamma)).$$

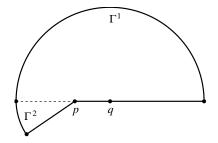


Figure 2.

Remark 3.7. The isoperimetric inequality (3.13) holds for a closed, simply connected, bounded set D having the boundary $\Gamma^* = \gamma_1 \cup \Gamma \cup \gamma_2$, where $\gamma_1(0) = \gamma_2(0), \ \gamma_1(r_1) = \gamma_2(r_2) = \Gamma(a) = \Gamma(b)$ by approximating Γ^* by Γ^*_{ε} , where Γ^*_{ε} is a closed curve obtained from Γ^* by changing the parts of Γ^* contained in a geodesic ball of radius ε at $\gamma_1(r_1) = \gamma_2(r_2)$ so that Γ^*_{ε} is piecewise smooth and simple.

We now consider a special case of a proper sector: Suppose that γ_i : $[0, r_i] \to M$ (i = 1, 2) are two geodesic segments such that $\gamma_1(0) = \gamma_2(0) = p$, $\gamma_1(r_1) = \gamma_2(r_2) = q$ and $\gamma_1((0, r_1)) \cap \gamma_2((0, r_2)) = \emptyset$. Such a sector will be called an *oval sector*. Notice that there are no such oval sectors on a surface with curvature $K \leq 0$. Let θ_1, θ_2 be the interior angles of D at p, q, respectively. From Theorem 3.5, we have:

Corollary 3.8. Let M be a surface with curvature $K \leq C$ for a positive constant C. Let D be an oval sector enclosed by γ_1 , γ_2 with θ_1 , $\theta_2 \leq \pi$ on M. Then

$$(3.18) A(D) \ge \frac{2\theta_*}{C},$$

where $\theta_* = \max\{\theta_0, \theta_1\}$. Equality holds only when D is isometric to a geodesic sector of radius π/\sqrt{C} and angle $\theta_1 = \theta_2$ on a surface of constant curvature $K \equiv C$.

The equality case of Corollary 3.8 is based on the following fact: For an oval sector D with $\theta_1, \theta_2 \leq \pi$ on a surface M with curvature $K \leq C$, by the Gauss-Bonnet formula, one can obtain the inequality

(3.19)
$$A(D) \ge \frac{1}{C}(\theta_0 + \theta_1),$$

where equality holds only when M is a surface of constant curvature C.

The following is an immediate consequence of Corollary 3.8:

Corollary 3.9. Let M be a surface with curvature $K \leq C$ for a positive constant C. Suppose that γ_1, γ_2 are two geodesics starting at a point $p \in M$ with angle θ at p and D is a simply connected domain on M containing γ_1, γ_2 with area less than $\frac{2\theta}{C}$. Then γ_1 and γ_2 never meet again in D.

4. Lengths of the cut locus.

Let M be a closed surface (i.e., a compact surface without boundary) with area A(M). For $v \in T_pM$, $p \in M$, denote by γ_v the unique geodesic satisfying $\gamma'_v(0) = v$. Define $\rho(v) = \sup\{t \in \mathbb{R} : \gamma_v \text{ is minimal on } [0,t]\}$. Then $\rho(v)$ is continuous on the set $\mathbb{S}_p = \{v \in T_pM : ||v|| = 1\}$ and the values of ρ on \mathbb{S}_p are bounded (by the diameter of M). Note that, if $w = \lambda v \in T_pM$ $(\lambda \geq 0)$, then $\rho(v) = \lambda \rho(w)$. Let

$$U_p = \{ v \in T_p M : \rho(v) > 1 \}.$$

Then U_p is a bounded set in T_pM and the (usual) cut locus of p is

$$\operatorname{Cut}(p) = \exp_p(\partial U_p).$$

It is well known that, for $p \in M$,

$$M = \mathcal{U}_p \stackrel{.}{\cup} \operatorname{Cut}(p),$$

where $\mathcal{U}_p = \exp_p(U_p)$. Note that $\operatorname{Cut}(p)$ is a deformation retract of $M \setminus \{p\}$. Hence, on any orientable closed surface M of genus g, $\operatorname{Cut}(p)$ of any point $p \in M$ contains 2g closed curves, which form a set of generators for the fundamental group of M. It is known that any compact subset of $\operatorname{Cut}(p)$ of p on a closed surface M has finite Hausdorff 1-measure (cf. [He2, I]). Thus any path in $\operatorname{Cut}(p)$ is rectifiable ([He1, Proposition 5.1]) and the Hausdorff 1-measure of a path in $\operatorname{Cut}(p)$ is its arc length ([Fa, p. 29]). Using our isoperimetric inequality (4.1) in Theorem 4.2, we will derive an inequality involving the Hausdorff 1-measure of the cut locus of a point in a closed orientable surface.

Lemma 4.1. Let M be a closed surface and $p \in M$. Then there is a geodesic segment through p such that its end points are in Cut(p) and it bisects U_p in area.

Proof. For a unit vector $v \in T_pM$, denote $c_v : [-\rho(-v), \rho(v)] \to M$ the unique geodesic segment such that $c_v(s) = \gamma_{-v}(-s)$ for $s \in [-\rho(-v), 0]$ and $c_v(t) = \gamma_v(t)$ for $t \in [0, \rho(v)]$. Then $c_v(-\rho(-v)) = \gamma_{-v}(\rho(-v))$, $c_v(\rho(v)) =$ $\gamma_v(\rho(-v))$ are in Cut(p) of p and $c_v(0) = p$. Clearly, for each $v \in \mathbb{S}_p$, c_v splits \mathcal{U}_p into two pieces. We take one piece of these for each v continuously and name it D_v . Let A(v) be the area of D_v . Then A(v) is a continuous function on \mathbb{S}_p since ρ is continuous on \mathbb{S}_p . By the mean value theorem, there is a $v_0 \in \mathbb{S}_p$ such that $A(v_0) = \frac{1}{2}A(M)$, and c_{v_0} is a desired one. \Box

Theorem 4.2. Let M be a closed surface with curvature $K \leq C$ and ℓ the total length (the Hausdorff 1-measure) of the cut locus $\operatorname{Cut}(p)$ of $p \in M$. Then

(4.1)
$$\ell^2 \ge \pi A(M) - \frac{C}{4} A^2(M).$$

Proof. Let $\gamma : [a, b] \to M$ be a geodesic segment bisecting U_p into D_1 , D_2 with $A(D_1) = A(D_2)$ as in Lemma 4.1. Then there is a (continuous) path $\widetilde{\Gamma}$ in $\operatorname{Cut}(p)$ joining $\gamma(a)$ and $\gamma(b)$ so that γ and $\widetilde{\Gamma}$ constitute the common boundary of D_1 and D_2 . As the path $\widetilde{\Gamma}$ may not be piecewise smooth and $\widetilde{\Gamma}$ is compact, for any $\varepsilon > 0$ we choose a piecewise simple curve segment Γ joining $\gamma(a)$ and $\gamma(b)$ such that Γ is contained in the ε -neighborhood of $\widetilde{\Gamma}$ and $L(\Gamma) \leq L(\widetilde{\Gamma})$. Let D'_1, D'_2 be two domains with boundary γ and Γ corresponding to D_1, D_2 , respectively. By Theorem 3.5 and Remark 3.7,

$$L^{2}(\Gamma) \geq 2\pi A(D'_{1}) - CA^{2}(D'_{1}), \quad L^{2}(\Gamma) \geq 2\pi A(D'_{2}) - CA^{2}(D'_{2}).$$

Combining these with the fact that $A(D'_i) = A(D_i) + O(\varepsilon^2)$ for i = 1, 2,

$$L^{2}(\widetilde{\Gamma}) \ge 2\pi A(D_{1}) - CA^{2}(D_{1}), \quad L^{2}(\widetilde{\Gamma}) \ge 2\pi A(D_{2}) - CA^{2}(D_{2}).$$

Since $\widetilde{\Gamma} \subset \operatorname{Cut}(p)$ and $L(\widetilde{\Gamma})$ is equal to the Hausdorff 1-measure of $\widetilde{\Gamma}$, which is less than or equal to the total length ℓ of $\operatorname{Cut}(p)$, we get

$$\ell^2 \ge \pi A(M) - \frac{C}{4} A^2(M).$$

Example 4.3. Let T^2 be the flat torus obtained by identifying the opposite sides of quadrilateral ABCD (see Figure 3). Then the cut locus $\operatorname{Cut}(p)$ of middle point $p \in T^2$ is the set formed by the line segments AB and BC, and so $\ell = a + b$, where a and b are the length of the line segments AB and BC, respectively. The area of T^2 is ab. Take C = 0 as usual, then (4.1) gives a well-known inequality

$$(a+b)^2 \ge \pi ab.$$

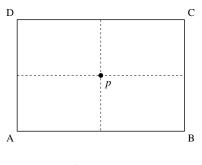


Figure 3.

Example 4.4. Let $P^2(\mathbb{R})$ be the projective plane of constant curvature C = 1, obtained by identifying the antipodal points of the unit sphere \mathbb{S}^2 . The cut locus $\operatorname{Cut}(p)$ of a point p of $P^2(\mathbb{R})$ is the set obtained by identifying the antipodal points of the equator of p. Since $\ell = \pi$ and $A(P^2(\mathbb{R})) = 2\pi$, we get equality in (4.1). On \mathbb{S}^2 , trivially we also get equality.

It is well known that any closed orientable surface of genus g > 1 carries a metric with constant negative curvature [**GHL**, p. 167], and that the area of a closed orientable surface of genus g > 1 and curvature -1 is $4\pi(g-1)$ [**GHL**, p. 169]. Combining these and Theorem 4.2 we have: **Corollary 4.5.** Let M be a closed orientable surface of genus g > 1 with curvature -1. Then

 $\ell^2 \ge 4\pi^2 g(g-1).$

Acknowledgement. H. Bahn would like to thank Professor Paul Ehrlich for helpful conversations while he was a visitor to the University of Florida.

References

- [Al] A.D. Alexandroff, Isoperimetric inequalities for curved surfaces, Dokl. Akad. Nauk. SSSR, 47 (1945), 235-238.
- [B] H. Bahn, Isoperimetric inequalities and conjugate points on Lorentzian surfaces, J. Geom., to appear.
- [BH] H. Bahn and S. Hong, Isoperimetric inequalities for sectors on the Minkowski 2spacetime, J. Geom., 63 (1998), 17-24.
- [Ba1] C. Bandle, A generalization of the method of interior parallels, and isoperimetric inequalities for membranes with partially free boundary, J. Math. Anal. Appl., 39 (1972), 166-176.
- [Ba2] _____, Isoperimetric Inequalities and Applications, Pitman, London, 1980.
- [BdC] J.L. Barbosa and M. do Carmo, A proof of a general isoperimetric inequality for surfaces, Math. Z., 162 (1978), 245-261.
- [CF] I. Chavel and E.A. Feldman, Isoperimetric inequalities on curved surfaces, Adv. Math., 37 (1980), 83-98.
- [Fa] K. Falconer, *The Geometry of Fractal Sets*, Cambridge Univ. Press, London, 1985.
- [Fi] F. Fiala, Le problème des isopérimètres sur les surfaces ouverts à courbure positive, Comment. Math. Helv., 13 (1940-41), 293-396.
- [GHL] S. Gallot, D. Hulin and J. Lafontaine, *Riemannian Geometry* (2/e), Springer-Verlag, Berlin, 1990.
- [GS] H. Gluck and D. Singer, Scattering of geodesic fields I, Ann. of Math., 108(2) (1978), 347-372.
- [Ha] P. Hartman, Geodesic parallel coordinates in the large, Amer. J. Math., 86 (1964), 705-727.
- [He1] J.J. Hebda, Parallel translation of curvature along geodesics, Trans. Amer. Math. Soc., 299 (1987), 559-572.
- [He2] _____, Metric structure of cut loci in surfaces and Ambrose's problem, J. Differential Geom., 40 (1994), 621-642.
- J.-I. Itoh, The length of a cut locus on a surface and Ambrose's problem, J. Differential Geom., 43 (1996), 642-651.
- [M1] S.B. Myers, Connections between differential geometry and topology I: Simply connected surfaces, Duke Math. J., 1 (1935), 376-391.
- [M2] _____, Connections between differential geometry and topology II: Closed surfaces, Duke Math. J., 2 (1936), 95-102.

[Os] R. Osserman, Bonnesen-style isoperimetric inequalities, Amer. Math. Monthly, 86 (1979), 1-29.

Received March 10, 1999 and revised June 23, 1999. This work was supported by POSTECH Research Fund and TGRC-KOSEF.

NATIONAL COMPUTERIZATION AGENCY YONGIN 449-717 KOREA *E-mail address*: bahn@nca.or.kr

DEPARTMENT OF MATHEMATICS POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY POHANG 790-784 KOREA *E-mail address*: sungpyo@postech.ac.kr