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‘We discuss sectors on a surface of curvature bounded above
by a constant and derive an isoperimetric inequality for a
proper sector on such a surface. With this isoperimetric in-
equality we derive an inequality involving the total length of
the cut locus of a point on a closed surface.

1. Introduction.

There have been extensive studies on isoperimetric inequalities on a Rie-
mannian manifold of dimension 2 (shortly, a surface) [Al, BAC, CF, Fi|.
C. Bandle derived an isoperimetric inequality for a sector in the Euclidean
plane E? [Bal, Ba2]: Let D be a sector in E2, which is a simply connected
region enclosed by two line segments 1, y2 starting at a point p and a piece-
wise smooth simple curve segment I' joining the end points of 1, v2. Let 6
denote the interior angle of D at p. C. Bandle showed that for a sector D
with 0y < 7,
L*(T) > 26y A(D)

with equality if and only if D is a circular sector, where L(I') denotes the
length of I" and A(D) the area of D.

In this paper, we consider an isoperimetric inequality for a sector on a
surface M with curvature K bounded above by a constant C. By a sector
on a surface M we mean a region of M enclosed by two geodesic segments
1, v2 and a piecewise smooth curve segment I', which together constitute a
simple closed curve I'* = ~; UT'U~,. On a general surface M, a sector needs
not be simply connected nor bounded (e.g., the cylinder R x S!), or could
be the whole surface (e.g., the torus 72). On the other hand, such a simple
closed curve I'* may enclose two bounded sectors (e.g., the sphere S?). For
our purpose, we will restrict our attention to sectors on a surface M that
are closed, simply connected and bounded ones. We will call such a sector
by a proper sector, denoted by D(T") or just D. We take parametrizations
of two geodesic segments ~; and a piecewise smooth curve segment I' as
vi : [0,7] = M (i =1,2) and T : [a,b] — M such that 71(0) = 12(0) and
I'(a) = v1(r1), T'(b) = v2(r2) so that I'* = 43 UT' U~ is a simple closed curve
with a suitable orientation. The vertez of D is the point 71 (0) = 72(0) where
~v1 and 9 cross. Our main result is the following:
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Isoperimetric Inequality for a Sector. Let M be a surface with curva-
ture K bounded above by a constant C. Let D be a proper sector on M with
interior angle 0y < m at the vertex. Then

LX) > 26y A(D) — C A*(D).

Equality holds only when D is isometric to a geodesic sector on a surface of
constant curvature C.

Generally, the cut locus Cut (p) of p on a closed surface M is a local tree
which may have infinitely many edges [M1, M2, GS|. So, the Hausdorff
1-measure is used to measure a subset of Cut (p). It is known that every
compact subset of Cut(p) of p on a complete surface M has finite total
length (Hausdorff 1-measure) [He2, I]. As an application of our isoperimet-
ric inequality, we derive an inequality involving the total length of the cut
locus of a point on a closed surface.

2. Sectors on a Surface.

Definition 2.1. Let A be a subset of M and p, g € A. The distance between
p and ¢ in A is defined by

da(p,q) = inf / ds,

A
ceQ

where Qﬁq is the set of all piecewise smooth curve segments contained in
A joining p and q. Let B C M such that AN B # (. Then da(p, B) =

infgeanp da(p, q) denotes the distance from p to B in A.
Note that da(-,-) > das(+,-) for any set A C M.

Definition 2.2. Let A be a compact subset of M and G a subset of the
boundary 0A of A. For ¢t > 0, the parallel Gy of G in the distance ¢ in A is
defined by

Gr={q€ A:dalq,G) = t}.
For a proper sector D(I") in M, the parallel I'; of I" in D(I") is a piecewise

smooth simple curve for small t > 0. As ¢ gets larger, I'; can have several
components.

Relative Cut Locus. Let D(I") be the proper sector with two geodesics
1,72 on M and a piecewise smooth simple curve segment I' : [a,b] — M

with corners I'(s;) = x; at a = s1 < s3 < -+ < spp1 = b. Let N(s)
be the inward unit normal vector field along I' with the right/left limits
N(sii) at the corners z; of I', ¢ = 1,...,n+ 1. With notational conventions,

N(sy) = —74(r) and N(s}

ne1) = —7a(r2), let N be the set of all inward
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unit tangent vectors in Ty, M between N(s; ) and N(s}). Let

n+1

N: U j\/:iv

=0
where Ny = {N(s) : s € [a,b]}. For each v € NNT,M, q € T, let
v ¢ [0,7] — M be a geodesic such that v,(0) = ¢ and ~,(0) = v. The
point z = 7,(t) where 7, stops minimizing the distance dpr)(7,(t),T) is
called the relative cut point of v € N in D(T"). The set of all such relative
cut points of v € N in D(T') is called the relative cut locus of I in D(T),
denoted by Cye(I'). If the exterior angle of I" at a corner x; is positive, then
for all v € N, the relative cut point of v in D(T') is z; itself. Note also that
Crel(T') need not be a connected set.

Geodesic Sectors. For a point p € M, let U be a (simply connected)
normal neighborhood of p, and take polar coordinates (r,0) on U\ {p} such
that the metric can be written as

ds® = dr? + f* d6?,
where f = f(r, ) is the positive-valued function satisfying the initial condi-
tions
of

ll_r)%f(rae):oa }%E(rae):]'

Let 41, 72 : [0,7] — M, i = 1,2, be two geodesics starting at p with the
angle 0 < # < mand 3 :[0,0] — U C M a geodesic circular arc given by
B(s) = (r,s) in U. The proper sector enclosed by 1, 72 and [ is called a
geodesic sector denoted by S, 9. We will call 3 the circular boundary of S, .
The area A,y and the arc length L,y of the circular boundary of S, are
respectively given by

0 pr 0
(2.1) AT:GZ/O/Of(t78)dtdS7 Lng:/of(r,s)ds.

Remark 2.3. A geodesic sector with vertex p may cross the usual cut locus
Cut(p) of p. One can easily construct a geodesic sector S,y crossing the cut
locus Cut(p) of p on the cylinder R x S.

Let STCQ denote a geodesic sector of radius r and angle 6 on a surface M¢

of constant curvature K = C. Let ASQ and Lge denote its area and the arc
length of the circular boundary, respectively. The explicit expressions are:

C: a*>>0 0 —a’ <0
2 ar . 2 ar
c sin %5 1, 4 sinh 5
(22) AT,@ : 29 a2 507" 297
L% : esin ar or Hsinh ar.
' a a
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One can easily verify the following formula:
(2.3) (LEp)? = 20A%y — C(ASy)*.

For the geodesic sectors on a surface with curvature K < C, we may have
the following lemmas as immediate consequences of the formulas (2.1) and
Lemma 7 in [Os]:

Lemma 2.4. Let M be a surface with curvature K < C. Let S.9 be a
geodesic sector on M of radius r and angle 6. Then

C
AT,Q 2 AT,9

with equality if and only if S, is isometric to STCH on a surface Mc of
constant curvature C.

Lemma 2.5. Under the same assumptions as in Lemma 2.4, we have
Lo > LS.

If Leg = Lge for all € € (0,7], then S,g is isometric to SC, on a surface
Mc¢ of constant curvature C.

3. Isoperimetric Inequalities for Sectors on a Surface.

Let (3 : [a,b] — M be a unit speed simple curve, and let n be a unit normal
vector field along 3. Then one can find a variation X : [a,b] X (=0,8) — M
of 3 given by

(3.1) X (s, &) = expg(s) {n(s)

for some § > 0.
Let Ly (&) denote the arc length of the curve f¢(s) = X(s,§), which will
be called a geodesic parallel of 5. Then, from the first variation formula

b b
L%(0) —/ leavﬁ'n)ds——/ kds,

where V is the Levi-Civita connection of M, we have
(32) La(©) = La(0) = € [ wds +of¢),
B

where k is the geodesic curvature of .

For the computation of the length of the parallel I'; of T', we write I' =
Sy B¢ where 3° (i = 1,... ,n) are smooth curves with inward unit normal
N. For t > 0 small, the parallel I'; of I in D(I") consists of parts of the
geodesic parallels 3{ of 3" in D(I") together with the geodesic circular arcs
of radius t. Let

te= sup  dpm)(p,q),
per’ qecrel (F)
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and for 0 <t <t,, let
D(I'y) = {q € D(T) : dp(ry(q,T) > t}.

Notice that D(I';) may not be a proper sector since it is not a connected
set in general. We will denote the arc length of I'y by L(¢) and the area of
D(Ty) by A(t) as functions of ¢.

Lemma 3.1. Let M be a surface with curvature K < C. Let D(I') be a
proper sector on M with interior angle 0y < 7 at the vertex. Then

L'(0) < CA(0) — .

Figure 1.

Proof. Let z; (i = 1,2,...,n+ 1) be the corners of I' including end points
and let a; denote the exterior angle of I'* at the corner x; (See Figure 1). We
may assume that o; # 7. Let S={2,...,n},andlet A={ieS:aq; <0}
and B = {j € S : a; > 0}. For sufficiently small { > 0, using the linear
approximations for dotted parts of ﬁg (say, at x9 in Figure 1), we have, with
the help of (3.2),

L(§) = L(0)— 5/ kds — > Ea;— Y 2L tan(a;/2)
r icA jeB

_gal - £an+1 =+ 0(5)7
where k is the geodesic curvature of I' and

~ ak—ﬂ'/2 ifoszﬂ'/Q,

U= tan(agp —7/2) if ag > /2.

Using that tana > « for a > 0 and ay > ay — /2, we have
Lo = - / kds — Z a; — Z 2tan(ay/2) — a1 — Qg1

r icA jeB

n+1

—/ﬂds—Zai+7r.
r i=1

IN
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Since 1,72 are geodesics, by the Gauss-Bonnet formula,
L'(O)g/ K dA — 6.
D(T")

Finally, we have
L'(0) < CA(0) — 6
from the curvature condition that K < C. O

Note that, for sufficiently small ¢t > 0, I'y has one component of a piecewise
smooth non-closed simple curve segment. Computation as in Lemma 3.1
thus gives that

(3.3) L'(t) < CA(t) — 0o

for sufficiently small ¢ > 0.

Note also that I'; could be the union of at most finite number of piece-
wise smooth non-closed curves, piecewise smooth closed curves and points
in general. For a piecewise smooth closed curve, by the same way as in
Lemma 3.1 we have the following:

Lemma 3.2. Let M be a surface with curvature K < C and D a nondegen-
erate compact subset of M with the boundary 0D = G which is a piecewise
smooth simple curve. Let G¢ denote the parallel of G = 0D in D and
0(t) = L(G¢). Then
?(0) < CA(D) — 2.
The following facts come from the results of [Fi, pp. 303-332] by a slight
modification (also see [CF, p. 86]): L(t) is continuous for all but at most a

finite number of ¢ in [0, ¢,] at which L(¢) has a jump discontinuity, however
A(t) is continuous; A'(t) = —L(t) for almost all t € [0,¢,] (cf. [Ha, p. 706]).

Theorem 3.3. Let M be a surface with curvature K < C. Let D(I') be a
proper sector on M with interior angle 8y < 7 at the vertexr. Then

(3.4) L'(t) < CA(t) — by
for almost all t € [0, t,].

Proof. Let ny and m; be the numbers of components of piecewise smooth
non-closed curves I': and piecewise smooth closed curves €] of 'y, respec-
tively. For almost all t € [0, ¢,], we may write

nt me 4
L= Ti+> 0.
i=1 j=1

Note that each end point of T is either on 41 or on v, so that Fé and v;
and/or 2 bound a simply connected compact set, denoted by D(I';). Each
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Q{ itself also bounds simply connected compact set, denoted by D(Qi ). Thus
we may write

(3.5) D(Ty) = (U D(Pi)) U U Db@)
i=1 j=1

For the sake of brevity, we use the notations: L;(t) = L(T}), Ai(t) =
A(D(TY)), £;(t) = L(Y) and B;(t) = A(D(2])). Then by the same compu-
tation as (3.3) we have

(3.6) Li(t) < CAi(t) — 6;,
where 6y < 6; < 7. By Lemma 3.2,

(3.7) U;(t) < CBj(t) — 2.
Thus,

L) = YL+ 64

< SOCA) -0+ S (OB 1) —2m)

< CA(t)— b
for almost all ¢ € [0, ¢.]. O

Theorem 3.4. Let M be a surface with curvature K < C. Let D(I') be a
proper sector on M with interior angle 8y < 7 at the vertexr. Then

(3.8) L2(s) — L2(t) > 200(A(s) — A(1)) — C(A%(s) — A%(1))

for s <t e0,ty].

Proof. By multiplying A’(t) = —L(t) < 0 to the inequality (3.4), we get
(3.9) — L(t)L'(t) > CA(t)A'(t) — 6 A'(t)

for almost all ¢ € [0,¢,]. Note that L(t) is continuous on [0, t,] except for
a finite number of points 0 < t; <ty < -+ < tp, < ty. Let I; = [tj_1,1],
j=12... ,m+1, where tg = 0, t;nt1 = tx. For s <t in [0,%,], we may
assume that s € I; and ¢ € I; for some ¢ < j. By direct computation, we
have
t 1 132
- [ DD dt = ) - L) + 5 ST - L))

S

k=t
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where h(r*), as usual, stands for the right/left limits of a function h at 7.
Notice that L(t) < L(t;,) and A(t;") = A(t; ). Thus we have

t
(3.10) —/ L)L/ (#)dt < %(LQ() L2(1)).
Similarly,
(3.11) /tA(t)A’(t)dt _ —%(AQ(S)—AQ(t)),
(3.12) / Aydt = Afs)— A(t).

Therefore, from (3.9)—(3.12), we have

L%(s) — L*(t) > —2/tL( t)L'(t) dt

20/ t) dt — 20 /tA’(t) dt
200(A(s) — A(t)) — C(A*(s) — A*(1)).

v

We are now ready to state and prove our main result.

Theorem 3.5. Let M be a surface with curvature K < C. Let D(T') be a
proper sector on M with interior angle 0y < 7 at the vertex. Then

(3.13) L*(T') > 200 A(D(T)) — CA*(D(T)),

where equality holds only when D(T) is isometric to a geodesic sector on a
surface Mo of constant curvature K = C.

Proof. By setting t — ¢, in (3.8) of Theorem 3.4, we get

(3.14) L*(s) > 200 A(s) — CA%(s).

Now at s = 0, we get the inequality (3.13).

For a geodesic sector on a surface M¢ of constant curvature K = C| it is
quite clear that the equality holds in (3.13) by (2.3).

Suppose now that the equality L?(0) = 26 A(0) — CA%(0) holds. Then
from (3.8) with s = 0 together with (3.14) we get

(3.15) L2(t) = 200 A(t) — CA%(t),

for all 0 <t <t,. Since I'y, is in the relative cut locus Cyei(I") of ' in D(T'),
D(Ty,) is contained in Cye (T'). That is, A(t«) = 0 and so by (3.15) L(t.) = 0.
By differentiation,

(3.16) L'(t) = 6y + CA(t)
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for all 0 <t < t,. Therefore, equalities hold for all 0 < ¢ < t, in inequalities
in the proof of Theorem 3.3. This implies that, for ¢ < t., the exterior angles
at the end points of I'y are less than or equal to /2 and there are no corners
(which are not end points) on I'; at which the exterior angle of I'} is positive.
In addition, for each v € T,M NN, which is the set defined as in Section 2,
the geodesic 7, : [0,t.] — M such that ,(0) = ¢ € T, 7,(0) = v satisfies
dpry(u(t),q) =t and v,(t) € Ty for each t € [0,%.]. That is, Cre1(I') C Ty,
Therefore, Cye(I') = I'y, is the set of a single point, say {p}. Moreover, no
geodesics starting at p intersect before the distance ¢, in D(I"), so D(T') is a
geodesic sector of radius ¢, and angle y centered at p. By (3.15) and (3.16),
L :[0,t.] — R satisfies the following ODE

(3.17) L"(t) = —CL(t), L(t.)=0, L'(t.) = —bp.

By comparing the solution of (3.17) with LY, in (2.2) for a geodesic sector
on M, one can see that D(I") is isometric to Sg,ﬁo by Lemma 2.5. O

If M = E? and we set C = 0, then Theorem 3.5 implies the result of
C. Bandle [Bal, Ba2]. Similar isoperimetric inequalities on Lorentzian
surfaces were obtained by the authors [BH, B].

Remark 3.6. The condition that #y < 7 in Theorem 3.5 is essential. One
can construct a proper sector for which the isoperimetric inequality (3.13)
does not hold in the following way: In E?, consider a proper sector with
I' =T1UT?, where I'! is a semi-circle of radius 7 centered at ¢ and I'? is a
circular arc of angle 0 < ¢ < m and radius ar (0 < a < 1) centered at p (see
Figure 2). Take C' = 0, then

LAT) = (7 + 0a)*r? < (74 @) (7 + pa?)r? = 200A(D(T)).

Figure 2.
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Remark 3.7. The isoperimetric inequality (3.13) holds for a closed, simply
connected, bounded set D having the boundary I'* = v, U ' U 72, where
71(0) = 12(0), 71(r1) = 12(r2) = I'(a) = I'(b) by approximating I'* by I,
where I'! is a closed curve obtained from I'* by changing the parts of I'*
contained in a geodesic ball of radius € at vi(r1) = ~2(r2) so that I'} is
piecewise smooth and simple.

We now consider a special case of a proper sector: Suppose that ~; :
[0,7;] — M (i = 1,2) are two geodesic segments such that v1(0) = v2(0) = p,
y1(r1) = y2(r2) = q and v1((0,71)) N 72((0,72)) = @. Such a sector will
be called an oval sector. Notice that there are no such oval sectors on a
surface with curvature K < 0. Let 61, 02 be the interior angles of D at p, q,
respectively. From Theorem 3.5, we have:

Corollary 3.8. Let M be a surface with curvature K < C' for a positive

constant C. Let D be an oval sector enclosed by ~v1, vo with 01, 05 < 7 on

M. Then

20,
3.18 A(D) > —/
(315) (D)2 2,
where 0, = max{f0y,01}. FEquality holds only when D is isometric to a
geodesic sector of radius w//C and angle 01 = 03 on a surface of constant
curvature K = C.

The equality case of Corollary 3.8 is based on the following fact: For an
oval sector D with 01,02 < 7 on a surface M with curvature K < C, by the
Gauss-Bonnet formula, one can obtain the inequality

(3.19) A(D) > %(90 + 61),

where equality holds only when M is a surface of constant curvature C.
The following is an immediate consequence of Corollary 3.8:

Corollary 3.9. Let M be a surface with curvature K < C' for a positive
constant C. Suppose that v1,v2 are two geodesics starting at a point p € M
with angle 0 at p and D is a simply connected domain on M containing

Y1, Y2 with area less than %. Then 1 and 2 never meet again in D.

4. Lengths of the cut locus.

Let M be a closed surface (i.e., a compact surface without boundary) with
area A(M). For v € T,M, p € M, denote by 7, the unique geodesic satis-
fying v, (0) = v. Define p(v) = sup{t € R : 7, is minimal on [0,¢]}. Then
p(v) is continuous on the set S, = {v € T,M : ||v|| = 1} and the values of
p on S, are bounded (by the diameter of M). Note that, if w = Av € T,M
(A >0), then p(v) = Ap(w). Let

Up={veT,M:p(v)>1}.
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Then U, is a bounded set in T, M and the (usual) cut locus of p is
Cut(p) = exp,,(OUp).
It is well known that, for p € M,
M =U, U Cut(p),

where U, = exp,(Uy). Note that Cut(p) is a deformation retract of M\ {p}.
Hence, on any orientable closed surface M of genus g, Cut(p) of any point
p € M contains 2g closed curves, which form a set of generators for the
fundamental group of M. It is known that any compact subset of Cut(p) of
p on a closed surface M has finite Hausdorff 1-measure (cf. [He2, I]). Thus
any path in Cut(p) is rectifiable ([Hel, Proposition 5.1]) and the Hausdorff
1-measure of a path in Cut(p) is its arc length ([Fa, p. 29]). Using our
isoperimetric inequality (4.1) in Theorem 4.2, we will derive an inequality
involving the Hausdorff 1-measure of the cut locus of a point in a closed
orientable surface.

Lemma 4.1. Let M be a closed surface andp € M. Then there is a geodesic
segment through p such that its end points are in Cut(p) and it bisects U,
m areaq.

Proof. For a unit vector v € T,M, denote ¢, : [—p(—v),p(v)] — M the
unique geodesic segment such that ¢, (s) = y_,(—s) for s € [—p(—v),0] and
eo(t) = u(t) for ¢ € [0,p(v)]. Then cy(—p(—v)) = 7-u(p(=0), culp(v)) =
Yo(p(—v)) are in Cut(p) of p and ¢,(0) = p. Clearly, for each v € S, ¢,
splits U, into two pieces. We take one piece of these for each v continuously
and name it D,. Let A(v) be the area of D,. Then A(v) is a continuous
function on S, since p is continuous on S,. By the mean value theorem,
there is a vg € S, such that A(vg) = 3A(M), and ¢y, is a desired one. [

Theorem 4.2. Let M be a closed surface with curvature K < C and £ the
total length (the Hausdorff 1-measure) of the cut locus Cut(p) of p € M.
Then

2 C
(4.1) 2 >mAM) — N
Proof. Let v : [a,b] — M be a geodesic segment bisecting U, into Dy, Ds
with A(D;) = A(D2) as in Lemma 4.1. Then there is a (continuous) path

T in Cut(p) joining ~(a) and ~(b) so that v and I constitute the common

A%(M).

boundary of Dy and Ds. As the path I' may not be piecewise smooth and
T is compact, for any € > 0 we choose a piecewise simple curve segment
I' joining 7y(a) and 7(b) such that I' is contained in the e-neighborhood of
T and L(I') < L(T'). Let D}, D), be two domains with boundary  and T
corresponding to D1, Do, respectively. By Theorem 3.5 and Remark 3.7,

LX) > 2rA(D}) — CA*(D)), L*(') > 21A(Db) — CA%*(D)).
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Combining these with the fact that A(D}) = A(D;) + O(&?) for i = 1,2,
L*(T) > 2nA(Dy) — CA%(Dy), L*(T') > 2rwA(Dy) — CA%(Dy).

Since I'  Cut(p) and L(T') is equal to the Hausdorff 1-measure of ', which
is less than or equal to the total length ¢ of Cut(p), we get

C

2> rAM) — T

A%(M).
0

Example 4.3. Let T? be the flat torus obtained by identifying the opposite
sides of quadrilateral ABCD (see Figure 3). Then the cut locus Cut(p) of
middle point p € T? is the set formed by the line segments AB and BC, and
so £ = a+ b, where a and b are the length of the line segments AB and BC,
respectively. The area of T2 is ab. Take C' = 0 as usual, then (4.1) gives a
well-known inequality

(a+b)? > mab.

Figure 3.

Example 4.4. Let P?(R) be the projective plane of constant curvature
C = 1, obtained by identifying the antipodal points of the unit sphere SZ.
The cut locus Cut(p) of a point p of P2(R) is the set obtained by identifying
the antipodal points of the equator of p. Since £ = 7 and A(P%*(R)) = 2,
we get equality in (4.1). On S?, trivially we also get equality.

It is well known that any closed orientable surface of genus g > 1 carries
a metric with constant negative curvature [GHL, p. 167], and that the area
of a closed orientable surface of genus g > 1 and curvature —1 is 47 (g — 1)
[GHL, p. 169]. Combining these and Theorem 4.2 we have:
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Corollary 4.5. Let M be a closed orientable surface of genus g > 1 with
curvature —1. Then

(? > 4r%g(g — 1).
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