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In pointwise differential geometry, i.e., linear algebra, we
prove two theorems about the curvature operator of isomet-
rically immersed submanifolds. We restrict our attention to
Euclidean immersions because here the results are most eas-
ily stated and the curvature operator can be simply expressed
as the sum of wedges of second fundamental form matrices.
First, we reprove and extend a 1970 result of Weinstein to
show that for n-manifolds in Rn+2 the conditions of positive,
nonnegative, nonpositive, and negative sectional curvature
imply that the curvature operator is positive definite, posi-
tive semidefinite, negative semidefinite, and negative definite,
respectively. We provide a simple example to show that this
equivalence is no longer true even in codimension 3. Second,
we introduce the concept of measuring the amount of curva-
ture at a point x by the rank of the curvature operator at x
and prove that surprisingly the rank of a negative semidefi-
nite curvature operator is bounded as a function of only the
codimension. Specifically, for an n-manifold in Rn+p this rank
is at most

(p+1
2

)
, and this bound is sharp. Under the weaker

assumption of nonpositive sectional curvature we prove the
rank is at most p3 + p2 − p, and by the proof of the previous
theorem this bound can be sharpened to

(p+1
2

)
for p = 1 and

2.

1. An expression for the curvature tensor.

Let N be an n-dimensional Riemannian manifold isometrically immersed in
Rn+p. We may give N in nonparametric form near the origin of Rn+p =
Rn ×Rp by the graph of

ψ = (ψ1, . . . , ψp) : V → Rp

in Rn+p where V is some neighborhood of the origin in Rn. We take as
natural coordinates for N the standard orthonormal coordinates x1, . . . , xn

in V . We may further assume that our point under consideration is at
the origin in Rn+p and that the tangent space at the origin is Rn × {0}.
Thus ψ and all its first derivatives vanish at the origin, and consequently the
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Christoffel symbols and the first partial derivatives of the metric components
vanish at the origin in the basis ∂

∂x1
, . . . , ∂

∂xn
. We take e1, . . . , en+p to

be the standard orthonormal basis for Rn+p with the identification ei =
∂

∂xi
(0) for 1 ≤ i ≤ n. The second fundamental form of N in Rn+p at

the origin takes its values in the the normal space to N at the origin, i.e.,
in {0} × Rp. Letting subscripts denote differentiation with respect to the
coordinates x1, . . . , xn, the second fundamental form at the origin in the
basis ∂

∂xi
(0) is the matrix of vectors whose i-j component is ψij(0)∈ Rp. In

this same basis the components of the curvature tensor are

Rijkl(0) =
p∑

m=1

(ψm
ik(0)ψm

jl (0)− ψm
il (0)ψm

jk(0)).

We shall think of the curvature tensor as a symmetric bilinear form on ∧2Rn,
in which case Rijkl(0) (i < j, k < l) is just the ij-kl component of the matrix
R(0) representing the curvature tensor in the basis ei ∧ ej (1 ≤ i < j ≤ n)
of ∧2Rn.

Assuming the definition of the wedge of a matrix in the next section and
letting Ψm be the scalar second fundamental form of N in Rn+p in the
normal direction en+m, i.e., the n×n matrix whose i-j component is ψm

ij (0),
we see that

R(0) =
p∑

m=1

Ψm ∧Ψm

with respect to the ei ∧ ej basis. R(0) and Ψ1, . . . ,Ψp are manifestly real
symmetric matrices.

2. Some results on wedges of symmetric matrices.

Let A : V → W be a linear map of vector spaces. By A ∧ A : ∧2V → ∧2W
we mean the map such that (A ∧ A)(v ∧ w) = Av ∧ Aw for every v and w
∈ V and A ∧ A acts on the rest of ∧2V by linearity. By a simple vector in
∧2V we will mean a vector which can be written in the form v ∧ w where
v, w ∈ V . If V and W have finite bases e1, . . . , en and f1, . . . , fm, we can
think of A as an m×n matrix (aij) and A∧A as an

(
m
2

)
×

(
n
2

)
matrix where

(A∧A)ij,kl = aikajl − ailajk in the simple bases ek ∧ el (1 ≤ k < l ≤ n) and
fi ∧ fj (1 ≤ i < j ≤ m).

Now we fix notation so that A and B are n× n real symmetric matrices,
n > 1, and M is the

(
n
2

)
×

(
n
2

)
real symmetric matrix defined by M = A∧A+

B∧B. A, B, and M are to be regarded as symmetric bilinear (or quadratic)
forms. We establish some terminology and some facts concerning A, B, and
M which will be used implicitly in the following proofs. By transforming
A and B we mean changing their basis as quadratic forms. Thus if P is
a real nonsingular matrix representing a change of basis, A → tPAP and
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B → tPBP . Transforming A and B by P transforms M by P ∧ P , i.e.,
M → t(P ∧P )M(P ∧P ). Therefore P ∧P represents a change of simple basis
for M . Transforming A and B by P will change eigenvalues and eigenvectors
but not signatures of A, B, and M . If λ1, . . . , λn are the eigenvalues of A in
the orthonormal basis v1, . . . , vn, then λiλj are the eigenvalues for A∧A in
the orthonormal simple basis vi ∧ vj (1 ≤ i < j ≤ n). We say that a matrix
is definite (semidefinite) if it is positive or negative definite (semidefinite).
By a null-cone vector we mean a nonzero vector whose value under the given
quadratic form is 0. We will need the following four elementary facts.

Fact 1. If A is definite, then there exists a real nonsingular matrix P such
that tPAP = I or −I and tPBP is diagonal.

Fact 2. If A and B are both semidefinite, then there exists a real nonsin-
gular matrix P such that tPAP and tPBP are both diagonal.

Fact 3 (Identity of Lagrange). For v, w, y, z ∈ Rn, we have the identity of
inner products

(v ∧ w) · (y ∧ z) = (v · y)(w · z)− (v · z)(w · y),

where · denotes the usual inner products in Rn and ∧2Rn.

Fact 4. For n = 3, there exists a real orthogonal 3× 3 matrix P such that
t(P ∧ P )M(P ∧ P ) is diagonal.

From Fact 3,

(1) t(v ∧ w)M(v ∧ w)

= (tvAv)(twAw)− (twAv)2 + (tvBv)(twBw)− (twBv)2.

We say that M is positive (nonnegative, nonpositive, negative) on simple
vectors if the quantity (1) is positive (nonnegative, nonpositive, negative)
whenever v ∧w is nonzero. Letting S be a real symmetric matrix, we define
the positive (negative) space of S to be the direct sum of its eigenspaces
having positive (negative) eigenvalues. By ker(S) we will mean the ordinary
kernel where S is regarded as a linear mapping. If S represents a fixed
quadratic form on a vector space V in a particular basis, then the positive
and negative spaces are basis dependent but the kernel is invariant.

If Aθ = cos θA + sin θB and Bθ = − sin θA + cos θB, it is easy to check
that M = Aθ ∧ Aθ + Bθ ∧ Bθ for θ ∈ R. (This is a special case of Fact 5,
which appears later.) The following extends Weinstein’s result [8] on the
positive case to the nonnegative case.

Theorem 1. If M is positive (nonnegative) on simple vectors, then
(i) either A or B is definite (semidefinite),
(ii) if A is semidefinite and B is not, then ker(A) ⊂ ker(B),
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(iii) there exists a basis v1, . . . , vn for A and B such that M is diagonal in
the simple basis vi ∧ vj (1 ≤ i < j ≤ n), and

(iv) there exists θ ∈ R such that Aθ and Bθ are both positive definite
(semidefinite); hence M is in fact positive definite (semidefinite),
(Weinstein [8, p. 2], Chen [1, p. 977]).

Proof. (iv): Let

T = {zv = (tvAv, tvBv) : v ∈ Rn ∼ {0}} ⊂ R2.

Then for zv, zw ∈ T we have zv · zw > 0 ( ≥ 0) by (1). (If v ∧ w = 0 in
the positive case, zv · zw = 0 would contradict the positivity of M .) This
means that T lies in an open (closed) quadrant in R2. We let θ be the angle
through which this quadrant must be rotated (clockwise) to bring it to the
first quadrant. Then the quadratic forms Aθ and Bθ each become positive
definite (semidefinite).

(iii) is a consequence of (iv) by Fact 2.
(i): That one of A or B is definite (semidefinite) follows from (iv) since

the set T , which lies in some open (closed) quadrant, must lie in either the
upper, lower, right, or left open (closed) half plane in R2.

(ii): If there exists v ∈ ker(A) such that tvBv 6= 0, choose w such that
twBw has the opposite sign of tvBv. If there exists v ∈ ker(A) such that
tvBv = 0, but Bv 6= 0, choose w = Bv. In either case, M is negative on
v ∧ w by (1), a contradiction. Hence Av = 0 implies Bv = 0. �

We give here an example of a sum M = A ∧ A + B ∧ B + C ∧ C that
is positive on simple vectors but not positive definite: Let A be diagonal
with entries 2ε, ε, 1, 1 in that order, let B be diagonal with entries 1, 1, 2ε, ε,
in that order, and let C have only four nonzero entries, those being c12 =
c21 = c34 = c43 =

√√
8ε. Then for ε > 0, ε 6= 1√

2
, M is positive semidefinite

with exactly one 0 eigenvalue, and the 0 eigenvector is not simple.
Now we treat the case of M negative or nonpositive on simple vectors.

Proposition 1. The following conditions each imply that M is positive on
some simple vector:

(i) three eigenvalues of A (or B) have the same sign,
(ii) max{rank(A), rank(B)} ≥ 5,
(iii) min{rank(A), rank(B)} < max{rank(A), rank(B)} = 4.

Proof. (i): Switching the sign of A if necessary, we may assume that A has
three positive eigenvalues. Let V be the vector space spanned by these three
eigenvectors. Then ∧2V consists only of simple vectors. In order for M to
be nonpositive on simple vectors B ∧B would actually have to be negative
definite on ∧2V . But if λ1, λ2, λ3 are the eigenvalues of the restriction of B
to V , the three pairwise products of the λi’s (which are the eigenvalues of
the restriction of B ∧B to ∧2V ) cannot all be negative.
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(ii): This condition implies (i).
(iii): Assume rank(B) < rank(A) = 4. From (i) we may assume that A

has two positive and two negative eigenvalues. We let V be the direct sum
of the positive and negative spaces of A, and consider the 4 × 4 matrices
A′ and B′ representing the quadratic forms A and B on V . The hypothesis
rank(B) < 4 implies that B′ has at least one 0 eigenvalue. Transforming
A′ and B′ so that B′ is in diagonal form, we now transform A′ and B′ by
nonsingular real matrices P as follows: We let P differ from the identity
matrix only in a fixed diagonal entry which corresponds to one of the 0
entries of B′. In this entry in P we place the real number k. Transforming
by P thus preserves B′ but multiplies the determinant of A′ by k2. Taking k
large enough, we may assume that the product of either the two positive or
the two negative eigenvalues of A′ strictly exceeds all magnitudes of products
of eigenvalues of B′. Consequently, if v and w are the eigenvectors of these
chosen eigenvalues for A′, A′ ∧A′ +B′ ∧B′ is strictly positive on v ∧w. �

We need the following two technical lemmas.

Lemma 1. If n = 3, A has one zero and two positive (or two negative)
eigenvalues, and M is nonpositive on simple vectors, then B has one zero
and two nonzero eigenvalues, and ker(A) = ker(B).

Proof. Note that since n = 3, all vectors in ∧2R3 are simple. First, rank(B)
> 1 for otherwise M = A ∧ A which is positive on some simple vector. B
cannot have two eigenvalues of the same sign, or M would be positive on
some simple vector. Consequently B has one positive, one zero, and one
negative eigenvalue. Assume A is diagonal in the basis e1, e2, e3, and that e1
is the 0 eigenvector. Let f1, f2, f3 be orthonormal eigenvectors for B, such
that f1 is the 0 eigenvector for B. Then B ∧B is zero on the plane spanned
by f1 ∧ f2, f1 ∧ f3. In order that M be nonpositive on this plane consisting
of simple vectors, A ∧ A must be equal to 0 on it. But this means that the
f1 ∧ f2-f1 ∧ f3 plane must exactly coincide with the e1 ∧ e2-e1 ∧ e3 plane,
which is the unique plane on which A ∧ A is 0. Since the f1 ∧ f2-f1 ∧ f3

plane uniquely determines the vector f1 up to a sign (and similarly for e1),
we have f1 = e1 (up to a sign). �

Lemma 2. Let n = 4, let B have eigenvalues 1, 1,−1,−1, and let B1 and
B2 be the upper left and lower right 2 × 2 matrices within B. If det(B1),
det(B2) ≤ −1, then B = B1 ⊕B2 and det(B1) = det(B2) = −1.

Proof. Let V1 and V2 be the vector spaces on which B1 and B2 act (as
quadratic forms), and consider Bi as mapping Vi into Vi. (Note that V1 and
V2 are orthogonal.) det(B1) ≤ −1 implies that |λ| ≥ 1 for one eigenvalue
λ of B1. Consequently, a unit eigenvector v ∈ V1 for λ satisfies |tvBv| ≥ 1.
Since 1 and −1 are the extremal values for B on unit vectors, |λ| must be
exactly 1 and v must be an eigenvector for B. det(B1) ≤ −1 now implies



276 BRADLEY W. BROCK AND JOHN M. STEINKE

that |λ′| ≥ 1 for the remaining eigenvalue λ′ of B1, and the same argument
as for λ, v shows |λ′| = 1, and that its eigenvector v′ is also an eigenvector
for B. The condition det(B1) ≤ −1 now shows {λ, λ′} = {1,−1}. Since
a similar argument applies to B2, we obtain two more eigenvectors for B.
The four eigenvectors thus obtained are orthogonal (since V1 and V2 are
orthogonal). Since each eigenvector was contained in either V1 or V2, the
entries in B outside of B1 and B2 vanish. �

Proposition 2. Suppose rank(A) = rank(B) = 4 and M is nonpositive on
simple vectors. Then M is diagonal in some simple basis vi∧vj (1 ≤ i < j ≤
n), rank(M) = 2, and therefore M is zero on some nonzero simple vector.

Proof. By Proposition 1 A has two positive and two negative eigenvalues.
So we may assume that A is diagonalized with eigenvalues 1, 1,−1,−1,
0, . . . , 0 in that order. Focusing on the upper left 4 × 4 matrices A′ and
B′ within A and B, it follows from Proposition 1 that B′ has rank 4. Ap-
plying Lemma 1 to the 3 × 3 submatrices within A corresponding to rows
and columns 1, 2, i and rows and columns 3, 4, i for i > 4, we conclude that
the corresponding 3× 3 submatrices within B have zeros in their third rows
and third columns. But this information together with the assumption that
B′ has rank 4 leads to the conclusion that every element in B outside of B′

must be 0, for otherwise there would be submatrices within B of rank 6.
(E.g., if the i-j element of B (4 < i < j) were not 0, then the 6× 6 matrix
corresponding to rows and columns 1, 2, 3, 4, i, j would have rank 6.) Again
by Proposition 1 B′ also has two positive and two negative eigenvalues. By
relabeling if necessary and transforming A′ and B′ we may now assume that
det(A′)≥ 1 and that B′ is diagonal with eigenvalues 1, 1,−1,−1 in that or-
der. However, by wedging eigenvectors together and using the hypothesis
we see that no product of a pair of eigenvalues of A′ can be greater than 1.
Hence, the eigenvalues of A′ must be of the form a, 1

a , −b, and −1
b (a, b > 0).

By an orthogonal matrix Q transform A′ and B′ so that A′ is diagonal with
these eigenvalues in the order given. Let B1 and B2 be the upper left and
lower right 2× 2 submatrices within B′. Our hypothesis on M implies that
detB1, detB2 ≤ −1, so by Lemma 2 we conclude that B′ = B1 ⊕ B2 and
det(B1) = det(B2) = −1. If we transform A′ and B′ by the diagonal matrix
P having 1√

a
,
√
a, 1√

b
,
√
b as entries, then A′ has diagonal entries 1, 1,−1,−1

and the determinants of B1 and B2 have been preserved. We can now diag-
onalize B′ while preserving A′ by using 2× 2 orthogonal blocks in P . Thus
A′ and B′ are simultaneously diagonal and M is seen to be diagonal in a
some basis vi ∧ vj (1 ≤ i < j ≤ n). B′ is now diagonal with entries of the
form c, −1

c , d, −1
d (c, d > 0). Our hypothesis on M implies that cd ≤ 1

and 1
cd ≤ 1, hence cd = 1. Consequently M is diagonal with only 2 nonzero

entries, so rank(M) = 2. In fact, if tan θ = c then Aθ and Bθ each have rank
2. �



LOCAL RESTRICTIONS ON n-MANIFOLDS 277

Proposition 3. Suppose rank(B) ≤ rank(A) = 3 and M is nonpositive on
simple vectors. Then M is diagonal in some simple basis vi ∧ vj (1 ≤ i <
j ≤ n), and rank(M) ≤ 3.

Proof. By Proposition 1 one of A and −A has one negative and two posi-
tive eigenvalues, so we may assume that A is diagonalized with eigenvalues
−1, 1, 1, 0, . . . , 0 in that order. Applying Lemma 1 to the 3× 3 submatrices
of A associated to rows and columns 2, 3, i for all i > 3, we obtain that the
corresponding 3×3 submatrices of B have only zeros in their third rows and
third columns. We note that the 2×2 submatrix within B corresponding to
rows and columns 2 and 3 must be nondegenerate or our hypothesis on M
would be violated. By now considering determinants of the 4 × 4 matrices
within B corresponding to rows and columns 1, 2, 3, i (for i > 3) and rows
and columns 2, 3, i, j (for 3 < i < j) we see that all elements in B except for
those in the upper left 3× 3 block must vanish, for otherwise B would have
rank at least 4. Letting e1, . . . , en be the basis which we have assumed for A
and B, we find that M will have nonzero entries only in the 3×3 submatrix
corresponding to the basis vectors e1 ∧ e2, e1 ∧ e3, e2 ∧ e3. This shows that
rank(M) ≤ 3. Applying Fact 4 to this 3× 3 submatrix yields 3 orthogonal
vectors which can be extended to an orthonormal basis v1, . . . , vn which
satisfy the remaining conclusion of the proposition. �

Theorem 2. If M is negative (resp. nonpositive) on simple vectors, then
M is diagonal in some simple basis vi ∧ vj (1 ≤ i < j ≤ n). Furthermore,
rank(M) ≤ 3.

Proof. First we prove the negative case. This is vacuously true for n > 3
by Proposition A (below). It is true for n = 3 by Fact 4. The case n = 2
is trivial. Propositions 1, 2, and 3 leave only the possibility of rank(B) ≤
rank(A) ≤ 2 in the nonpositive case. However, in this case there exist
matrices A′ and B′ such that A′ ∧A′ = −A ∧A and B′ ∧B′ = −B ∧B, for
we only need negate one of the eigenvalues of each of A and B. Therefore
M ′ = −M , and now the argument for the nonnegative case (Theorem 1)
applies to show that M is diagonal in some simple basis as claimed. Of
course in this case rank(M) ≤ 2 since A ∧A and B ∧B are each of rank at
most 1. �

Now let

Mp =
p∑

i=1

Ai ∧Ai,

where each Ai is a real symmetric n× n matrix. The following proposition
is due to Otsuki.
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Proposition A.
(i) If n > p and Mp is nonpositive on simple vectors, then there is some

nonzero vector v ∈ Rn such that tvAiv = 0 for 1 ≤ i ≤ p [4].
(ii) If n > p + 1, Mp is nonnegative on some nonzero simple vector [5,

p. 233].

We now need one final fact.

Fact 5. The curvature tensor is an invariant and does not depend on the
choice of orthonormal basis of the normal space. Equivalently, given any
real orthogonal p× p matrix Q = (qij), the transformation A′i =

∑p
j=1 qijAj

(1 ≤ i ≤ p) leaves Mp invariant; i.e.,
∑p

i=1A
′
i ∧ A′i =

∑p
i=1Ai ∧ Ai. (This

is a generalization of the previous assertion that Aθ ∧ Aθ + Bθ ∧ Bθ =
A ∧A+B ∧B.)

Proposition 4. Let Mp be nonpositive on simple vectors and let n > p.
Then there is a basis for Rn such that the upper left n− p× n− p block of
each Ai is identically 0.

Proof. The proof is by induction on n. Throughout the proof we let 〈· · · 〉
denote the linear span of a collection of vectors. By Proposition A(i) there is
a simultaneous null-cone vector v of the Ai’s. If n = p+ 1 = 2 we are done,
so assume n ≥ 3 and let r = dim〈A1v, . . . , Apv〉. Since the transformation
in Fact 5 does not affect the conclusion of the proposition, we may assume
thatA1v, . . . , Arv are linearly independent and thatAr+1v = · · · = Apv = 0.
Choose a basis for Rn of the form v, v2, . . . , vn such that 〈v, v2, . . . , vn−r〉 ⊥
〈A1v, . . . , Arv〉 and tvn−r+iAjv = δij for 1 ≤ i, j ≤ r. We claim that in this
basis the upper left n− r × n− r block of Ai for 1 ≤ i ≤ r is identically 0.
Let w ∈ 〈v, v2, . . . , vn−r〉 and let ε ∈ R be small. To first order in ε,

t(w ∧ (v + εvn−r+i))Mp(w ∧ (v + εvn−r+i))

≈
p∑

j=1

2ε(twAjw)(tvAjvn−r+i)

=
p∑

j=1

2ε(twAjw)δij = 2εtwAiw.

SinceMp is nonpositive on simple vectors and since ε can be made arbitrarily
small with either sign, we must have twAiw = 0, which proves our claim. If
r ≥ 1 we apply the induction hypothesis to the upper left n−r×n−r blocks
of the p−r matrices Ar+1, . . . , Ap to obtain a new basis for 〈v, v2, . . . , vn−r〉
such that the upper left blocks of order n−p = (n−r)−(p−r) ofAr+1, . . . , Ap

are identically 0, and we are done. If r = 0 then the first rows and first
columns of A1, . . . , Ap are identically 0, so we apply the induction hypothesis
to the lower right n − 1 × n − 1 blocks of the p matrices to obtain a new
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basis such that the upper left n − p − 1 × n − p − 1 blocks are identically
0. Remembering that the first rows and first columns are also zero, we are
done. �

Theorem 3. If Mp is nonpositive on simple vectors, then rank(Mp) ≤ p3 +
p2 − p; in case p = 2, rank(M2) ≤ 3.

Proof. By Proposition 4 we may assume that the upper left n − p × n − p
block of each Ah is identically 0. The first n − p columns of each Ah have
rank at most p, as do the last p columns. (At this point we could already
obtain the bound p

(
2p
2

)
since each Ah has rank at most 2p.) Therefore the

rank of the columns Ahej ∧ Ahel (1 ≤ j ≤ n − p, n − p + 1 ≤ l ≤ n) of
Ah ∧Ah is at most p2. The corresponding columns of Mp thus have rank at
most p3. The columns Mp(ej ∧ el) for n− p+ 1 ≤ j < l ≤ n obviously have
rank at most

(
p
2

)
. The columns Mp(ej ∧ el) for 1 ≤ j < l ≤ n− p also have

rank at most
(
p
2

)
, since the entries (Mp)ik,jl of Mp are only nonzero when

n−p+1 ≤ i < k ≤ n. Thus the rank of Mp is at most p3+2
(
p
2

)
= p3+p2−p.

Our special assertion for the case p = 2 is contained in Theorem 2. �

Remark. The general bound for rank(Mp) supplied by the proof of The-
orem 3 is obtained in a crude way, and for p = 2 we have proved a sharper
bound, namely 3. We do not know whether the bound of the theorem can
in general be sharpened to

(
p+1
2

)
.

Theorem 4. If Mp is negative semidefinite, then rank(Mp) ≤
(
p+1
2

)
. Fur-

thermore, this bound is sharp.

Proof. For brevity M will denote Mp. By Proposition 4 we may assume
that the upper left n − p × n − p block of each Ah is identically 0. Let
Mij,kl = t(ei∧ej)M(ek∧el) for all 1 ≤ i, j, k, l ≤ n. For the rest of the proof
let 1 ≤ i, k ≤ n− p and n− p+ 1 ≤ j, l ≤ n. Since Mik,ik = 0, and since any
null-cone vector of a semidefinite matrix must be a 0-eigenvector, the first(
n−p

2

)
columns of M are 0, and in particular, Mik,jl = 0. We have

Mij,kl =
p∑

h=1

(ah
ika

h
jl − ah

ila
h
jk) =

p∑
h=1

−ah
ila

h
jk

since ah
ik = 0. But since each Ah is symmetric

p∑
h=1

(ah
ija

h
kl − ah

ila
h
jk) =

p∑
h=1

(ah
ija

h
kl − ah

ila
h
kj) = Mik,jl = 0,

so Mij,kl =
∑p

h=1−a
h
ija

h
kl. We now see that the p(n−p)×p(n−p) block of M

corresponding to its restriction to the span of the ei∧ej ’s has rank at most p
because the matrix [ah

ija
h
kl] has rank at most one for each h. Again because

null-cone vectors must be 0-eigenvectors, this means that the middle p(n−p)
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columns of M have rank at most p. There remain
(
p
2

)
columns of M so the

rank of M is at most p+
(
p
2

)
=

(
p+1
2

)
. To achieve the bound, we make M =

−I with the following p diagonal matrices of order p+1 having the following
diagonal entries: (−1, 1, 1, . . . , 1), (0,−2, 1, . . . , 1), . . . , (0, 0, 0, . . . ,−p, 1).

�

It is interesting to note that a specialization of this theorem to the case
when each Ai is diagonal is equivalent to Coxeter’s theorem that a posi-
tive semidefinite connected a-form has kernel of dimension at most one [2,
pp. 173-175].

3. Applications to n-manifolds in Rn+p.

Using the fact that sectional curvatures are simply the values taken by (unit)
simple vectors under the curvature operator Ry regarded as a quadratic
form on ∧2Ty(N ), we now apply our results from the last section to obtain
geometrical theorems. We will always assume n > 1 and p ≥ 1.

Theorem 5. Let N be an n-dimensional Riemannian manifold isometri-
cally immersed in Rn+2 and y ∈ N . Then if all sectional curvatures are
positive (nonnegative, nonpositive, negative) at y, there is a basis v1, . . . , vn

for Ty(N ) such that the curvature operator Ry is diagonal in the basis vi∧vj

(1 ≤ i < j ≤ n) of ∧2Ty(N ). Consequently,
Ry has positive sectional curvature ⇐⇒ Ry is positive definite
(Weinstein).
Ry has nonnegative sectional curvature ⇐⇒ Ry is positive semidefi-
nite.
Ry has nonpositive sectional curvature ⇐⇒ Ry is negative semidefi-
nite.
Ry has negative sectional curvature ⇐⇒ Ry is negative definite.

Proof. This follows from Theorems 1 and 2. �

Corollary 1. Let N be a compact n-dimensional Riemannian manifold iso-
metrically immersed in Rn+2.

(i) If N has positive sectional curvature, then Hr(N ;R) = 0 for 0 <
r < n. If N is additionally connected and orientable, N is a rational
homology sphere.

(ii) If N has nonnegative sectional curvature, then a differential form on
N is harmonic if and only if it is parallel.

Proof. Statements (i) and (ii) hold with the hypotheses that the curvature
operator is positive definite, positive semidefinite respectively [6, Chap. 4].
Hence (i) and (ii) hold as stated by Theorem 5 above. �

Corollary 2 (Weinstein). No metric on S2×S2 with positive sectional cur-
vature can be induced by an immersion in R6.
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Proof. This is immediate from Corollary 1(i) since H2(S2 × S2;R) = R ×
R. �

The following theorem is immediate from Proposition A(ii).

Theorem A (Otsuki). If N is an n-dimensional Riemannian manifold
and all sectional curvatures are negative at the point y ∈ N , then N cannot
be isometrically immersed in Rn+p if n > p+ 1.

Theorem 6. Suppose N is an n-dimensional Riemannian manifold isomet-
rically immersed in Rn+p, y ∈ N , and Ry has nonpositive sectional curva-
ture. Then the rank of Ry is at most p3 + p2 − p, and if p = 2, the rank of
Ry is at most 3.

Proof. This is immediate from Theorem 3. �

We leave it as an open question whether the bound in Theorem 6 can in
general be sharpened to

(
p+1
2

)
, but we have proved this sharper bound for

p = 1 and p = 2, since we have shown in these cases that the rank of the
curvature tensor can be at most 1 and 3, respectively.

Theorem 7. Suppose N is an n-dimensional Riemannian manifold isomet-
rically immersed in Rn+p, y ∈ N , and Ry is negative semidefinite. Then
the rank of Ry is at most

(
p+1
2

)
. Furthermore, this bound is sharp.

Proof. This follows from Theorem 4 and from the fact that there exist (non-
complete) n-manifolds of constant negative curvature in R2n−1 [7, p. 196].

�

Note. Since this paper was first submitted for publication, Florit [3, Propo-
sition 7] has proved Proposition 4 independently. An easy application of his
Theorem 1 is an improvement of the bound in our Theorem 3 to 2p2−p. We
wish to acknowledge the late Professor Fred Almgren for his encouragement
in the writing of this paper.
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