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A FULLY ANISOTROPIC SOBOLEV INEQUALITY
ANDREA CIANCHI

We prove a Sobolev type inequality for real-valued weakly
differentiable functions on R™, decaying to 0 at infinity, in-
volving the integral of a convex function of the full gradient.

1. Introduction and main results.

Let n > 2 and let A : R" — [0, 00| be any convex function satisfying the
following properties:

(1.1) A(0) =0 and A(§) = A(—¢) for £ € R™,
(1.2) for every t >0, {{ € R": A(§) <t}
is a compact set whose interior contains 0.

Observe that A need not depend on the length [£| of £ nor be the sum of
functions of its components &;, ¢ = 1,... ,n. The purpose of this note is to
exhibit an inequality of Sobolev type, for real-valued weakly differentiable
functions u on R™ decaying to 0 at infinity, which involves the gradient Vu
through the integral [, A(Vu)dz. In the relevant inequality, a role will
be played by the function B : [0,00) — [0,00] associated with A as fol-
lows. Denote by A, : [0, 00] — [0, 00] the left-continuous increasing function
satisfying

{EeR": A(S) <1} = HE e R™ : A([¢]) < t}] for every t >0,

where | - | stands for Lebesgue measure. Assume that

(1.3) /O<A*t(t)>n/1dt < o0,

where n’ = n/(n — 1), and define H : [0,00) — [0,00) as
1/n’

(1.4) H(r) = ( /0 ' < A*t(t)>n/1dt> for 7> 0.

Then B is given by
(1.5) B=A,0oH

where H! is the left-continuous inverse of H. Note that
Ai(s) =sup{t: |[{£eR": A(&) <t}| < Cps"} for s>0,
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where C,, = 7/2/T(1 + n/2), the measure of the n-dimensional unit ball.
Thus, A4 is a Young function, i.e., a left-continuous convex function vanish-
ing at 0, since, owing to the Brunn-Minkowski inequality, | {€ € R™ : A(§) <
t} |Y/™ is a (finite-valued) concave function of t. Inasmuch as H is concave,
increasing and vanishes only at 0, then also H ! and B are Young functions.

Theorem 1. Under assumptions (1.1)-(1.3), there exists a constant K, de-
pending only on n, such that

|u(z)]
(1.6) /n B (K (o A(Va)dy) 1/n> drx < - A(Vu)dx

for every real-valued weakly differentiable function u on R™ decaying to 0 at
infinity, i.e., satisfying [{x € R™ : |u(z)| > t}| < oo for every t > 0.

Moreover, the result is sharp, in the sense that if inequality (1.6) holds,
with B replaced by any Young function By, for every A satisfying (1.1)-(1.2)
and with prescribed Ay, then (1.3) must be true and there exists ¢ > 0 such
that By(s) < B(cs) for s > 0.

Let us mention that earlier results concerning general anisotropic Sobolev
inequalities are contained in [Kl], [Ko] and [Tr].

Remark 1. The integral inequality (1.6) is equivalent to the inequality
(1.7) [ull s @ny < K[| Vullpagny,

where
1

1
[Vul| pagny = inf {)\ >0: /n A <)\Vu> dx < 1}

are the Luxemburg norms. Indeed, (1.6) implies (1.7) by the very defini-
tion of the norms. Conversely, (1.6) follows on replacing A(§) by A1(§) =
A(&)/M in (1.7), with M = [, A(Vu)dz, and observing that, if By is
the function defined as in (1.4)-(1.5) but with A replaced by Aj, then
By(s) = M~1B(sM~/"),

Remark 2. If assumption (1.3) is dropped, an inequality of type (1.7) still
holds for functions supported in a set having finite measure, with K de-
pending also on such a measure and on A: One has just to replace A, in
the definitions of H and B, by any convex function, still satisfying (1.1)-
(1.2) and equivalent with A near infinity, for which the integral in (1.3)
converges. Actually, Luxemburg norms over sets of finite measure turn
into equivalent norms if the defining convex functions are replaced by func-
tions equivalent near infinity. Recall that two functions f,g : R™ — [0, oo]

and
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are called equivalent if there exist positive constants ¢; and cy such that
fle1€) < g(&) < f(e€) for every £ € R™; f and g are called equivalent near
infinity if these inequalities are satisfied for large |£|. Analogous definitions
hold for functions defined on [0, c0).

Remark 3. Notice that, if

/ <Af<t>>n,_1 <o

then B(s) = oo for large t. Hence, in particular, inequality (1.6) tells us
that u is bounded provided that [, A(Vu)dz < oc.

A particular case of Theorem 1 is when A({) depends only on |£|. This
case was considered in [C] and includes the standard (first order) Sobolev
inequality (A(§) = [€|P, p # n), Trudinger’ s inequality (A(£) = [£|") and
results form [FLS] and [EGO] (A(§) = [P log?(e + |£])). Let us emphasize
that, even in this special situation, the proof given here is simpler than that
of [C], which relies on interpolation techniques.

Another noticeable special case is when A has the form

(1.8) A =) A&l
i=1

where A; are Young functions. If (1.8) holds, elementary geometric con-
siderations enable us to verify that A, is equivalent to the left-continuous
function A whose inverse is defined by

n 1/n
(1.9) A Nr) = (H A;l(r)) for >0
i=1

(all inverses are taken right-continuous in (1.9)). Thus, if we denote by B
the function defined as B, save that A, is replaced by A in (1.4)-(1.5), then
we easily get from Theorem 1 the following:

Corollary. Let A;,i=1,...,n, be Young functions such that

(1.10) /0 (%)n,_l dt < .

Then a positive constant K, depending only on n, exists such that

- Ju(z)| - e ) die
(1.11) /RB< O o ] dy)l/n)dxgiZ;/RnAz(l z]) d

for every real-valued weakly differentiable function u on R™ decaying to 0 at

infinity. Here, uy, denotes the partial derivative of u with respect to x;.
Moreover, condition (1.10) is necessary and the function B is optimal for

inequality (1.11) to hold for every n-tuple of functions A; with prescribed A.
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Let us point out that a direct proof of the Corollary can also be supplied
via Theorem 2 of the Appendix and the same argument as in the proof of
Theorem 1 (Section 2).

Remark 4. Inequality (1.10) is equivalent to the product inequality

n 1/n
(1.12) HUHLB(R") < Ky (H Hudfz‘HLAi(R”)) )
i=1

where K| is a positive constant depending only on n. Notice that B need
not be convex, so that |||/, 5 (rny 18 in general only a quasi-norm, which can
however be turned into an equivalent norm on replacing B by the equiva-
lent Young function defined with [ A(r)/rdr in the place of A(s). In or-
der to deduce (1.12) from (1.11), one can apply the latter to the function
w(Aix1, ..., ATy ), with A; > 0 for i = 1,... ,n, and get, after a change of
variables,

- ([T M) [u(@)| . ~
/nB< P ) M) deiZ;/RnAl()\AuxiDdx

= lfR" )‘ |u$1 d
Choosing A; = 1/||ua, | p4;®n) in the last inequality easily implies (1.12).
Conversely, inequality (1.11) follows on replacing A;(s) by A4;(s)/M in (1.12),
with M =31 lf]Rn (Jug,|) d.

When the functions A; are powers, i.e.,

A =D l&l
=1

for some p; > 1 i=1,...,n, the Corollary reproduces results from [N] and
[Tro] if Y1, o L1, and ylelds a Trudinger type inequality if > =1
(see also [KI1]).

An example (generalizing one from [Tr]) of a convex function A, satisfying
(1.1)-(1.2), which is neither radial nor of type (1.8), is given by

A(61,62) = [61 — &P + [&1] log® (¢ + |&1]), (&1,6) € R%.

Here p,q > 1, « € Ror a € [0, 00) according to whether ¢ > 1 or ¢ = 1, and
¢ is a positive number so large that A is convex. For such an A, inequality
(1.7) holds, for functions u supported in a set of fixed finite measure, with

zlp

2 o
B(s) equivalent near infinity to: sPFa-pa logp+1;—m (c+s), if pg < p+ q;

2(p+q)
exp (spﬂpa —1if pg = p+q and pa < p+q; exp(exp(s?)) —eif pg = p+q

and pa = p + q. If either p¢g = p+ ¢ and pa > p + ¢, or pg > p + ¢, then
(1.7) holds with || - || 5@®n) = || - [[zoc (). The preceding conclusions can
be derived from Theorem 1 and the subsequent remarks, on taking into
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account that A,(s) is equivalent to st logﬁ(c + s) near infinity. In the
case where a = 0, such an equivalence follows from the fact that the straight
lines & = +tY/% and & = & + t!/P are tangent to the (convex) level set
{€ e R? : A(€) <t} for every t > 0, so that

9 ¢1/p+1/q <|{¢e R2 - A6 <t} < 4 1/p+1/a for t > 0.

A similar argument works also in the case where o # 0.

2. Proof of Theorem 1.

We shall prove the statement of Theorem 1 with condition (1.3) replaced by

(2.1) /OA*(t) dt < oo,

1+

and with B replaced by the function D defined as

(2.2) D(s) = <5J_1 (s”l»n for s >0,

where J~! is the left-continuous inverse of the function given by
" A1)

(2.3) J(r)= n’/o t1*+n’ dt for r > 0.

Here A,(s) = sup{rs — A,(r) : r > 0}, the Young conjugate of A,. The
theorem will then follow, owing to Lemma 2 below.

The proof of inequality (1.6) proceeds according to the following scheme:
A weak type version of the inequality is first established; inequality (1.6)
is then derived from this weak type inequality by means of a discretiza-
tion and truncation argument. Let us mention that such an argument is
related to the approach recently used in various papers (including [BCLS],
[FGW], [FPW], [GN], [HK], [Tar]) to deal with Sobolev inequalities in
non-standard situations.

A basic ingredient of our proof is an extension of the Pélya-Szegd princi-
ple, contained in [KI1], which tells us that if A is a convex function satisfying
(1.1)-(1.2) and u is a weakly differentiable function on R" decaying to 0
at infinity and such that f]R" A(Vu)dx < oo, then its decreasing rearrange-
ment u* is locally absolutely continuous on (0, c0) and there exists a positive
constant ¢, depending only on n, such that

/ du*
1/n [
Recall that

u*(s) =sup{t >0: [{x € R": |u(z)| > t}| > s} for s> 0.

(2.4) IVull pagny =

LA%(0,00)
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Incidentally, let us point out that when A has the form (1.8), a direct short
proof can be given of an inequality of type (2.4) with A, replaced by A —
see the Appendix.

Let u be any function as in the statement. We may obviously assume
that [, A(Vu)dx < co. Then the absolute continuity of u* ensures that

oo d*
u*(s):/ —;:ﬂ dr for s> 0.

By the Holder inequality for Luxemburg norms and Lemma 1 below, we

have
* . &0 du* _l/nl ) 1/n/ du*
(2.5) u*(s) —/S 4 dr <2||r HLA*(s,oo) r 0

r LA (0,00)
1 1/7’1/ du*
=2D""(1/s) ||r -
dr /|| pas (0,00)
for s > 0. Hence, owing to (2.4),
2
(2.6) u*(s) < ED_l(l/S)HV'LL”LA(Rn) for s> 0.

Since |u| and u* are equimeasurable functions, we deduce from (2.6) that
(2.7) [{u] > \}|D (gx/uvuum(w)) <1 for A>0.

Let us make use of (2.7) with A() replaced by A1(§) = A(§)/M, where
M = [, A(Vu)dz. Since the function Dy, defined as in (2.2)-(2.3) but with

Ay in the place of A, satisfies the equation D;(s) = M~'D(sM~'/") for
s > 0, then we get the weak type inequality

(2.8)
-1/n
{|u| > A}D (C)\ ( A(Vu) d:v> ) < A(Vu) dx for A > 0.

Now, for k € Z, we denote by uy the function defined in R" by

0 if |u(z)] < 2*
up(z) = < |u(@)| — 28 if 28 < |u(z)| < 2FH!
ok+1 _ ok otherwise.

Applying inequality (2.8) to uy, with A = 2%, yields

(29) w2290 [ S2* ( /{

2k <Jul<2k+1}

—1/n
A(Vu) dm)

S/ A(Vu) dx for k € Z.
{2k <Ju<2h+1}
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Note that in (2.9) we have made use of assumption (1.1) and of the fact that

Vuy(z) equals either Vu(z) or —Vu(z) if 28 < |u(z)| < 28!, and vanishes
otherwise. Owing to (2.9), one has

/D< clu(a)| 1/n>dx
" 8 (Jn A(Vu) dy)

00 —1/n
< ) 2R < ful < 262D <§2k+2< . A(Vu) dx) )

k=—o00

00 —1/n

> el = 2o | 52+ [ A(Vu) da

oo 2 {2h<Jul<25+1)

0o —1/n
= Y Hw =2"}D Cok / A(Vu) dz

he—oo 2 {2+ <Jul<2k+1}

Z/ A(Vu) da

oo /{2 <[u|<2k+1}
= A(Vu) dz,
R

i.e., inequality (1.6) with K = ¢/8 and D in the place of B.

As far as the last part of the statement is concerned, assume that inequal-
ity (1.6) holds, with B replaced by some Dy, for every A with prescribed
A,. Hence, by the definition of Luxemburg norms,

(2.10) [ull oo (rny < K[Vl agn)

for every such an A. Let us choose A(§) = A.(|¢]) in (2.10) and let us
consider radially decreasing test functions u having the form
1 & /
u(z) = / plm flr)dr
nCy/" JCulal

for some measurable function f : [0,00) — [0,00) such that [|f||zax(0,00) <
oo. Since |Vu(z)| = f(Cylz|™), we get from (2.10)

/OO ril/"/f(r) dr

If ¢ is any fixed positive number and the support of f is contained in [¢, c0),
then

(2.12) £l 2ax 0,00) = [1fl LA (£,00)

(2.11) < nCy/ K| fll 1ax 0,00

LP0(0,00)




290 ANDREA CIANCHI

and

(2.13) ‘

/00 Tﬁl/n/f(T) dr

> / ) dr |1 oo

= Oor_l/"/ rdril
Jlor e ety

where Dy ' is the right-continuous inverse of Dy. Combining (2.11)-(2.13)
and making use of the converse of the Holder inequality yield

oo —1/n' d
(2.14) KDy'(1/t) > sup o flr)dr
feLAc(too)  IfllLaxt00)
—1/n'
> [|rY I i 1oy for t>0.

Hence, by Lemma 1 below, (2.1) holds and Dy(s/K) < D(s) for s > 0.

LPo(0,00)

Lemma 1. Condition (2.1) holds if and only if Hril/”/HLg*(s o) Jor every
s > 0. Moreover,
(2.15) |72/ L4 soey = D7H(1/8)  for s> 0,

where D™ is the the right-continuous inverse of the function defined by
(2.2).

Proof. We have

0o —1/n’
—1/n' . . i r
(2.16) |lr—Y 1L Ax (s.00) = 1nf{)\ >0: / A, ( 3 ) dr < 1}

ril/"//k A
:inf{A>o:n’A—”’/ Al*(t,) dtgl}.
0 titn

Equations (2.16) tell us that \|r*1/”/||LA*
fulfilled. Moreover, on setting

(2.17) I(r)y=r"J(r) for r>0

y < o0 if and only if (2.1) is

(s,00

(where J is defined by (2.3)) and denoting by I~! the right-continuous in-
verse of I, one infers from (2.16) that

(2.18) =Y 2 = T s,
Li(see) = 171(1/s)
By (2.2) and (2.17),
(2.19) D7 l(s) = kil for s > 0.
I71(s)

Equation (2.15) follows from (2.18) and (2.19). O
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Lemma 2. Conditions (1.3) and (2.1) are equivalent. Moreover, there exist
constants c1 and ca, depending only on n, such that

(2.20) B(c1s) < D(s) < B(cs) for s>0,

where B and D are the functions defined by (1.5) and (2.2), respectively.
Proof. Denote by A;! and A ! the right-continuous inverses of A, and A,,
respectively. Set E(s)=2s/A;!(s) and F(s)=A,(s )/s Since A L(s)A71(s)
< 2s, then A;!(s) < E(s) for s > 0. Thus, if E~! and F~! are the left-

continuous inverses of F and F, then E~'(s) < A,(s) for s > 0. Moreover,
on letting a be the increasing left-continuous function such that

Au(s) = / a(r)dr for s >0,
0

am) wou-£52)
3 i)

a(s) for s > 0. Inequality

<
Moreover, since A,(s)/s is an

( 1 8/2
> an/
(/) (

In (2.21) we have used the fact that A,(s
(2.21) already shows that (2.1) implies (1.
increasing function, we have

5 B s , ron’ s A ( )
222) A (s/2) = =2 A (s/2) [ 1 dr< 22 / dt.
2 As/2)= g A/ | S

From (2.21)-(2.22) we deduce that a positive constant k exists such that
kJ(ks)t/n" > ( ( )), where H is defined by (1.4). Hence, if we set
G(s) = (sF(H'(s)))™, we have

(2.23) D(s) < G(kis) for s >0

for some constant k; > 0. Since G(s)/s increases, G(s) < [ G(r)/rdr <
(G(2s). Now, one can perform a change of variable in the last integral and
show that

(2.24) %B(s/2) < G(s) < B(2s)  for 5> 0.

)/s
3).

!
n's"

Note that the proof of (2.24) requires the use of the inequality cH!(s) <
H~1(es) for ¢ > 1 and s > 0, which holds because H~! is a Young function,
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and of the inequalities A,(s) < [j Ax(r)/rdr < A,(2s) for s > 0, which
hold because A,(s)/s increases. The second of inequalities (2.20) is now a
consequence of (2.23)-(2.24).

On the other hand, since A,(s)/s < a~*(s) < F~1(s), one has

(295 J(s)<n’ /O ) “_;,(t) dt <n ( /0 T d7~>
= </0F1(8) <A*1<t>)n,_l dt)

= nH(F~(s))""
From (2.25) we deduce that (1.3) implies (2.1) and that J~'(r"") >
F(Hil(nfl/”/r)) for » > 0. Thus, owing to (2.24), D(s) > nG(nfl/n/s) >
(n — 1)B(n~Y"s/2), whence the first of inequalities (2.20) follows. O

Appendix.

Theorem 2. Let A;, i = 1,...,n, be Young functions and let A be the
function defined by (1.9). If u is any real-valued weakly differentiable function
on R™ decaying to 0 at infinity and such that Y77 [en Ai(lug,|) dz < oo,
then u* is locally absolutely continuous on (0,00) and

(A.1) Z/ (|t |) do > /OOOA (231/”’ (—dg» ds.

Proof. The standard (multiplicative) Gagliardo-Niremberg inequality tells
us that

1/n
(A.2) [0l gy < 5 <HHUJC1HL1(R">

for every v € WH1(R™). One can apply (A.2) to the function v defined, for
fixed s > 0 and h > 0, by

0 if |u(z)| < u*(s)
v@) = @) —u(s) i u(s) < fu(@)] < w(s - h)
u*(s —h) —u*(s) otherwise.

So doing, one easily gets

/ /n
(A.3) 2(s — b)Y [u* (s — h) — u* (H/ [tz | dx) ,

where we have set Q" = {z € R" : u*(s) < |u(z)| < u*(s — h)}. Observe
that v actually belongs to W11 (R™). Indeed, since the functions A; grow at
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least linearly at infinity, |[Vu| is integrable over subsets of R” having finite
measure. The definition of A implies that

n 1/n n
(A.4) A (HSZ> SZAz‘(Si) for s, >0,1=1,....,n
i=1 i=1

Inequality (A.4) and Jensen inequality yield

n 1/n
- 1
A5 Al — o ld
(A5) mm(LL@J“”x>
<iA. 1/ | |d
= 2] Jop

1 <« /
< — Ai(|ug,|) dz

Since || < h and since A(s)/s is an increasing function, we get from (A.5)

n 1/n n
{1 1
A6 Al - / Uy, | dx < — / Ai(|ug,|) dz
(A) hQ!QJ \) B2 [, Al

Dividing through by % in (A.3), making use of (A.6), and passing to the
limit as h — 0T yield, thanks to the lower semicontinuity of A

- ' du*
1/n
&0 A< (%))
Z/ A;(Jug,|)dx  for a.e. s> 0.
{Ju|>u*(s)}

Inequality (A.1) follows on integrating (A.7) between 0 and oo.

As far as the local absolute continuity of u* is concerned, given a > 0,
consider any family of disjoint intervals (a;,b;), j =1,... ,m, witha < a; <
bj, and set 6 = 37", (bj —a;). On making use of (A.3) and of the inequality
between geometric and arithmetic means, one obtains

A8 u*(a;) — u*(b;
(A8) ;{;< () =W (b)) < 7 IEIU/:nl{u* e

Since max|pi—, [ |ue;|dz = [ [ug,|*(r) dr for s > 0, and since | U2, {x :
u*(bj) < Ju(z)] < u*(a;)}| <6, inequality (A.8) implies

|ug, | dx.
a;)}

m

*(a;) — u*(b; $" 6u*rr
> (o)~ ) < g 3 [l ()

j=1
Hence, the absolute continuity of u* on [a,o0) follows. O
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