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We prove a Sobolev type inequality for real-valued weakly
differentiable functions on Rn, decaying to 0 at infinity, in-
volving the integral of a convex function of the full gradient.

1. Introduction and main results.

Let n ≥ 2 and let A : Rn → [0,∞] be any convex function satisfying the
following properties:

A(0) = 0 and A(ξ) = A(−ξ) for ξ ∈ Rn;(1.1)

for every t > 0, {ξ ∈ Rn : A(ξ) ≤ t}(1.2)
is a compact set whose interior contains 0.

Observe that A need not depend on the length |ξ| of ξ nor be the sum of
functions of its components ξi, i = 1, . . . , n. The purpose of this note is to
exhibit an inequality of Sobolev type, for real-valued weakly differentiable
functions u on Rn decaying to 0 at infinity, which involves the gradient ∇u
through the integral

∫
Rn A(∇u) dx. In the relevant inequality, a role will

be played by the function B : [0,∞) → [0,∞] associated with A as fol-
lows. Denote by A? : [0,∞] → [0,∞] the left-continuous increasing function
satisfying

|{ξ ∈ Rn : A(ξ) ≤ 1}| = |{ξ ∈ Rn : A?(|ξ|) ≤ t}| for every t ≥ 0,

where | · | stands for Lebesgue measure. Assume that∫
0

(
t

A?(t)

)n′−1

dt < ∞,(1.3)

where n′ = n/(n− 1), and define H : [0,∞) → [0,∞) as

H(r) =

(∫ r

0

(
t

A?(t)

)n′−1

dt

)1/n′

for r ≥ 0.(1.4)

Then B is given by

B = A? ◦H−1,(1.5)

where H−1 is the left-continuous inverse of H. Note that

A?(s) = sup{t : | {ξ ∈ Rn : A(ξ) ≤ t} | < Cnsn} for s ≥ 0,
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where Cn = πn/2/Γ(1 + n/2), the measure of the n-dimensional unit ball.
Thus, A? is a Young function, i.e., a left-continuous convex function vanish-
ing at 0, since, owing to the Brunn-Minkowski inequality, | {ξ ∈ Rn : A(ξ) ≤
t} |1/n is a (finite-valued) concave function of t. Inasmuch as H is concave,
increasing and vanishes only at 0, then also H−1 and B are Young functions.

Theorem 1. Under assumptions (1.1)-(1.3), there exists a constant K, de-
pending only on n, such that∫

Rn

B

(
|u(x)|

K
(∫

Rn A(∇u)dy
)1/n

)
dx ≤

∫
Rn

A(∇u)dx(1.6)

for every real-valued weakly differentiable function u on Rn decaying to 0 at
infinity, i.e., satisfying |{x ∈ Rn : |u(x)| > t}| < ∞ for every t > 0.

Moreover, the result is sharp, in the sense that if inequality (1.6) holds,
with B replaced by any Young function B0, for every A satisfying (1.1)-(1.2)
and with prescribed A?, then (1.3) must be true and there exists c > 0 such
that B0(s) ≤ B(cs) for s ≥ 0.

Let us mention that earlier results concerning general anisotropic Sobolev
inequalities are contained in [Kl], [Ko] and [Tr].

Remark 1. The integral inequality (1.6) is equivalent to the inequality

‖u‖LB(Rn) ≤ K‖∇u‖LA(Rn),(1.7)

where

‖u‖LB(Rn) = inf
{

λ > 0 :
∫

Rn

B

(
1
λ
|u|
)

dx ≤ 1
}

and

‖∇u‖LA(Rn) = inf
{

λ > 0 :
∫

Rn

A

(
1
λ
∇u

)
dx ≤ 1

}
are the Luxemburg norms. Indeed, (1.6) implies (1.7) by the very defini-
tion of the norms. Conversely, (1.6) follows on replacing A(ξ) by A1(ξ) =
A(ξ)/M in (1.7), with M =

∫
Rn A(∇u) dx, and observing that, if B1 is

the function defined as in (1.4)-(1.5) but with A replaced by A1, then
B1(s) = M−1B(sM−1/n).

Remark 2. If assumption (1.3) is dropped, an inequality of type (1.7) still
holds for functions supported in a set having finite measure, with K de-
pending also on such a measure and on A: One has just to replace A, in
the definitions of H and B, by any convex function, still satisfying (1.1)-
(1.2) and equivalent with A near infinity, for which the integral in (1.3)
converges. Actually, Luxemburg norms over sets of finite measure turn
into equivalent norms if the defining convex functions are replaced by func-
tions equivalent near infinity. Recall that two functions f, g : Rn → [0,∞]
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are called equivalent if there exist positive constants c1 and c2 such that
f(c1ξ) ≤ g(ξ) ≤ f(c2ξ) for every ξ ∈ Rn; f and g are called equivalent near
infinity if these inequalities are satisfied for large |ξ|. Analogous definitions
hold for functions defined on [0,∞).

Remark 3. Notice that, if∫ ∞( t

A?(t)

)n′−1

dt < ∞,

then B(s) = ∞ for large t. Hence, in particular, inequality (1.6) tells us
that u is bounded provided that

∫
Rn A(∇u)dx < ∞.

A particular case of Theorem 1 is when A(ξ) depends only on |ξ|. This
case was considered in [C] and includes the standard (first order) Sobolev
inequality (A(ξ) = |ξ|p, p 6= n), Trudinger’ s inequality (A(ξ) = |ξ|n) and
results form [FLS] and [EGO] (A(ξ) = |ξ|p logq(e + |ξ|)). Let us emphasize
that, even in this special situation, the proof given here is simpler than that
of [C], which relies on interpolation techniques.

Another noticeable special case is when A has the form

A(ξ) =
n∑

i=1

Ai(|ξi|),(1.8)

where Ai are Young functions. If (1.8) holds, elementary geometric con-
siderations enable us to verify that A? is equivalent to the left-continuous
function Ā whose inverse is defined by

Ā−1(r) =

(
n∏

i=1

A−1
i (r)

)1/n

for r ≥ 0(1.9)

(all inverses are taken right-continuous in (1.9)). Thus, if we denote by B̄
the function defined as B, save that A? is replaced by Ā in (1.4)-(1.5), then
we easily get from Theorem 1 the following:

Corollary. Let Ai, i = 1, . . . , n, be Young functions such that∫
0

(
t

Ā(t)

)n′−1

dt < ∞.(1.10)

Then a positive constant K, depending only on n, exists such that∫
Rn

B̄

(
|u(x)|

K
(∑n

i=1

∫
Rn Ai(|uxi |) dy

)1/n

)
dx ≤

n∑
i=1

∫
Rn

Ai(|uxi |) dx(1.11)

for every real-valued weakly differentiable function u on Rn decaying to 0 at
infinity. Here, uxi denotes the partial derivative of u with respect to xi.

Moreover, condition (1.10) is necessary and the function B̄ is optimal for
inequality (1.11) to hold for every n-tuple of functions Ai with prescribed Ā.
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Let us point out that a direct proof of the Corollary can also be supplied
via Theorem 2 of the Appendix and the same argument as in the proof of
Theorem 1 (Section 2).

Remark 4. Inequality (1.10) is equivalent to the product inequality

‖u‖LB̄(Rn) ≤ K0

(
n∏

i=1

‖uxi‖LAi (Rn)

)1/n

,(1.12)

where K0 is a positive constant depending only on n. Notice that B̄ need
not be convex, so that ‖ · ‖LB̄(Rn) is in general only a quasi-norm, which can
however be turned into an equivalent norm on replacing B̄ by the equiva-
lent Young function defined with

∫ s
0 Ā(r)/rdr in the place of Ā(s). In or-

der to deduce (1.12) from (1.11), one can apply the latter to the function
u(λ1x1, . . . , λnxn), with λi > 0 for i = 1, . . . , n, and get, after a change of
variables,∫

Rn

B̄

(
(
∏n

i=1 λi)
1/n |u(x)|

K
(∑n

i=1

∫
Rn Ai(λi|uxi |)dy

)1/n

)
dx ≤

n∑
i=1

∫
Rn

Ai(λi|uxi |) dx.

Choosing λi = 1/‖uxi‖LAi (Rn) in the last inequality easily implies (1.12).
Conversely, inequality (1.11) follows on replacing Ai(s) by Ai(s)/M in (1.12),
with M =

∑n
i=1

∫
Rn Ai(|uxi |) dx.

When the functions Ai are powers, i.e.,

A(ξ) =
n∑

i=1

|ξi|pi

for some pi ≥ 1, i = 1, . . . , n, the Corollary reproduces results from [N] and
[Tro] if

∑n
i=1

1
pi
6= 1, and yields a Trudinger type inequality if

∑n
i=1

1
pi

= 1
(see also [Kl]).

An example (generalizing one from [Tr]) of a convex function A, satisfying
(1.1)-(1.2), which is neither radial nor of type (1.8), is given by

A(ξ1, ξ2) = |ξ1 − ξ2|p + |ξ1|q logα(c + |ξ1|), (ξ1, ξ2) ∈ R2.

Here p, q ≥ 1, α ∈ R or α ∈ [0,∞) according to whether q > 1 or q = 1, and
c is a positive number so large that A is convex. For such an A, inequality
(1.7) holds, for functions u supported in a set of fixed finite measure, with

B(s) equivalent near infinity to: s
2pq

p+q−pq log
pα

p+q−pq (c + s), if pq < p + q;

exp
(

s
2(p+q)

p+q−pα

)
−1 if pq = p+q and pα < p+q; exp(exp(s2))−e if pq = p+q

and pα = p + q. If either pq = p + q and pα > p + q, or pq > p + q, then
(1.7) holds with ‖ · ‖LB(Rn) = ‖ · ‖L∞(Rn). The preceding conclusions can
be derived from Theorem 1 and the subsequent remarks, on taking into
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account that A?(s) is equivalent to s
2pq
p+q log

pα
p+q (c + s) near infinity. In the

case where α = 0, such an equivalence follows from the fact that the straight
lines ξ1 = ±t1/q and ξ2 = ξ1 ± t1/p are tangent to the (convex) level set
{ξ ∈ R2 : A(ξ) ≤ t} for every t ≥ 0, so that

2 t1/p+1/q ≤ |{ξ ∈ R2 : A(ξ) ≤ t}| ≤ 4 t1/p+1/q for t ≥ 0.

A similar argument works also in the case where α 6= 0.

2. Proof of Theorem 1.

We shall prove the statement of Theorem 1 with condition (1.3) replaced by∫
0

Ã?(t)
t1+p′

dt < ∞,(2.1)

and with B replaced by the function D defined as

D(s) =
(
sJ−1

(
sn′
))n′

for s ≥ 0,(2.2)

where J−1 is the left-continuous inverse of the function given by

J(r) = n′
∫ r

0

Ã?(t)
t1+n′

dt for r ≥ 0.(2.3)

Here Ã?(s) = sup{rs − A?(r) : r ≥ 0}, the Young conjugate of A?. The
theorem will then follow, owing to Lemma 2 below.

The proof of inequality (1.6) proceeds according to the following scheme:
A weak type version of the inequality is first established; inequality (1.6)
is then derived from this weak type inequality by means of a discretiza-
tion and truncation argument. Let us mention that such an argument is
related to the approach recently used in various papers (including [BCLS],
[FGW], [FPW], [GN], [HK], [Tar]) to deal with Sobolev inequalities in
non-standard situations.

A basic ingredient of our proof is an extension of the Pólya-Szegö princi-
ple, contained in [Kl], which tells us that if A is a convex function satisfying
(1.1)-(1.2) and u is a weakly differentiable function on Rn decaying to 0
at infinity and such that

∫
Rn A(∇u) dx < ∞, then its decreasing rearrange-

ment u∗ is locally absolutely continuous on (0,∞) and there exists a positive
constant c, depending only on n, such that

‖∇u‖LA(Rn) ≥
∥∥∥∥cr1/n′

(
−du∗

dr

)∥∥∥∥
LA? (0,∞)

.(2.4)

Recall that

u∗(s) = sup{t ≥ 0 : | {x ∈ Rn : |u(x)| > t}| > s} for s ≥ 0.
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Incidentally, let us point out that when A has the form (1.8), a direct short
proof can be given of an inequality of type (2.4) with A? replaced by Ā —
see the Appendix.

Let u be any function as in the statement. We may obviously assume
that

∫
Rn A(∇u) dx < ∞. Then the absolute continuity of u∗ ensures that

u∗(s) =
∫ ∞

s
−du∗

dr
dr for s ≥ 0.

By the Hölder inequality for Luxemburg norms and Lemma 1 below, we
have

u∗(s) =
∫ ∞

s
−du∗

dr
dr ≤ 2 ‖r−1/n′‖

LÃ? (s,∞)

∥∥∥∥r1/n′
(
−du∗

dr

)∥∥∥∥
LA? (0,∞)

(2.5)

= 2D−1(1/s)
∥∥∥∥r1/n′

(
−du∗

dr

)∥∥∥∥
LA? (0,∞)

for s > 0. Hence, owing to (2.4),

u∗(s) ≤ 2
c
D−1(1/s)‖∇u‖LA(Rn) for s > 0.(2.6)

Since |u| and u∗ are equimeasurable functions, we deduce from (2.6) that

|{|u| ≥ λ}|D
( c

2
λ/‖∇u‖LA(Rn)

)
≤ 1 for λ > 0.(2.7)

Let us make use of (2.7) with A(ξ) replaced by A1(ξ) = A(ξ)/M , where
M =

∫
Rn A(∇u) dx. Since the function D1, defined as in (2.2)-(2.3) but with

A1 in the place of A, satisfies the equation D1(s) = M−1D(sM−1/n) for
s ≥ 0, then we get the weak type inequality

|{|u| ≥ λ}|D

(
c

2
λ

(∫
Rn

A(∇u) dx

)−1/n
)
≤
∫

Rn

A(∇u) dx for λ > 0.

(2.8)

Now, for k ∈ Z, we denote by uk the function defined in Rn by

uk(x) =


0 if |u(x)| < 2k

|u(x)| − 2k if 2k ≤ |u(x)| < 2k+1

2k+1 − 2k otherwise.

Applying inequality (2.8) to uk, with λ = 2k, yields

|{uk ≥ 2k}|D

 c

2
2k

(∫
{2k≤|u|<2k+1}

A(∇u) dx

)−1/n
(2.9)

≤
∫
{2k≤|u|<2k+1}

A(∇u) dx for k ∈ Z.
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Note that in (2.9) we have made use of assumption (1.1) and of the fact that
∇uk(x) equals either ∇u(x) or −∇u(x) if 2k ≤ |u(x)| < 2k+1, and vanishes
otherwise. Owing to (2.9), one has∫

Rn

D

(
c|u(x)|

8
(∫

Rn A(∇u) dy
)1/n

)
dx

≤
∞∑

k=−∞
|{2k+1 ≤ |u| < 2k+2}|D

(
c

8
2k+2

(∫
Rn

A(∇u) dx

)−1/n
)

≤
∞∑

k=−∞
|{|u| ≥ 2k+1}|D

 c

2
2k

(∫
{2k≤|u|<2k+1}

A(∇u) dx

)−1/n


=
∞∑

k=−∞
|{uk ≥ 2k}|D

 c

2
2k

(∫
{2k≤|u|<2k+1}

A(∇u) dx

)−1/n


≤
∞∑

k=−∞

∫
{2k≤|u|<2k+1}

A(∇u) dx

=
∫

Rn

A(∇u) dx,

i.e., inequality (1.6) with K = c/8 and D in the place of B.
As far as the last part of the statement is concerned, assume that inequal-

ity (1.6) holds, with B replaced by some D0, for every A with prescribed
A?. Hence, by the definition of Luxemburg norms,

‖u‖LD0 (Rn) ≤ K‖∇u‖LA(Rn)(2.10)

for every such an A. Let us choose A(ξ) = A?(|ξ|) in (2.10) and let us
consider radially decreasing test functions u having the form

u(x) =
1

nC
1/n
n

∫ ∞

Cn|x|n
r−1/n′f(r) dr

for some measurable function f : [0,∞) → [0,∞) such that ‖f‖LA? (0,∞) <

∞. Since |∇u(x)| = f(Cn|x|n), we get from (2.10)∥∥∥∥∫ ∞

s
r−1/n′f(r) dr

∥∥∥∥
LD0 (0,∞)

≤ nC1/n
n K‖f‖LA? (0,∞).(2.11)

If t is any fixed positive number and the support of f is contained in [t,∞),
then

‖f‖LA? (0,∞) = ‖f‖LA? (t,∞)(2.12)
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and ∥∥∥∥∫ ∞

s
r−1/n′f(r) dr

∥∥∥∥
LD0 (0,∞)

≥
∫ ∞

t
r−1/n′f(r) dr ‖1‖LD0 (0,t)(2.13)

=
∫ ∞

t
r−1/n′f(r) dr

1
D−1

0 (1/t)
,

where D−1
0 is the right-continuous inverse of D0. Combining (2.11)-(2.13)

and making use of the converse of the Hölder inequality yield

KD−1
0 (1/t) ≥ sup

f∈LA? (t,∞)

∫∞
t r−1/n′f(r) dr

‖f‖LA? (t,∞)

(2.14)

≥ ‖r−1/n′‖
LÃ? (t,∞)

for t > 0.

Hence, by Lemma 1 below, (2.1) holds and D0(s/K) ≤ D(s) for s ≥ 0.

Lemma 1. Condition (2.1) holds if and only if ‖r−1/n′‖
LÃ? (s,∞)

for every
s > 0. Moreover,

‖r−1/n′‖
LÃ? (s,∞)

= D−1(1/s) for s > 0,(2.15)

where D−1 is the the right-continuous inverse of the function defined by
(2.2).

Proof. We have

‖r−1/n′‖
LÃ? (s,∞)

= inf

{
λ > 0 :

∫ ∞

s
Ã?

(
r−1/n′

λ

)
dr ≤ 1

}
(2.16)

= inf

{
λ > 0 : n′λ−n′

∫ r−1/n′/λ

0

Ã?(t)
t1+n′

dt ≤ 1

}
.

Equations (2.16) tell us that ‖r−1/n′‖
LÃ? (s,∞)

< ∞ if and only if (2.1) is
fulfilled. Moreover, on setting

I(r) = rn′J(r) for r ≥ 0(2.17)

(where J is defined by (2.3)) and denoting by I−1 the right-continuous in-
verse of I, one infers from (2.16) that

‖r−1/n′‖
LÃ? (s,∞)

=
s−1/n′

I−1(1/s)
for s > 0.(2.18)

By (2.2) and (2.17),

D−1(s) =
s1/n′

I−1(s)
for s > 0.(2.19)

Equation (2.15) follows from (2.18) and (2.19). �
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Lemma 2. Conditions (1.3) and (2.1) are equivalent. Moreover, there exist
constants c1 and c2, depending only on n, such that

B(c1s) ≤ D(s) ≤ B(c2s) for s ≥ 0,(2.20)

where B and D are the functions defined by (1.5) and (2.2), respectively.

Proof. Denote by A−1
? and Ã−1

? the right-continuous inverses of A? and Ã?,
respectively. Set E(s)=2s/A−1

? (s) and F (s)=A?(s)/s. Since A−1
? (s)Ã−1

? (s)
≤ 2s, then Ã−1

? (s) ≤ E(s) for s ≥ 0. Thus, if E−1 and F−1 are the left-
continuous inverses of E and F , then E−1(s) ≤ Ã?(s) for s ≥ 0. Moreover,
on letting a be the increasing left-continuous function such that

A?(s) =
∫ s

0
a(r) dr for s ≥ 0,

we have

J(s) ≥ n′
∫ s

0

E−1(t)
t1+n′

dt(2.21)

=

(∫ E−1(s)

0

(
A−1

? (r)
2r

)n′

dr − E−1(s)
sn′

)

≥

(
1

2n′

∫ F−1(s/2)

0

(
t

A?(t)

)n′

a(t) dt− E−1(s)
sn′

)

≥

(
1

2n′

∫ F−1(s/2)

0

(
t

A?(t)

)n′−1

dt− Ã?(s)
sn′

)
.

In (2.21) we have used the fact that A?(s)/s ≤ a(s) for s > 0. Inequality
(2.21) already shows that (2.1) implies (1.3). Moreover, since Ã?(s)/s is an
increasing function, we have

Ã?(s/2) =
n′sn′

2n′ − 1
Ã?(s/2)

∫ s

s/2
t−1−n′ dt ≤ n′sn′

2n′ − 1

∫ s

0

Ã?(t)
t1+n′

dt.(2.22)

From (2.21)-(2.22) we deduce that a positive constant k exists such that
kJ(ks)1/n′ ≥ H(F−1(s)), where H is defined by (1.4). Hence, if we set
G(s) = (sF (H−1(s)))n′ , we have

D(s) ≤ G(k1s) for s ≥ 0(2.23)

for some constant ki > 0. Since G(s)/s increases, G(s) ≤
∫ s
0 G(r)/rdr ≤

G(2s). Now, one can perform a change of variable in the last integral and
show that

1
n′

B(s/2) ≤ G(s) ≤ B(2s) for s ≥ 0.(2.24)

Note that the proof of (2.24) requires the use of the inequality cH−1(s) ≤
H−1(cs) for c ≥ 1 and s ≥ 0, which holds because H−1 is a Young function,
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and of the inequalities A?(s) ≤
∫ s
0 A?(r)/rdr ≤ A?(2s) for s ≥ 0, which

hold because A?(s)/s increases. The second of inequalities (2.20) is now a
consequence of (2.23)-(2.24).

On the other hand, since Ã?(s)/s ≤ a−1(s) ≤ F−1(s), one has

J(s) ≤ n′
∫ s

0

a−1(t)
tn′

dt ≤ n

(∫ a−1(s)

0
a(r)1−n′ dr

)
(2.25)

≤ n

(∫ F−1(s)

0

(
1

A?(t)

)n′−1

dt

)
= nH(F−1(s))n′ .

From (2.25) we deduce that (1.3) implies (2.1) and that J−1(rn′) ≥
F (H−1(n−1/n′r)) for r ≥ 0. Thus, owing to (2.24), D(s) ≥ nG(n−1/n′s) ≥
(n− 1)B(n−1/n′s/2), whence the first of inequalities (2.20) follows. �

Appendix.

Theorem 2. Let Ai, i = 1, . . . , n, be Young functions and let Ā be the
function defined by (1.9). If u is any real-valued weakly differentiable function
on Rn decaying to 0 at infinity and such that

∑n
i=1

∫
Rn Ai(|uxi |) dx < ∞,

then u∗ is locally absolutely continuous on (0,∞) and
n∑

i=1

∫
Rn

Ai(|uxi |) dx ≥
∫ ∞

0
Ā

(
2s1/n′

(
−du∗

ds

))
ds.(A.1)

Proof. The standard (multiplicative) Gagliardo-Niremberg inequality tells
us that

‖v‖Ln′ (Rn) ≤
1
2

(
n∏

i=1

‖vxi‖L1(Rn)

)1/n

(A.2)

for every v ∈ W 1,1(Rn). One can apply (A.2) to the function v defined, for
fixed s > 0 and h > 0, by

v(x) =


0 if |u(x)| < u∗(s)
|u(x)| − u∗(s) if u∗(s) ≤ |u(x)| < u∗(s− h)
u∗(s− h)− u∗(s) otherwise.

So doing, one easily gets

2(s− h)1/n′ [u∗(s− h)− u∗(s)] ≤

(
n∏

i=1

∫
Ωh

s

|uxi | dx

)1/n

,(A.3)

where we have set Ωh
s = {x ∈ Rn : u∗(s) < |u(x)| < u∗(s − h)}. Observe

that v actually belongs to W 1,1(Rn). Indeed, since the functions Ai grow at
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least linearly at infinity, |∇u| is integrable over subsets of Rn having finite
measure. The definition of Ā implies that

Ā

( n∏
i=1

si

)1/n
 ≤

n∑
i=1

Ai(si) for si ≥ 0, i = 1, . . . , n.(A.4)

Inequality (A.4) and Jensen inequality yield

Ā

 1
|Ωh

s |

(
n∏

i=1

∫
Ωh

s

|uxi | dx

)1/n
(A.5)

≤
n∑

i=1

Ai

(
1
|Ωh

s |

∫
Ωh

s

|uxi | dx

)

≤ 1
|Ωh

s |

n∑
i=1

∫
Ωh

s

Ai(|uxi |) dx.

Since |Ωh
s | ≤ h and since Ā(s)/s is an increasing function, we get from (A.5)

Ā

1
h

(
n∏

i=1

∫
Ωh

s

|uxi | dx

)1/n
 ≤ 1

h

n∑
i=1

∫
Ωh

s

Ai(|uxi |) dx.(A.6)

Dividing through by h in (A.3), making use of (A.6), and passing to the
limit as h → 0+ yield, thanks to the lower semicontinuity of Ā

Ā

(
2s1/n′

(
−du∗

ds

))
(A.7)

≤ d

ds

n∑
i=1

∫
{|u|>u∗(s)}

Ai(|uxi |) dx for a.e. s > 0.

Inequality (A.1) follows on integrating (A.7) between 0 and ∞.
As far as the local absolute continuity of u∗ is concerned, given a > 0,

consider any family of disjoint intervals (aj , bj), j = 1, . . . , m, with a ≤ aj <
bj , and set δ =

∑m
j=1(bj −aj). On making use of (A.3) and of the inequality

between geometric and arithmetic means, one obtains
m∑

j=1

(u∗(aj)− u∗(bj)) ≤
1

2na1/n′

n∑
i=1

∫
∪m

j=1{u∗(bj)<|u(x)|<u∗(aj)}
|uxi | dx.(A.8)

Since max|E|=s

∫
E |uxi | dx =

∫ s
0 |uxi |∗(r) dr for s > 0, and since | ∪m

j=1 {x :
u∗(bj) < |u(x)| < u∗(aj)}| ≤ δ, inequality (A.8) implies

m∑
j=1

(u∗(aj)− u∗(bj)) ≤
1

2na1/n′

n∑
i=1

∫ δ

0
|uxi |∗(r) dr.

Hence, the absolute continuity of u∗ on [a,∞) follows. �
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