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When an algebra is graded by a group, any additive char-
acter of the group induces a diagonalizable derivation of the
ring. This construction is studied in detail for the case of a
path algebra modulo relations and its fundamental group. We
describe an injection of the character group into the first co-
homology group following Assem-de la Peña. Rather general
conditions are determined, in this context, which guarantee
that a diagonalizable derivation is induced from the funda-
mental group.

This paper is the second installment in a series devoted to diagonalizable
derivations. Suppose that R is a finite-dimensional algebra over the field
k. We will denote by Der(R) the space of k-algebra derivations from R to
itself. Diagonalizable derivations arise naturally whenever R is graded by a
group H. Indeed, every additive character χ ∈ Hom(H, k+) can be assigned
a derivation Dχ ∈ Der(R) according to the rule

Dχ(r) = χ(g)r

for every r ∈ R in the homogeneous component of “degree” g ∈ H. Obvi-
ously, Dχ is diagonalizable. Conversely, if D is a diagonalizable derivation
of the k-algebra S and H is the additive subgroup of k generated by the
eigenvalues of D then, for the inclusion map ι : H → k+, we have D = Dι.

In our first paper [FGGM], we proved that the span of all diagonalizable
derivations of R comprise a Lie ideal of Der(R) whenever k has character-
istic zero or is algebraically closed of positive characteristic. This result
turned out to be a powerful tool in describing what we called spanned-by-
split derivations (i.e., those which are sums of diagonalizable derivations) in
several classes of algebras. In what follows, we shall use the notation

SPDer(R)

for the subspace of Der(R) consisting of spanned-by-split derivations.
This paper describes some of the examples which motivated our original

paper. Consider R presented as kΓ/I, a path algebra modulo relations,
graded by the fundamental group π1(Γ, I). In section one, we review and
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clarify notions of fundamental group. The second section is devoted to
tightening two results of Assem and de la Peña:

• The map which assigns to each character in Hom(π1(Γ, I), k+) a deriva-
tion in SPDer(kΓ/I) is injective.

• The induced map of Hom(π1(Γ, I), k+) to H1(kΓ/I) is injective.

Next we give a partial characterization of those diagonalizable derivations
which arise in the form Dχ. Essentially, we require that the underlying
algebra have its radical stabilized by the derivation and that the algebra of
constants for the derivation be indecomposable.

We close with a short section placing our constructions in the context of
Hopf algebras.

1. Fundamental Groups.

Let Γ be a finite connected directed graph. Temporarily forget about the
orientation of arrows, obtaining the undirected graph Γun. If α is a walk
from vertex x to vertex y and β is a walk from vertex y to vertes z then the
concatenation αβ is a walk from x to z and the reverse α−1 is a walk from
y to x. Consider the “homotopy relation”, the smallest equivalence relation
on walks which is compatible with right and left concatenation (whenever
they make sense) and for which σσ−1 is equivalent to the trivial walk at w
for any walk σ beginning at w. For a fixed vertex x, the classes of closed
walks from x to itself comprise the fundamental group, π1(Γ). (Different
choices of x yield isomorphic groups.)

We will need a more traditional description of the fundamental group.
Fix a vertex v, the “base point”. For each vertex w ∈ Γ, choose a walk γv,w

from v to w in the underlying undirected graph Γun; we require that γv,v be
the empty walk from v to itself. The set

γ = {γv,w | w is a vertex}

will be referred to as a choice of parade data. If f is any walk in Γun from
x to y then we define

cγ(f) = γv,xfγ−1
v,y ,

the walk which begins at v, takes the parade route to x, follows f from x to
y, and then reverses the parade route to return to v from y. Observe that
if g is already a closed walk from v to v then cγ(g) = g. Also, every cγ(f)
lies in the subgroup generated by

{cγ(a) | a is an arrow in Γ}.

Suppose the parade walk γv,w is a sequence

a
ε(1)
1 , a

ε(2)
2 , . . . , a

ε(t)
t



DIAGONALIZABLE DERIVATIONS 343

of edges where each aj is an arrow in Γ and ε(j) = ±1 according to whether
the original orientation is preserved or reversed in the walk. Then

cγ(a1)ε(1)cγ(a2)ε(2) · · · cγ(at)ε(t) = 1.

We call the word on the left-hand side of the last equation a parade walk
relator.

Given fixed parade data γ, the earlier remark about closed walks through
v implies that π1(Γ) is generated by {cγ(a) | a is an arrow}. It is less
obvious that π1(Γ) is the free group on the formal symbols cγ(a) modulo
the parade walk relators. (Let Fγ be the free group on arrows modulo the
parade walk relations for γ. The obvious map from walks in Γun to Fγ

respects the homotopy equivalence relation. If we regard π1(Γ) as the group
of equivalence classes of closed walks through v then the restriction of the
factored map is a group homomorphism φ : π1(Γ) → Fγ . For any arrow a
from x to y,

φ(cγ(a)) = φ(γv,xaγ−1
v,y)

= φ(γv,x)φ(a)φ(γv,y)−1

= φ(a)
= a

where a is the image of the symbol a in Fγ . Thus φ is surjective. But
π1(Γ) is generated by the collection of all such cγ(a) and they are subject to
the parade walk relations. It follows that φ is an isomorphism.) When the
context is clear, we drop the subscript γ.

Suppose that I is an ideal of the path algebra kΓ and that I is generated
as an ideal by a set of relations ρ. The fundamental group π1(Γ, ρ) will turn
out to be a certain image of π1(Γ). While it is possible to describe π1(Γ, ρ)
abstractly ([S]), we will assume that π1(Γ) is already described using parade
data γ. Let N(ρ) be the normal subgroup of π1(Γ) generated by cγ(p)cγ(q−1)
as p and q range over all paths in the support of the same member of ρ. Then

π1(Γ, ρ) = π1(Γ)/N(ρ).

We denote the canonical homomorphism from π1(Γ) to π1(Γ, ρ) (which de-
pends on γ) by ξ.

A choice of parade data γ induces a π1(Γ, ρ)-grading on kΓ/I. Explaining
this gives us the opportunity to introduce the useful notion of weight ([G]).
Suppose that Γ is a finite directed graph and H is a group. A weight function
for Γ with values in H is an assignment W from the arrows of Γ to H. If
we extend W multiplicatively so that vertices have weight 1 ∈ H then the
domain of the extension (also called W ) consists of all directed paths in Γ.
The weight function now induces an H-grading on kΓ. We say that an ideal
I of kΓ is homogeneous for W provided it is homogeneous with respect to
this grading. For such an ideal, the weight induces a grading on kΓ/I. In
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the case of fundamental groups, we can consider the weight with values in
π1(Γ, ρ) which sends an arrow a to ξ(cγ(a)). The ideal I is homogeneous by
the construction of N(ρ).

Unfortunately, π1(Γ, ρ) is dependent on the choice of relations for I. This
can be remedied as follows. We say that a nonzero element r ∈ I is support
minimal if it cannot be written as a sum of two elements of I, each of whose
supports are proper subsets of the support of r. (If

∑
αpp ∈ I is support

minimal where the sum runs over paths p with scalars αp 6= 0 then we cannot
erase any summands and maintain the subsum in I.) It is an immediate
consequence of the next proposition that the fundamental group is the same
for any two choices of ρ which consist of support minimal relations; this
common group is denoted π1(Γ, I).

Proposition 1.1. Let ρ be any generating set for I and suppose that s ∈ I
is support-minimal. Then c(p)c(q)−1 ∈ N(ρ) for all p and q in the support
of s.

Proof. By definition, if r ∈ ρ and σ is a path in the support of r then

c(τ) ≡ c(σ) (mod N(ρ))

for all τ in the support of r. We will abuse notation and write

supp(r) ≡ c(σ) (mod N(ρ)).

For any two paths α and β, we then have

supp(αrβ) ≡ c(ασβ) (mod N(ρ)).

An arbitrary s ∈ I is a linear combination of expressions αrβ for paths
α, β and for r ∈ ρ. Given d ∈ π1(Γ, ρ), set s(d) to be the subcombination of
all those αrβ whose support lies in d, regarded as a coset. Then

s =
∑

d

s(d)

with s(d) ∈ I and the supports of the s(d) pair-wise disjoint. Hence if s is
support-minimal it must be equal to a single s(d). �

We mention one last time that we will only be able to speak about a
π1(Γ, I)-grading of kΓ/I in the presence of parade data γ. Thus if Ψ ∈
Hom(π1(Γ, I), k+), then the induced derivation defined in the introduction
depends on some choice of γ and, so, will frequently be written DΨ,γ .

2. Injectivity Theorems.

In this section, make the standing assumption that I is an admissible ideal
of kΓ. (That is, we assume that kΓ/I is finite-dimensional and I lies inside
the square of the ideal generated by all arrows.)
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Proposition 2.1. Choose parade data for the connected directed graph Γ.
Then DΨ is diagonalizable for every Ψ ∈ Hom(π1(Γ, I), k+). Moreover the
map

Hom(π1(Γ, I), k+) → SPDer(kΓ/I)
is injective.

Proof. It is obvious that DΨ is diagonalizable, so Hom(π1(Γ, I), k+) maps
into SPDer(kΓ). Thus the issue is injectivity. By the standing assumption,
every arrow in Γ survives modulo I. Since π1(Γ, I) is generated by

{ξ(c(a)) | a is an arrow},
we see that π1(Γ, I) is generated by degrees which genuinely occur. (In the
literature, the grading is sometimes referred to as full.)

However if R is any H-graded algebra and

{h ∈ H | the h-component of R is not 0}
generates H then the map Hom(H, k+) →Der(R) is always injective. �

The next theorem provides a more significant injectivity result, which is
based on a similar statement of Assem-de la Peña ([AP]).

Theorem 2.1. Suppose χ ∈ Hom(π1(Γ, I), k+) and fix parade data for
π1(Γ). If the associated derivation Dχ on kΓ/I is inner then χ = 0. Hence
the induced map

Hom(π1(Γ, I), k+) → H1(kΓ/I)
is injective.

Proof. We shall write Λ = kΓ/I. Then Λ = Λ0⊕ radΛ where we identify Λ0

with (kΓ)0: A commutative subalgebra with basis consisting of orthogonal
idempotents e(w), one for each vertex w of Γ.

For s =
∑

w λwe(w) ∈ Λ0 we compute ad s. If m ∈ Λ is the image of a
path m in Γ from vertex x to vertex y then

(ad s)(m) = (λx − λy)m.

Thus ad s is always diagonalizable and all images of paths are among its
eigenvectors.

Now suppose that χ ∈ Hom(π1(Γ, I), k+) and Dχ = ad b for some b ∈ Λ.
Set b = s + n for s ∈ Λ0 and n ∈ radΛ. The image m of every path is
an eigenvector for Dχ corresponding to eigenvalue (χ ◦ ξ)(c(m)). Thus ad b
is diagonalizable with a basis of eigenvectors which are images of paths.
It follows that ad b and ad s must commute. But then (ad b) − (ad s) is
diagonalizable at the same time that it is equal to adn, which is nilpotent.
We conclude that Dχ = ad s for s ∈ Λ0.

If s =
∑

w λwe(w) then (χ◦ξ)(c(m)) = λx−λy for every path m beginning
at x and ending at y, whose image m is nonzero. In particular, if a is an
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arrow in Γ from x to y and ε = ±1 the (χ◦ξ)(c(a)) = ε · (λx−λy). It follows
that if w is an arbitrary vertex in Γ and

a
ε(1)
1 , . . . , a

ε(t)
t

is the parade walk from the base point v to w then

(χ ◦ ξ)
(
c
(
a

ε(1)
1 · · · c(at)ε(t)

))
= λv − λw.

On the other hand, (χ ◦ ξ)(1) = 0. We conclude that

s = λv

(∑
w

e(w)

)
= λv · 1.

Therefore Dχ = ad s = 0. �

Corollary 2.1 ([BM]). Let Λ = kΓ/I be a path-monomial algebra which is
finite dimensional. If H1(Λ,Λ) = 0 then Γ is a tree.

Proof. We are assuming that the generating set ρ for I consists of monomials.
As a consequence, π1(Γ, I) is a free group; it is trivial if and only if Γ is a
tree. Thus if Γ is not a tree then Hom(π1(Γ, I), k+) is nonzero. By the
theorem, H1 is nonzero. �

3. Fundamental Derivations.

The argument presented in the previous theorem rests on the following prop-
erty of the diagonalizable derivation Dχ. For any pair of vertices x and y

there exists an undirected walk a
ε(1)
1 , . . . , a

ε(t)
t such that

∑
j ε(j)Dχ(aj) = 0.

This property turns out to be crucial in trying to characterize those diago-
nalizable derivations which arise from a fundamental group.

Definition 3.1. Let R be a finite-dimensional k-algebra. We say that a
derivation D ∈ Der(R) is fundamental provided that there exists a finite
directed graph Γ and an admissible ideal I of kΓ such that R ' kΓ/I and
there is parade data γ together with some Ψ ∈ Hom(π1(Γ, I), k+) so that

D = DΨ,γ

under the identification given by the isomorphism.

There are some obvious things we can say about a fundamental derivation
D of R. First, D must be diagonalizable. Indeed, the images of paths in
R are all eigenvectors. As another consequence, D(radR) ⊆ radR. Notice
that the algebra R is k-elementary, which means that R/radR is a finite
product of copies of k. More is true: The algebra complement in kΓ to the
ideal generated by all arrows, which coincides with the span of the vertex
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idempotents, survives as an algebra complement to radR in R. Thus radR
has an algebra complement which lies inside the “subalgebra of constants”

RD = {r ∈ R | D(r) = 0}.

We shall see that these properties come close to characterizing fundamental
derivations.

Lemma 3.1. Let W be an H-valued weight on the arrows of Γ and let I be
a W -homogeneous ideal of kΓ. Suppose that for a fixed vertex x and every
other vertex y there exists a walk in Γun,

γx,y : b
ε(1)
1 , . . . , b

ε(t)
t

from x to y such that

W (b1)ε(1) · · ·W (bt)ε(t) = 1

in H. Then there is a homomorphism θ : π1(Γ, I) → H such that

(θ ◦ ξ)(cγ(a)) = W (a)

for all arrows a.

Proof. As we remarked earlier, π1(Γ) is isomorphic to the free group on
{cγ(a) | a is an arrow of Γ} modulo the parade walk relators

{cγ(γx,y) | x 6= y}.

Hence W induces a group homomorphism θ : π1(Γ) → H such that

θ(cγ(a)) = W (a)

for all arrows a.
Suppose that ρ is a support-minimal set of relations for the homogeneous

ideal I. We claim that the elements of ρ are homogeneous. If r ∈ ρ write
r =

∑
h rh where each rh is a nontrivial linear combination of paths with

weight h. By homogeneity, each rh lies in I. But the support of rh is clearly
a subset of the support of r. Hence r = rh for some choice of h.

It follows that if p and q are paths in the support of some r in ρ then
W (p) = W (q). Therefore θ is the identity on N(ρ), the normal subgroup
generated by all possible cγ(p)cγ(q)−1 of this sort. We conclude that θ
factors though π1(Γ, I). �

Theorem 3.1. Assume that I is an admissible ideal of kΓ. Suppose that
(a) E is a diagonalizable derivation of kΓ/I which vanishes on images of

vertices and for which the images of arrows are eigenvectors, i.e., for
each arrow a in Γ there is a scalar ω(a) such that E(a) = ω(a)a;

(b) there is a vertex x such that for every other vertex y there exists a walk

γx,y : b
ε(1)
1 , . . . , b

ε(t)
t



348 D.R. FARKAS, E.L. GREEN, AND E.N. MARCOS

from x to y such that ∑
j

ε(j)ω(bj) = 0.

Then there is some Ψ ∈ Hom(π1(Γ, I), k+) with E = DΨ,γ for γ = {γx,y}.

Proof. We apply the lemma with H = k+. Since I is admissible, we see
that different arrows cannot have the same images in kΓ/I. Thus it makes
sense to define a function W on arrows via W (a) = ω(a), thereby lifting the
k+-grading to kΓ. We conclude from the lemma that there is an additive
character Ψ on π1(Γ, I) such that

(Ψ ◦ ξ)(cγ(a)) = ω(a).

Thus the two derivations DΨ and E agree on the images of arrows and
vertices. But these elements generate kΓ/I as an algebra. �

The next result is a close relative to Theorem 3.4 in [G].

Lemma 3.2. Let R be a finite-dimensional k-elementary algebra. Assume
that D is a diagonalizable derivation of R such that D(radR) ⊆ radR and
RD contains an algebra complement to radR. Then there exists a finite
directed graph Γ, an admissible ideal I of kΓ, and a derivation D̃ of kΓ such
that

(a) D̃(I) ⊆ I;
(b) D̃ vanishes on the vertex idempotents of kΓ;
(c) each arrow is an eigenvector for D̃;
(d) R ' kΓ/I with D̃ inducing D.

Proof. Let e(1), . . . , e(n) be orthogonal idempotents whose sum is 1, which
span a complement to radR, and which satisfy D(e(j)) = 0 for j = 1, . . . , n.
Then

D(e(i)radR e(j)) ⊆ e(i)radR e(j)

for all i and j. An elementary eigenspace argument using the diagonaliz-
ability of D implies that the pair of D-stable spaces

e(i)radR e(j) ∩ (radR)2 ⊆ e(i)radR e(j)

splits with a D-stable vector space complement A(i, j).
We argue that {A(i, j) | 1 ≤ i, j ≤ n} generates radR as an algebra.

Denote by A the algebra generated by these subspaces. Certainly A ⊆ radR.
If the algebras do not coincide, the nilpotence of radR implies that there
must be a largest m such that (radR)m does not lie in A. That is, there
exist r1, . . . , rm ∈ radR such that

r1r2 · · · rm 6∈ A.
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We may assume that rj ∈ ef(j)radR eg(j) for some choice of indices f(j) and
g(j). Write rj = aj + sj with aj ∈ A(f(j), g(j)) and sj ∈ (radR)2. Then

r1r2 · · · rm = a1a2 · · · am + z

where z ∈ (radR)m+1. In other words, a1 · · · am + z ∈ A. We have reached
the contradiction that r1 · · · rm ∈ A.

We can now describe Γ. Its vertices are the idempotents e(1), . . . , e(n).
Choose a basis for each A(i, j) which consists of eigenvectors for D. These
basis vectors comprise the set of arrows which begin at e(i) and end at
e(j). There is an obvious algebra map from kΓ onto R. If a is one of the
designated eigenvectors for D in A(i, j) and D(a) = λa then we define the
function D̃ on the arrow a by D̃(a) = λa. It is easy to see that D̃ extends
uniquely to a derivation of kΓ which vanishes on vertex idempotents.

The lemma follows with I the kernel of the map kΓ → R. �

Theorem 3.2. Let R be a finite-dimensional k-elementary algebra. Sup-
pose that D is a diagonalizable derivation of R with D(radR) ⊆ radR. Sup-
pose, further, that RD contains an algebra complement to radR and that RD

is indecomposable as an algebra. Then D is fundamental.

Proof. We carry over all of the notation in the previous lemma. Define a new
graph G whose vertices are e(1), . . . e(n) (the vertices of Γ) and construct
an arrow from e(i) to e(j) provided e(i)RDe(j) 6= 0. The sum of the e(h)
over all those vertex idempotents in a connected component of G is a central
idempotent of RD. Since RD is indecomposable, G is connected.

We claim that if e(i)RDe(j) 6= 0 then there is a path m in Γ such that
m begins at e(i), ends at e(j), and D(m) = 0. To see this, suppose that
e(i)xe(j) 6= 0 for x ∈ RD. Write x =

∑
αpp with αp a nonzero scalar and p

the image in R of a path p in kΓ which begins at e(i) and ends at e(j). We
may assume that the p which appear in the sum are linearly independent
in R. Each such p is an eigenvector for D. Since eigenvectors for distinct
eigenvalues are linearly independent, we conclude that D(p) = 0 for every p
which appears.

We put the previous two paragraphs together. For each i 6= j there is a
walk from e(i) to e(j) in G with edge sequence

g
ε(1)
1 , g

ε(2)
2 , . . . , gε(v)

v .

This walk gives rise to an “expanded” walk

m
ε(1)
1 ,m

ε(2)
2 , . . . , mε(v)

v

from e(i) to e(j) in Γ, where each md is a path with the same endpoints as
gd and D(md) = 0. If we rewrite the second walk as

a
η(1)
1 , a

η(2)
2 , . . . , a

η(t)
t



350 D.R. FARKAS, E.L. GREEN, AND E.N. MARCOS

for arrows ai in Γ then ∑
η(i)D(ai) = 0.

(The point is that if the sum of the eigenvalues along a path md is zero then
the same is true for the sum of the negatives of those eigenvalues in reverse
order along the path.) For each 2 ≤ j ≤ n pick such a walk γ1,j from the
base point e(1) to e(j).

According to Theorem 3.1, there exists some Ψ ∈ Hom(π1(Γ, I), k+) such
that D = DΨ,γ . �

Corollary 3.1. Assume that k is an algebraically closed field of character-
istic zero and R is a finite-dimensional local k-algebra. Then every diago-
nalizable derivation of R is fundamental.

Proof. Since k is algebraically closed and R is local, we have

R/radR ' k.

It follows that RD is local, and so, indecomposable. Finally, it is well known
that D(radR) ⊆ radR for any D ∈ Der(R), by virtue of chark = 0. �

4. Hopf Algebras.

We end with a hint that there may be other classes of derivations beside diag-
onalizable ones for which an interesting theory exists. Every diagonalizable
derivation of a k-algebra corresponds to a group grading by a subgroup of
the additive group k+. Equivalently, every diagonalizable derivation has the
form Dχ where χ ∈ Hom(G, k+) for some group G which grades the algebra.
A group grading for an algebra R is an example of an H-comodule algebra
action on R, where H is a Hopf algebra. (In the special case, H = kG with
the standard Hopf structure.) In general, if H is any Hopf algebra then R
is an H-comodule algebra provided that R is a left H-comodule, via

λ : R → H ⊗R

(so λ(a) =
∑

a0 ⊗ a1 for a ∈ R) and

λ(ab) =
∑

a0b0 ⊗ a1b1 for a, b ∈ R;

λ(1) = 1⊗ 1.

See [Mo], Section 4.1 for more details. In the particular case of the group
algebra, R is a kG-comodule algebra if and only if it is G-graded as an
algebra.

If ε is the augmentation for H then those functionals which are ε-deriva-
tions,

Derε
k(H, k) = {f ∈ H∗ | f(ab) = ε(a)f(b) + f(a)ε(b)},
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comprise a Lie algebra under the commutator [f, g] = f ∗ g − g ∗ f . (Here ∗
is convolution on H∗.) When H = kG then

Derε
k(kG, k) = Hom(G, k+).

Back to the general set-up, for each f ∈Derε
k(H, k) define Df ∈Homk(R,R)

by

Df (a) =
∑

f(a0)a1

for all a ∈ R. We leave it as an exercise that Df ∈Der(R) and the map
Derε

k(H, k) →Der(R) sending f to Df is a Lie algebra homomorphism. This
construction subsumes our earlier Dχ.

The subspace of derivations spanned by all Df , as one runs over all co-
module algebra actions of one or more Hopf algebras H, deserves future
scrutiny.
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