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A function on a tree is said to be harmonic if it is fixed under
the averaging operators. We construct an explicit asymptotic
formula giving the boundary distribution which reproduces
the value of a harmonic function on a semi-homogeneous the
tree.

0. Introduction.

The isomorphism from the space of hyperfunctions on the unit circle in the
complex plane to the space of harmonic functions on the open unit disc
can be given explicitly via the Poisson kernel. The analogue of the open
unit disc over a non-archimedean local field is a tree. We prove an explicit
asymptotic formula giving the boundary distribution which reproduces the
value of an harmonic function on a semi-homogeneous tree.

The analogue over a nonarchimedean local field of the real Laplacian
operator is the average operator (§1.3). A function on a tree is said to be
harmonic if it is fixed under the average operators. Given any harmonic
function f on a homogeneous tree X, Gerardin stated in [G] §2.4 an explicit
asymptotic formula giving the boundary distribution which reproduces the
value of f at a vertex a of the tree. This covers the case of the Bruhat-
Tits building of the group SL(2, F ). For detailed discussion of this result
and generalizations to eigenspaces of Laplacian on homogeneous trees using
difference equations see Cohen-Colonna ([CC]). In this paper we generalize
the above formula to the case of a semi-homogeneous tree (for example the
Bruhat-Tits building of a unitary group) by solving an initial value problem
of a difference equation.

Let X be a semi-homogeneous tree with degree function q (see §1.1).
For any given vertex a ∈ X the boundary Ξ of X is the inverse limit of
the spheres S(a, n) over n ∈ N. The projection Ξ −→ S(a, n) defines a map
from the space E(X) of functions on X to the space D(Ξ) of locally constant
functions on Ξ which we denote by f 7→ fa,n. The group Σ(X) of characters
of X acts on the space D(Ξ); we write this action as ϕ 7→ ϕs (see §2). Let
da be the probability measure da on Ξ invariant under the stabilizer of a in
Aut X. The ratio db/da is a function in D(Ξ). For each character s ∈ Σ(X),
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we define the space Bs(Ξ) of maps a 7→ Ta from X to the space D′(Ξ) , of
distributions on Ξ such that

Tb = (db/da)s Ta.

We define a function T̂ on X for each T in Bs(Σ) by T̂ (a) = 〈Ta, 1〉.
We prove that the map T 7→ T̂ is an isomorphism from Bs(Ξ) onto the

eigenspace associated to the eigenvalue λ corresponding to s if the character
s is not singular. For f an eigenfunction with eigenvalue λ, there is a non-
singular character s for which it is the corresponding eigenvalue, and the
distribution Ta is given by an explicit formula

〈Ta, ϕ〉 =
∫

Ξ
(ra

n−1qa,nfa,n+1 − ra
nfa,n) ϕ da

if ϕ factors through Ξ→ S(a, n), where ra
n is an explicit sequence, depending

on the character s (see Theorems 3.2 and 3.9).
An Australina Research Council grant partially supports the visit of Ger-

ardin in April 1997 during which this paper was written.

1. Semi-homogeneous tree.

1.1. . A tree is a connected graph without circuits. The number of edges
to which a vertex x of a tree belongs is called the valency of x. Given two
integers q−, q+ such that 1 ≤ q− < q+, we say X is a semi-homogeneous
tree of type (q−, q+) if every vertex has valency q− + 1 or q+ + 1 and two
adjacent vertices have different valencies. For x in X we write q(x) = q−
(resp. q+) if the valency of x is q− + 1 (resp. q+ + 1). This gives the degree
function q : X → {q−, q+} of X.

Let F be a nonarchimedean local field, q be the order of its residue field,
E/F be an unramified quadratic extension. Then the Bruhat-Tits building
of the special unitary group over F with respect to the hermitian form
x0y0 +x1y2 +x2y1 is a semi-homogeneous tree of type (q, q3). (Here: x 7→ x
denotes the non trivial automorphism of E/F .)

Given any two vertices x, y in X there exists a unique sequence x0, . . . , xn

of vertices in X such that x = x0, xi is adjacent to xi+1 for 0 ≤ i ≤ n − 1,
y = xn. The sequence x0, . . . , xn is also denoted by [x, y]. The integer n is
called the distance, d(x, y), between x and y. Given a in X, the set S(a, n)
of vertices x ∈ X at distance n from a is called the sphere at a of radius n.
If we write qn(a) for q(an) with an ∈ S(a, n), then the cardinality of S(a, n)
is, for n ≥ 1:

|S(a, n)| = (1 + q(a))q1(a) · · · qn−1(a).

We shall write (a)n for |S(a, n+ 1)|/(1 + qn(a)), n ≥ 0. We define (b : a) to
be 1 for a = b and to be |S(a, n)|(1 + q(b)−1)−1 for d(a, b) = n > 1.
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1.2. . The set consisting of connected components of complements of non-
empty finite subsets of X forms a projective system; its inverse limit is
called the boundary of X and it is a profinite compact space. We denote
the boundary by Ξ. For each a ∈ X we can identify Ξ with the inverse limit
lim←− n≥0S(a, n) with respect to the projections S(a, n+ 1)→ S(a, n).

For two distinct vertices a, c in X we write X(c, ǎ) for the half-tree of X
with vertex at c and not containing a i.e., X(c, ǎ) = {x ∈ X|c ∈ (a, x]}. The
boundary of X(c, ǎ), denoted by Ξ(c, ǎ), is the set of ξ in Ξ such that c is in
(a, ξ). The sets Ξ(c, ǎ) form a base of open sets for the compact space Ξ .

For a ∈ X, let da be the probability measure on Ξ such that∫
Ξ(c,ǎ)

daξ = |S(a, n)|−1

for c ∈ S(a, n), with n ≥ 1. The space D(Ξ) of test functions on the
boundary Ξ is the space of locally constant functions on the compact space
Ξ. For a vertex a in X, the characteristic functions of Ξ(c, ǎ) generate
linearly D(Ξ). Let also Da,n(Ξ) be the subspace of D(Ξ) consisting of those
functions which factor through S(a, n), n ≥ 0. These spaces Da,n(Ξ), for a
fixed, are increasing in n and D(Ξ) is the union of Da,n(Ξ). The a-level of
ϕ ∈ D(Ξ) is defined to be the largest integer n such that ϕ ∈ Da,n(Ξ). We
denote by D′(Ξ) the space of distributions on Ξ and this is the inverse limit
of finite dimensional spaces over C. For example, for each vertex a ∈ X, it
is the inverse limit of the dual spaces D′a,n(Ξ) of the above spaces Da,n(Ξ).

LetX+ (resp. X−) be the set of vertices inX with degree q+ (resp. q−). A
complex function f on X invariant under the automorphisms of X has con-
stant value on X+ and on X−; we write simply f(X+), f(X−) for these val-
ues. The algebra C[q] of functions on X invariant under any automorphism
of X is isomorphic to the algebra C×C by f 7→ (f(X+), f(X−)), and has a
corresponding involution f 7→ f given by f(X+) = f(X−), f(X−) = f(X+);
in particular this defines q. The algebra C[q] is defined by (q−q+)(q−q−) =
0.

Let E(X) be the algebra of all complex functions on X and this is E(X+)×
E(X−), where E(X+) (resp. E(X−)) is defined similarly.

Given a vertex a and an integer n ≥ 0, we define an algebra homomor-
phism from E(X) to Da,n(Ξ) as follows. For f in E(X), let fa.n be the pull-
back to the boundary Ξ of the restriction of f to S(a, n), i.e., for x ∈ S(a, n)
and ξ ∈ Ξ(x, ǎ), fa,n(ξ) = f(x).

1.3. . For each n ≥ 0, let ∆n be the average operator on E(X) over spheres
of radius n : for f ∈ E(X), (∆nf)(a) =

∫
Ξ fa,n(ξ)daξ = 1

|S(a,n)|
∑

t∈S(a,n) f(t).
Write ∆ for ∆1.
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Lemma 1.4.
(1) For c ∈ C[q], we have ∆c = c∆.
(2) (q + 1)∆∆n = q∆n+1 + ∆n−1, n ≥ 1.
(3) (qn + 1)∆n∆ = qn∆n+1 + ∆n−1, n ≥ 1.

Proof. We prove (2). For a function f on X we have

(∆∆nf)(a) =
1

|S(a, 1)|
∑

t∈S(a,1)

 1
|S(t, n)|

∑
z∈S(t,n)

f(z)

 .

Note that S(t, n) = {u ∈ S(a, n+1)|t ∈ [a, u]}∪{v ∈ S(a, n−1)|x ∈ [t, v]},
and each u ∈ S(a, n + 1) corresponds to a unique t ∈ S(a, 1) such that
t ∈ [a, u], while each v ∈ S(a, n − 1) corresponds to q(a) elements t in
S(a, 1) such that a ∈ [t, v]. Thus

(∆∆nf)(a) =
1

q(a) + 1
1

|S(t, n)|
∑

S(a,n+1)

f(u)

+
q(a)

q(a) + 1
1

|S(t, n)|
∑

S(a,n−1)

f(v).

Hence,

∆∆n =
1

q(a) + 1
|S(a, n+ 1)|
|S(t, n)|

∆n+1 +
q(a)

q(a) + 1
|S(a, n− 1)|
|S(t, n)|

∆n−1

=
q(t)

q(t) + 1
∆n+1 +

1
q(t) + 1

∆n−1.

The proof is completed. �

2. Characters of semi-homogeneous trees.

2.1. . Given vertices a, b in X the Radon-Nikodym cocycle is the function
on Ξ such that

dbξ/daξ = (b : a)ξ, ξ ∈ Ξ.
We write [a, ξ) for the half-line starting at a in the direction of ξ. If

b ∈ [a, ξ) then

(b : a)ξ =
1 + q(a)
1 + q(b)

q1(a) · · · qd(a,b)(a) = (b : a);

if a ∈ [b, ξ) then

(b : a)ξ =
1 + q(a)
1 + q(b)

(q1(b) · · · qd(a,b)(b))
−1 = (a : b)−1;

and in general,

(b : a)ξ = (b : c)ξ/(a : c)ξ = (c : a)/(c : b)
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where c is any vertex common to [a, ξ) and [b, ξ).
The invariant function 1+q

1+q−1 takes two distinct values, and its norm is
qq = q+q−, denoted by Q . The elements of the set (X : X)Ξ of values
(b : a)ξ, where a, b are vertices of X and ξ is a boundary point, are either
integral powers of Q, or the products of some integral power of Q with one
of the two values of 1+q

1+q−1 .
By a character of the semi-homogeneous tree X with degree map q, we

mean a map s from this set (X : X)Ξ to the group C× , written (b : a)ξ 7→ (b :
a)s

ξ , such that the following identity holds: (b : a)s
ξ = (b : c)s

ξ(c : a)s
ξ. The

character s is completely determined by the values of the invariant function(
1+q

1+q−1

)s
, and this gives an isomorphism from the group Σ(X) of characters

ofX with the multiplicative group C[q]× of nonvanishing invariant functions,
that is, with the product of two copies of C×. A character s of X is called
singular if Qs = 1. This means that its corresponding invariant function has
norm 1, and this defines an isomorphism from the group Σ(X)1 of singular
characters of X onto the group C[q]1 of norm 1 invariant functions.

Given a character s of X, we introduce the corresponding eigenvalue
function λn(a) by:

λn(a) =
∮

t∈S(a,n)
(t : a)s

ξ

where
∮
S(a,n) is 1

|S(a,n)|
∑

t∈S(a,n). We write λ for λ1. That λn(a) is indepen-
dent of the choice of ξ in Ξ follows from

(1) for a ∈ X, the stabilizer Aut(X)a of a in the automorphism group
Aut(X) of X acts transitively on Ξ,

(2) S(a, n) is an orbit of Aut(X)a and
(3) (gb : ga)gξ = (b : a)ξ for any g in Aut(X).

Lemma 2.2.

(1) λ1 =
(

1+q
1+q−1

)s
qQ−s+1

q+1 .

(2) λn+1(a) = (an−1 : an)s
ξλn(a) +

(an+1:an)s
ξ−(an−1:an)s

ξ

1+q(an) (an : a)s
ξ

(here an is the vertex on [a, ξ) at distance n from a).

Proof. By definition

λ1(a) =
1

|S(a, 1)|
∑

t∈S(a,1)

(t : a)s
ξ.

The sum over S(a, 1) consists of the vertex a1 on [a, ξ) and q(a) other vertices
a−1 in S(a, 1).

λ1(a) =
1

1 + q(a)
((a1 : a)s

ξ + q(a) (a−1 : x)s
ξ).
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The formula follows from (a1 : a)ξ = q(a)(1 + q(a)(1 + q(a))−1 and (a−1 :
a)ξ = (1 + q(a))q(a)(1 + q(a))−1. This proves (1). The proof of (2) is
similiar. �

2.3. . Given a character s ∈ Σ(X) with associated invariant function λ, the
space of eigenfunctions of the average operator ∆ is denoted by Es(X)

Es(X) = {f ∈ E(X) |∆f = λf}.
The elements of Es(X) for which the eigenvalue λ is 1 are called harmonic

functions. If f ∈ Es(X) then ∆nf = λnf . The function x 7→ (x : a)s
ξ is in

Es(X) for fixed vertex a in X and ξ in the boundary Ξ.

2.4. . For a given character s ∈ Σ(X), let λ be the corresponding eigenvalue.
The map s 7→ λ from Σ(X) to C[q] has the following properties:

a) its image consists of all the nonzero elements of C[q];
b) the map s 7→ λ is one-to-one on each of the three following subsets of

Σ(X) : Qs = −q+, Qs = −q−, Q2s = Q;
c) otherwise this map is two-to-one, the two distinct characters s and s∗

giving the same eigenvalue if and only if

QsQs∗ = Q and

(
1 + q+

1 + q−1
−

)s−s∗

=
1 + q+Q

−s

1 + q+Q−s∗

(in fact, for each nonzero λ, its norm λλ is q++q−+Qs+Q1−s

(q++1)(q−+1) , which is a
degree two equation in Qs):

d) the eigenvalue λ has norm 1 if and only if s or 1 − s is singular, and
the map s 7→ λ is an isomorphism from the group Σ(X)1 of singular
characters onto the group C[q]1 of norm 1 invariant functions;

e) finally, given λ 6= 0, there is always a nonsingular character s with
eigenvalue λ.

2.5. . For a character s of X, let ψs be the function on X ×X given by

ψs(a, b) =
∫

Ξ
(b : a)s

ξ da ξ.

From dbξ = (b : a)ξ daξ, it follows that the function associated to the
character 1 − s is obtained from the one associated to s by permuting the
variables. For each c in [a, b], the integrand is constant on Ξ(c, ǎ) ∩ Ξ(c, b̌)
(with the convention Ξ(x, x̌) = Ξ). These subsets form a partition of Ξ,
and ψs(a, b) appears as a finite sum, showing it as a regular function on
Σ(X). The number ψs(a, b) depends only on the orbit of (a, b) under the
automorphism group of X since (gb : ga)gξ = (b : a)ξ. These functions
ψs(a, b) are the zonal invariant kernels on the space X.
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Proposition 2.6. Let s be a character of X and λn be the corresponding
invariant eigenvalue of index n. Given two vertices a, b of X, then

(1) ψs(a, b) = λn(a) if d(a, b) = n,
(2) each function x 7→ ψs(a, x) lies in the eigenspace Es(X),
(3) if α, β ∈ Ξ satisfy a ∈ [b, β), b ∈ [b, α), then the series

∑
(y : a)s

α over
those y ∈ X such that (y : b)β = 1 converges for |Qs| < Q1/2, and its
sum is (1 + q(b)−1)c(b, s)(b : a)s,

(4) ψs(a, b) = c(b, s)(b : a)s + c(a, 1 − s)(a : b)1−s where c(x, s) is the
following rational function on Σ(X)/Σ(X)1:

c(x, s) =
1−Q−s

1−Q1−2s

1 + q(x)−1Q1−s

1 + q(x)−1
.

The proof consists of a direct calculation which we shall omit.

3. Boundary values of eigenfunctions.

3.1. . Each eigenfunction f on the tree X will have a boundary value which
is a section of a suitable bundle of distributions over Ξ with base X. For
each vertex a of X, the corresponding distribution on Ξ will appear as a
limit, in the topology of D′(Ξ), of a linear combination of the distributions
fa,nda and fa,n+1da. More precisely, the following theorem gives explicitly
the projection of this boundary distribution on the space D′(Ξ).

Given a nonsingular character s of X, we define the following sequence,
depending on s:

ra
n = |S(a, n+ 1)| / ((a)s

n+2 − (a)s
n), n ≥ 0.

Theorem 3.2. Let X be a semi-homogeneous tree with degree function q,
s be a nonsingular character of X and f ∈ Es(X).

(1) For each a in X and ϕ in D(Ξ), the number∫
Ξ
(ra

n−1 qa,n fa,n+1 − ra
n fa,n) ϕ da

is independent of n ≥ a-level of ϕ, and defines a distribution f̂a on Ξ
for which f(a) = 〈f̂a, 1〉;

(2) for ξ0 in Ξ and f the function x 7→ (x : a)s
ξ0

, this distribution is the
Dirac measure δξ0 at ξ0;

(3) for a and b in X, the distributions f̂a and f̂b are related by the formula
f̂b(ξ) = (b : a)s

ξ f̂a(ξ).

Remark. The formula in (1) reduces to the earlier formula for homogeneous
trees as stated in [G] §2.4 when we put q− = q+. See Cohen-Colonna [CC]
Proposition 1 for the case of a homogeneous tree.
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Proof.

I. We apply the formula ∆f = λf at each point an of the sphere S(a, n), n ≥
1:

(1 + q(an))λ(an)f(an) =
∑

t∈S(an,1)
t6=an−1

f(t) + f(an−1),

where an−1 is the neighbour of an which belongs to S(a, n − 1). Now let
ϕ be a test function on Ξ with a-level at most n; we write also ϕ for the
functions on S(a,m),m ≥ n, coming from it. We have, using the constant
function qa,n on S(a, n):∫

Ξ
fa,n+1 ϕ da =

∮
S(a,n+1)

fa,n+1ϕ =
1
qa,n

∮
S(a,n)

∑
f(an+1) ϕ

where the inner sum is on all an+1 in S(a, n + 1) coming from a common
element in S(a, n). The above formula can be rewritten as

qa,n

∫
Ξ
fa,n+1ϕ =

1
|S(a, n)|

∑
an∈S(a,n)

((1 + q(an))λ(an)f(an)− f(an−1))ϕ(an).

If, moreover, the a-level of ϕ is at most n − 1, then the right hand side is
simply ∫

Ξ
((1 + qa,n)λa,nfa,n − fa,n−1) ϕ da.

Next from
∮
S(an,1)(x : a)s

ξ = λ(an)(a)s
n = λa,n(a)s

n, we obtain

(1 + qa,n)λa,n(a)s
n = qa,n(a)s

n−1 + (a)s
n+1

so that the function

qa.nfa,n+1 − (1 + qa,n)λa,nfa,n + fa,n−1

is also

qa,n

(
fa,n+1 −

(a)s
n−1

(a)s
n

fa,n

)
−
(

(a)s
n+1

(a)s
n

fa,n − fa,n−1

)
which is

(a)s
n−1

|S(a.n)|

(
|S(a, n+ 1)|

(
Qs fa,n+1

(a)s
n+1

− fa,n

(a)s
n

)
−|S(a, n)|

(
Qs fa,n

(a)s
n

− fa,n−1

(a)s
n−1

))
since (an+1 : an−1) = Q and |S(a, n+1)| = qa,n|S(a, n)|. So, we have shown
that given ϕ ∈ D(Ξ), then〈

|S(a, n+ 1)|
(
Qs fa,n+1

(a)s
n+1

− fa,n

(a)s
n

)
da, ϕ

〉
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for all n ≥ the level of ϕ from a has the same value. We have found a
candidate for the weighted average that satisfies our stability requirement.

We apply this result to the test function ϕ = 1, which has level 0 with
respect to any vertex of X; so, for n = 0, we get〈∣∣∣S(a, 1)

∣∣∣ (Qs fa,1

(a)s
1

− f(a)
)
da , 1

〉
=
∣∣∣S(a, 1)

∣∣∣ (Qsλ(a)
(a)s

1

f(a)− f(a)
)

= (Qs − 1)f(a).

We have used

λ(a) =
∮

t∈S(a,1)
(t : a)s

ξ =
q(a)(a−1 : a)s

ξ + (a1 : a)s
ξ

q(a) + 1
=
q(a)Q−s + 1
q(a) + 1

(a)s
1

(see Lemma 2.2).
This calculation shows that our choice of ra

n has the correct normalization
required by the condition 〈f̂a, 1〉 = f(a).

We have proved part (1) of the theorem.

II. In this part we put f(x) = (x : a)s
ξ0

with a in the tree X and ξ0 in the
boundary Ξ. For c 6= a, let

V (c) =
∫

Ξ(c,ǎ)
(ra

n−1qa,nfa,n+1 − ra
nfa,n)da.

It follows from part I of the proof that this is independent of n ≥ d(a, c).

Lemma 3.3. If c /∈ [a, ξ0) and a ∈ [c, ξ0) then V (c) = 0.

Proof. First assume d(c, a) = 1. Then we take n = 1 and we get

V (c) = ra
0q(a)

∫
Ξ(c,ǎ)

fa,2da − ra
1

∫
Ξ(c,ǎ)

fa,1da

= ra
0q(a)

∮
S(a,2)∩X(c,ǎ)

f(y)− ra
1

∮
S(a,1)∩X(c,ǎ)

f(x)

= ra
0q(a)

q(a)
(1 + q(a))q(a)

(c1 : a)s
ξ0 − r

a
1

(c : a)s
ξ0

1 + q(a)
= 0.

Next suppose that d(c, a) > 1. On S(a, n) ∩ X(c, ǎ) our function f is
constant. Hence

V (c) =
∑

c′∈S(a,n)∩X(c,ǎ)

V (c′) = |S(a, n) ∩X(c, ǎ)|V (c′)

and V (c′) = 0 follow from V (c) = 0 by induction on d(c, a).

Lemma 3.4. If c /∈ [a, ξ0) and a /∈ [c, ξ0) then V (c) = 0.
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Proof. Take a vertex b in [a, ξ0)∩ [c, ξ0). Choose positive integers m,n such
that m+ d(a, b) = n. Then for our function f , we have

fa,n = (b : a)s
ξ0 fb,m.

It follows from the definition of r that

rb
m = (b : a)s−1

ξ0
ra
n.

If we write V (c, a, n) for V (c) to indicate the role of a and n, then the
above remarks imply that

V (c, a, n) = V (c, b,m), m+ d(a, b) = n.

By the previous Lemma 3.3 we have V (c, b,m) = 0, so V (c, a, n) = 0.

Lemma 3.5. If c ∈ (a, ξ0) then V (c) = 1.

Proof. Since Ξ is the disjoint union of Ξ(c′, ǎ) with c′ ∈ S(a, n), n = d(a, c),
by the previous two lemmas we have

V (c) =
∫

Ξ
f̂a = (a : a)s

ξ0 = 1.

These lemmas yield the proof of condition (2) of the theorem.

III. We only have to verify condition (3) on a test function with support
in a small neighbourhood of a point ξ0 in the boundary Ξ. Take a vertex c0
in (a, ξ0)∩ (b, ξ0). Take a vertex c in (c0, ξ0) and a test function ϕ supported
in Ξ(c, ǎ) = Ξ(c, b̌). Then rb

m = (b : a)s−1
ξ0

ra
n where m = d(b, c), n = d(a, c).

Condition (3) follows immediately.

Remark 3.6. Implicit in the proof of the theorem is the fact that ra
n is

the solution of the following difference equation satisfied by the spherical
functions:

λn(a)Xn − qn(a)λn+1(a)Xn−1 + 1 = 0, n ≥ 1
under the initial condition

X0 =
1 + q(a)
Qs − 1

.

This is imposed by the normalization and stability conditions.

3.7. . Let Bs(Ξ) be the space of maps T : X → D′(Ξ) : x 7→ Tx with Tx

satisfying the condition:

Ty(ξ) = (y : x)s
ξTx(ξ).

For T ∈ Bs(Ξ), define T̂ (x) = 〈Tx, 1〉. For each fixed a in X, the map
Bs(Ξ)→ D′(Ξ) given by T 7→ Ta is an isomorphism.

Lemma 3.8. If T ∈ Bs(Ξ) then T̂ ∈ Es(X).
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Proof. We have

∆T̂ (x) =
∮

y∈S(x,1)
T̂ (y) =

∮
y∈S(x,1)

∫
Ξ
Ty

=
∫

Ξ

∮
y∈S(x,1)

(y : x)s
ξTx = λ(x)T̂ (x).

On the other hand, we have seen that from f ∈ Es(X) we get f̂ ∈ Bs(Ξ),
namely, f̂ : x 7→ f̂x.

Theorem 3.9. Let X be a semi-homogenenous tree with degree function q.
Let s be a nonsingular character of X. Then the map

Bs(Ξ) −→ Es(X)

which sends T to the function T̂ (x) = 〈Tx, 1〉 is an isomorphism.

Proof. Start with T ∈ Bs(Ξ) we obtain T̂ ∈ Es(X). We claim that T̂ (a) = Ta

for all vertices a. We only have to evaluate these distributions on test
functions of sufficiently small support. We observe that T̂ (x) = 〈(x :
a)s

ξ′Ta(ξ′), 1〉. Take ϕ ∈ Da,n(Ξ). Then

〈(T̂ )a, ϕ〉 =
∫

Ξ×Ξ
(ra

n−1qa,n(xn+1 : a)s
ξ′ − ra

n(xn : a)s
ξ′)Ta(ξ′)ϕ(ξ)daξ.

For the function f(x) = (x : a)s
ξ′ , we have f̂a = δξ′ and so it follows that

〈(T̂ )a, ϕ〉 = 〈Ta, ϕ〉. Conversely, given a function f in Es(X) we have, from
Theorem 3.2, f̂ ∈ Bs(Ξ) and we have already shown that 〈f̂a, 1〉 = f(a).
3.10. . Assume now that s is a singular character of X. Then, for any
ξ ∈ Ξ, we have

(b : a)s
ξ = 1 if q(a) = q(b), (b : a)s

ξ =
(

1 + q(a)
1 + q(a)−1

)s

if q(a) 6= q(b).

This implies that the image f in Es(X) of a given T in Bs(Ξ) is determined
by its value in a point a ∈ X, and satisfies:

f(x) = f(a) if q(x) = q(a),

f(x) =
(

1 + q(a)
1 + q(a)−1

)s

if q(x) 6= q(a).

Theorem 3.11. Let X be a semi-homogeneous tree with degree function q.
Let s be a singular character of X. Then, the image of Bs(Ξ) in Es(X) is
a one dimensional subspace, and the choice of any vertex a ∈ X defines a
basis of it as follows:

x 7→ 1 for q(x) = q(a),

x 7→
(

1 + q(a)
1 + q(a)−1

)s

for q(x) 6= q(a).
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Remark. For a character s, the corresponding sequence λn of eigenvalues
satisfies: λn = 1 for n even, and λn =

(
1+q

1+q−1

)s
for n odd. In particular,

they all have norm equal to 1. Conversely, if λ1 has norm 1, then Lemma
2.2 implies that λn = 1 for n even and λn = λ1 for n odd. The condition
λ1λ1 = 1 is equivalent to Qs = 1 or Qs = Q, that is s or 1− s is singular. If
s is singular then 1− s is not singular, and there is s∗ with same eigenvalue
λ as s, so that the spaces Es(X) and Es∗(X) are the same, and f 7→ f̂
constructed above gives an isomorphism of Es(X) = Es∗(X) with Bs∗(Ξ).

The result on harmonic functions on the unit disc (and its generalizations)
can be found in [H] §4.1 Theorem 4.3; Furstenberg [Fu], Kashiwara et.
al. [Kas]. For asymptotic formula for harmonic functions on trees see
Cohen-Colonna [CC]. Harmonic analysis on semi-homogeneous trees has
been studied by Bouaziz-Kellil ([B]), Choucroun ([Ch]), Nevo ([N]) and
Olshanskii ([O]). See also Kato ([Kat]). No asymptotic formula is given in
these works. For further work on this problem for buildings of rank 2 see,
for example, Cartwright and Mlotkowski [Car], Mantero and Zappa [MZ];
for buildings of type An see Gérardin and Lai [GL].
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[GL] P. Gérardin and K. F. Lai, Opérateurs invariants sur les immeubles affines de type
A, C.R. Acad. Sci. Paris, 329 (1999), 1-4.

[H] S. Helgason, Topics in Harmonic Analysis on Homogeneous Spaces, Birkhäuser,
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