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Gyrogroups are generalized groups modelled on the Ein-
stein groupoid of all relativistically admissible velocities with
their Einstein’s velocity addition as a binary operation. Ein-
stein’s gyrogroup fails to form a group since it is nonassocia-
tive. The breakdown of associativity in the Einstein addition
does not result in loss of mathematical regularity owing to
the presence of the relativistic effect known as the Thomas
precession which, by abstraction, becomes an automorphism
called the Thomas gyration. The Thomas gyration turns out
to be the missing link that gives rise to analogies shared by
gyrogroups and groups. In particular, it gives rise to the
gyroassociative and the gyrocommuttive laws that Einstein’s
addition possesses, in full analogy with the associative and
the commutative laws that vector addition possesses in a vec-
tor space. The existence of striking analogies shared by gy-
rogroups and groups implies the existence of a general theory
which underlies the theories of groups and gyrogroups and
unifies them with respect to their central features. Accord-
ingly, our goal is to construct finite and infinite gyrogroups,
both gyrocommutative and non-gyrocommutaive, in order to
demonstrate that gyrogroups abound in group theory of which
they form an integral part.

1. Introduction.

A gyrogroup is a grouplike structure that is defined in [7] along with a
weaker structure called a left gyrogroup. We show that any given group
can be turned into a left gyrogroup which is, in turn, a gyrogroup if and
only if the given group is central by a 2-Engel group. The importance of
left gyrogroups stems from the facts that (i) any gyrotransversal groupoid
is a left gyrogroup, and (ii) any left gyrogroup is a twisted subgroup in a
specified group.

Twisted subgroups are subsets of groups, introduced by Aschbacher [1],
which under general conditions are near subgroups. The concept of near
subgroup of a finite group was introduced by Feder and Vardi [6] as a tool
to study problems in computational complexity involving the class NP .
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In a previous article [7] we have shown that every gyrogroup is a twisted
subgroup in some specified group, and introduced the involutory decom-
position of a group G = BH into a twisted subgroup B and subgroup
H, demonstrating that the resulting twisted subgroups are gyrocommuta-
tive gyrogroups. Gyrogroups are grouplike objects which share analogies
with groups. In particular, gyrogroups are classified into gyrocommutative
and non-gyrocommutative ones in full analogy with groups, thus offering a
broader context for the study of groups. Gyrogroups are structures which
first arose in the study of Einstein’s relativistic velocity addition law. Gy-
rogroup theory captures the mathematical regularity that has seemingly
been lost in the transition from ordinary vector addition (which is a group
operation) to Einstein’s relativistic velocity addition (which, being nonasso-
ciative, is not a group operation).

Following the involutory decomposition that we presented in [7], we pre-
sent in this article a non-involutory decomposition of groups into twisted
subgroups and subgroups. The resulting twisted subgroups, in this case,
turn out to be gyrogroups that need not be gyrocommutative.

In Section 2 we show that any left gyrogroup is a gyrotransversal of some
group. In Section 3, we show that any group can be turned into the diagonal
transversal of a specified group. Hence, by Theorem 3.4, any group can be
turned into a left gyrogroup. We then characterize in Theorem 3.7 the
groups that their associated left gyrogroups are gyrogroups. Finally, two
examples of nongyrocommutative gyrogroups, one finite and one infinite,
are presented in Section 4.

2. Left gyrogroups as gyrotransversals of groups.

The definitions and many of the theorems and lemmas refered to in this
paper appear in [7].

Definition 2.1. A transversal groupoid (B,�) of a subgroup H in a group
G is a gyrotransversal of H in G if

(i) 1G ∈ B, 1G being the identity element of G;

(ii) B = B−1; and
(iii) B is normalized by H, H ⊆ NG(B), that is, hBh−1 ⊆ B for all h ∈ H.

Definition 2.2 (Gyrosemidirect Product Groups). Let P = (P,�) be a
left gyrogroup, and let Auto(P ) = Auto(P,�) be any subgroup (not neces-
sarily the smallest one) of Aut(P,�) containing all the gyroautomorphisms
of (P,�). The gyrosemidirect product group

Pop Auto(P )(2.1)

of the left gyrogroup P and a gyroautomorphism group Auto(P ) is a group
of pairs (x,X), where x ∈ P and X ∈ Auto(P ), with group operation given
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by the gyrosemidirect product

(x,X)(y, Y ) = (x�Xy, gyr[x,Xy]XY ).(2.2)

It is anticipated in Definition 2.2 that the gyrosemidirect product group
(2.1) is a group with group operation given by the gyrosemidirect product
(2.2). This is indeed the case as we show in the following:

Lemma 2.3. Let (P,�) be a left gyrogroup, and let Auto(P,�) be any of its
gyroautomorphism groups. Then the gyrosemidirect product Pop Auto(P ) is
a group.

Proof. We view the elements (x,X) of P × Auto(P ) as bijections of P ac-
cording to the equation

(x,X)g = x�Xg

for any x, g ∈ P and X ∈ Auto(P ), where the identity bijection is the pair
(1, I), and the inverse of (x,X) is (x,X)−1 = ((X−1x)−1, X−1), thus the
elements of P × Auto(P ) indeed act bijectively on P . To show that the
elements of P × Auto(P ) are a subgroup of the symmetric group on P we
employ the left cancellation law, which is valid in any left gyrogroup. As
such, the set P ×Auto(P ) forms a group of bijections with group operation
given by composition,

(x,X)(y, Y )g = (x,X)(y � Y g)

= x�X(y � Y g)

= x� (Xy �XY g)

= (x�Xy)� gyr[x,Xy]XY g

= (x�Xy, gyr[x,Xy]XY )g.

The composition turns out to be the gyrosemidirect product in Pop Auto(P )
thus verifying that the operation in the gyrosemidirect product group is
indeed a group operation. �

Theorem 2.4. Every left gyrogroup P = (P,�) is a gyrotransversal of its
gyroautomorphism group Auto(P ) in its gyrosemi-direct product group Pop
Auto(P ).

Proof. Let H = Auto(P ) be any gyroautomorphism group of the left gy-
rogroup (P,�), and let G = Pop H be the resulting gyrosemidirect product
group. Identifying elements h ∈ H with pairs (1, h) ∈ G, H is isomorphic
with a subgroup of G. Similarly, identifying elements p ∈ P with their cor-
responding pairs (p, 1H) ∈ G, P is a subset of G. The left gyrogroup P and
the two groups H and G share their identity elements which are respectively
denoted by 1P , 1H and 1G. We note that in any left gyrogroup (P,�) the
gyroautomorphisms gyr [p, 1P ] and gyr [1P , p] are the identity automorphism
of P , as shown in [23].
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The left gyrogroup P , considered as a set, is the transversal of H in G =
Pop H by Definition 2.2. In order to show that (P,�) is a gyrotransversal
of H in G it remains to verify that the transversal operation in P equals its
left gyrogroup operation �, and establish the validity of properties (i), (ii)
and (iii) in Definition 2.1 of gyrotransversals.

Let (x, 1H), (y, 1H) ∈ P ⊂ G be any two elements of P . Their product in
G, Definition 2.2, has the unique decomposition

(x, 1H)(y, 1H) = (x� y, gyr[x, y])

= (x� y, 1H)(1P , gyr[x, y])

indicating that the transversal binary operation in P is the gyrogroup op-
eration, �, in P .

Clearly, P contains the identity element (1P , 1H) of G. Moreover, since
in G, (p, 1H)−1 = (p−1, 1H) for any p ∈ P , we have (p, 1H)−1 ∈ P so that
P = P−1, thus establishing properties (i) and (ii) of Definition 2.1.

To show that H normalizes P in G, property (iii) in Definition 2.1, we
note that for all p ∈ P and h ∈ H we have by Definition 2.2,

(1P , h)(p, 1H)(1P , h−1) = (1P � ph, gyr[1P , ph]h1H)(1P , h−1)

= (ph, h)(1P , h−1)

= (ph � 1h
P , gyr[ph, 1h

P ]hh−1)

= (ph, 1H) ∈ P

and the proof is thus complete. �

3. Diagonal Transversals.

Definition 3.1 (Diagonal Transversals). Let K be a group and let G =
KoInn(K) be the semidirect product group of K and Inn(K), where Inn(K)
is the inner automorphism group of K whose generic element αk denotes
conjugation by k ∈ K. Then, the diagonal transversal D generated by K
(in G) is a subset of G given by

D = {(k, αk)|k ∈ K} ⊂ G.

Any element (k, αk) ∈ D is determined by a corresponding element k ∈ K.
We therefore use the notation

D(k) = (k, αk)

to denote the elements of D.

We may note that if K is commutative then Inn(K) = {1K} is the trivial
group, and the transversal of Inn(K) in G is isomorphic with the group G.

It is anticipated in Definition 3.1 that diagonal transversals are transver-
sals. In the following theorem we will show that this is indeed the case. In
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fact, we will show that diagonal transversals are special transversals; they
are gyrotransversals.

Theorem 3.2. A diagonal transversal with its transversal operation, is a
gyrotransversal groupoid.

Proof. Let D be a diagonal transversal generated by a group K, and let
G = K o Inn(K). Any element (k, αh) of G, where k, h ∈ K, can be
uniquely written as a product

(k, αh) = (k, αk)(1K , αk−1h) = D(k)(1K , αk−1h)(3.1)

of an element in D and an element in Inn(K). Hence, D is a transversal of
Inn(K) in G.

In order to find the transversal operation � of the transversal D let us
consider the product decomposition

(k1, αk1)(k2, αk2) = (k1k
k1
2 , αk1k2) = (k1k

k1
2 , α

k1k
k1
2

)(1K , α(k−1
2 )k1k2

)(3.2a)

which can be written as

D(k1)D(k2) = D(k1k
k1
2 )(1K , α[k1,k−1

2 ])(3.2b)

for any k1, k2 ∈ K, where [k1, k2] = k1k2k
−1
1 k−1

2 is the commutator of k1

and k2 [15, p. 92]. It follows from the product decomposition (3.2) that the
transversal operation is given by

D(k1)�D(k2) = D(k1k
k1
2 ).(3.3)

As a byproduct we also find from the product decomposition (3.2) that the
element h ∈ Inn(K) ⊂ G determined by any two elements D(k1) and D(k2)
of the transversal D, Definition 2.8 of [7], is

h(D(k1), D(k2)) = (1K , α[k1,k−1
2 ]) ∈ Inn(K)(3.4)

h being the transversal map D×D → Inn(K). To show that the transversal
groupoid (D,�) is a gyrotransversal groupoid, we will verify the validity of
properties (i)-(iii) in Definition 2.1.

(i) The identity (1K , α1K ) of G is the identity element D(1K) in D.
(ii) In D, D(k1)−1 = D(k−1) so D = D−1.
(iii) Inn(K) ⊆ NG(D) since

(1K , αh)D(k)(1K , αh−1) = (1K , αh)(k, αk)(1K , αh−1)(3.5)

= (kh, αkh) = D(kh) ∈ D

and the proof is complete.

�
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Remark 3.3. Let K be a group, let G = K o Inn(K) be the semidirect
product group of K and Inn(K), and let D be the diagonal transversal
formed by K in G. Then, D is also a gyrotransversal in the group Dop
Inn(K). Since, Inn(K) contains all the gyrations of the left gyrogroup D.

Following Definition 3.1, any group (K, ·) generates a diagonal transversal

D = {D(k) = (k, αk)|k ∈ K}
whose elements D(k) ∈ D are identified with the elements k ∈ K. By
Theorem 3.2, the diagonal transversal D forms a gyrotransversal groupoid
whose binary operation is given by Eq. (3.3), and whose gyrations are
derived from Eq. (3.4) by means of Eq. (2.2) of [7]. By Theorem 2.13 of
[7], any gyrotransversal groupoid is a left gyrogroup. Under the obvious
identification of the set D of the left gyrogroup (D,�) with the set K of the
group (K, ·), this group is turned into the left gyrogroup (K,�)

(i) where the left gyrogroup operation is given by

a� b = aba(3.6)

as we see from Eq. (3.3), and
(ii) when the gyrations of K are the automorphisms

gyr[a, b] = α[a,b−1](3.7)

of K as we see from Eq. (3.4). We have proved the following theorem:

Theorem 3.4. Any group (K, ·) can be turned into an associated left gy-
rogroup (K,�) by introducing into (K, ·) the left gyrogroup operation � which
is given in terms of the group operation · by

a� b = aba.(3.8)

The gyroautomorphisms of the resulting left gyrogroup (K,�) are given by
the equation

gyr[a, b] = α[a,b−1](3.9)

for all a, b ∈ K.

Definition 3.5 (Associated Left Gyrogroups). The associated left gyro-
group of a group (K, ·) is the left gyrogroup (K,�) whose left gyrogroup
operation � is given in terms of the group operation · by a� b = aba for all
a, b ∈ K.

Theorem 3.6. The associated left gyrogroup (K,�) of a group (K, ·) is a
group if and only if (K, ·) is nilpotent of class 2.

Proof. By Definition 2.3 of [7] the left gyrogroup (K,�) is a group if and
only if gyr[a, b] = I is the identity automorphism of K for all a, b ∈ K. But,
by Eq. (3.7), gyr[a, b−1] = I for all a, b ∈ K if and only if α[a,b] = I for
all a, b ∈ K. The latter is equivalent to the condition [a, b] ∈ Z(K) for all



GYROGROUPS AND THE DECOMPOSITION OF GROUPS 7

a, b ∈ K, that is, the condition that K is nilpotent of class 2 is equivalent
to the condition that (K,�) is a group, as desired. �

A 2-Engel group E is a group satisfying [[a, b], b] = 1. Engel groups are
useful in various studies of nilpotency; see e.g. [14]. It becomes evident
from the following Theorem that these are useful in the study of gyrogroups
as well.

Theorem 3.7. Let (K,�) be the left gyrogroup associated with a group
(K, ·). Then (K,�) is a gyrogroup if and only if (K, ·) is central by a 2-
Engel group.

Proof. A left gyrogroup is a gyrogroup if and only if it possesses the loop
property, by Definition 2.3 of [7]. We thus have to characterize the loop
property identity

gyr[a� b, b] = gyr[a, b](3.10)

in (K,�) in terms of a characterization of 2-Engel groups. Identity (3.10)
in (K,�) is equivalent to the identity

α[aba,b−1] = α[a,b−1](3.11)

in (K, ·). Identity (3.11), viewed in (K, ·)/Z(K), is equivalent to the identity

[aba, b−1] = [a, b−1](3.12)

in (K, ·)/Z(K). This, in turn, is equivalent to the more revealing identity

[a, b] = [b−1, a](3.13)

in (K, ·)/Z(K), as we see from the following chain of equivalent identities.

[aba, b−1] = [a, b−1] ⇔ a2ba−1b−1ab−1a−2b = ab−1a−1b(3.14)

⇔ b−1 = aba−1b−1ab−1a−1

⇔ 1 = aba−1bab−1a−1b−1

⇔ [[a, b], b] = 1.

Finally, the identity (3.14) characterizes the 2-Engel groups [14]. Hence,
the loop property identity (3.11) in the group (K, ·) is equivalent to the
identity (3.14) in the quotient group (K, ·)/Z(K). The latter, in turn, is
equivalent to the condition that (K, ·)/Z(K) is a 2-Engel group, as desired.

�

Corollary 3.8. The left gyrogroup (K,�) associated with any nilpotent
group (K, ·) of class 3 is a gyrogroup.

Proof. Any nilpotent group of class 3 is central by a 2-Engel group [14].
The result thus follows from Theorem 3.7. �
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Following Corollary 3.8, gyrogroup formalism can be applied to nilpotent
groups of class 3 (or, more generally, to any group which is central by a
2-Engel group). Gyrogroup formalism, proved useful in the special theory
of relativity and in hyperbolic geometry [23], is presently being found useful
in group theory as well.

As an example of the application of gyrogroup formalism to nilpotent
groups of class 3, given

x� a = b(3.15)

then there exists a unique solution for x,

x = b� (gyr[b, a]a)−1(3.16)

in the abstract gyrogroup (G,�) by an equation and its solution in a nilpo-
tent group (K, ·) of class 3. Let (K,�) be the gyrogroup generated by (K, ·)
according to Definition 3.5.

According to Eq. (3.8), Equation (3.15) in (K,�) takes the form

xax = b

in (K, ·), and according to both Eqs. (3.9) and (3.8) its unique solution
(3.16) in (K,�) takes in (K, ·) the form

x = b� (a[b,a−1])−1

= b� (a−1)[b,a
−1]

= b((a−1)[b,a
−1])b

= b(a−1)b[b,a−1].

By means of gyrogroup theory we have thus obtained in the following Corol-
lary a group theoretic identity that would be very tedious to obtain other-
wise.

Corollary 3.9. Let G be a group which is central by a 2-Engel group. Then
the equation

xax = b(3.17)

for x in G possesses the unique solution

x = b(a−1)b[b,a−1].(3.18)

Remark 3.10. It can readily be shown by induction on the nilpotency class
that Equation (3.17) for the unknown x in any nilpotent group (G, ·) pos-
sesses a unique solution. It is true when (G, ·) is abelian, and an induction
on the class (divide out the center) does the rest. Hence, for any nilpotent
group (G, ·) the associated groupoid (G,�) is a left gyrogroup that forms a
loop. Consequently, there are loops which are left gyrogroups but are not
gyrogroups.
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Remark 3.11. Any loop (L, ∗) has an associativity correction C satisfying
a ∗ (b ∗ c) = (a ∗ b) ∗ C[a, b]c for all a, b ∈ L. The loop L is a left gyrogroup
if and only if C[a, b] is an automorphism of L for any a, b ∈ L. Examples
of loops which are non-gyrogroup left gyrogroups are provided in Remark
3.10.

4. Examples.

Example 4.1. The lowest order of non-group gyrogroups generated from
nilpotent groups of class 3 which are not of class 2 is 16. Using the software
package MAGMA and its library [4] we found three nonisomorphic nilpotent
groups of order 16 which are of class 3 but are not of class 2 (see Theorem
3.6). They generate three non-gyrocommutative gyrogroups of order 16,
denoted by K16, L16, and M16. The gyrogroup multiplication table of one
of them, K16, Can be calculated by employing Eq. (3.8). The gyroauto-
morphisms of K16 can be calculated by means of Eq. (3.9). There is only
one non-identity gyroautomorphism A. The set of all gyroautomorphisms
of K16, {I,A}, is a group of order 2. In general, the set of all gyroauto-
morphisms of a gyrogroup need not form a group. Thus, for instance, the
gyroautomorphisms of the Einstein 2-dimensional gyrogroup (<2

c ,⊕E) are
all rotations of the Euclidean plane <2 about its origin, but there is no gy-
roautomorphism that rotates the plane about its origin by π radians [21].
K16 contains a group H which is a normal subgroup of the gyrogroup K16

(see Definitions 4.7 and 4.8 in [7]). The quotient gyrogroup K16/H turns out
to be an abelian group. Hence, we have in hand an example of an extension
of a group by another group that gives a nonassociative structure (that is,
the gyrogroup K16). It is an extension which is far from being trivial, where
H and K16/H are groups while K16 is a non-gyrocommutative gyrogroup.

Example 4.2 (A non-group, non-gyrocommutative matrix gyrogroup).
The matrix group (T4, ·) of all 4×4 real or complex upper triangular matrices
with diagonal elements 1,

M(x) =


1 x1 x2 x3

0 1 x4 x5

0 0 1 x6

0 0 0 1


under matrix multiplication is nilpotent of nilpotency class 3. Hence, by
Corollary 3.8 the pair (T4,�) is a gyrogroup whose gyrogroup operation is
given by

M(x)�M(y) = (M(x))2M(y)(M(x))−1.

The gyroautomorphisms gyr[M(a),M(b)] of the gyrogroup (T4,�) are given
in terms of their effects on M(z) by the equation

gyr[M(a),M(b)]M(z) = (M(a)�M(b))−1 � (M(a)� (M(b)�M(z)))
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for all M(a),M(b),M(z) ∈ (T4,�).
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