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We estimate the number and ratio of negative homothetic
copies of a d-dimensional convex body C sufficient for the cov-
ering of C. If the number of those copies is not very large,
then our estimates are better than recent estimates of Rogers
and Zong. Particular attention is paid to the 2-dimensional
case. It is proved that every planar convex body can be cov-
ered by two copies of ratio −4

3
(this ratio cannot be lessened

if C is a triangle).

Every convex body C in Euclidean d-space Ed can be covered by a ho-
mothetic copy of C of ratio −d. This immediately follows from the papers
of Neumann [10] for d = 2, and Süss [12] in the general case. The covering
by more than one negative homothetic copy was considered in [3], [9] and
[11]. The present paper establishes a few additional estimates about cover-
ing by negative copies. We also consider covering by negative and positive
homothetic copies.

1. Covering a d-dimensional body.

Lemma. Let P be a parallelotope of the smallest possible volume containing
a convex body C ⊂ Ed. Denote by v1, . . . ,vd the vectors determined by some
d edges of P with a common origin. Let λ1, . . . , λd be positive real numbers
such that λ1 + · · ·+ λd = 1. The body C contains a parallelotope S whose d
edges with a common origin determine vectors λ1v1, . . . , λdvd.

Proof. From the considerations of [4] it follows that for every i ∈ {1, . . . , d}
there are boundary points ai and bi of C such that −→aibi = vi. The required
parallelotope S has the 2d vertices of the form λ1c1 + · · · + λdcd, where
ci ∈ {ai, bi} for i = 1, . . . , d. �

By a box in Ed we understand any set of the form

{(x1, . . . , xd); rj ≤ xj ≤ sj for j = 1, . . . , d},

where rj < sj for j = 1, . . . , d. In particular, if r1 = · · · = rd = 0 and
s1 = · · · = sd = 1, we obtain the unit cube Id.
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Theorem 1. Assume that the d-dimensional unit cube Id can be covered by
boxes B1, . . . , Bk and denote by pjm the length of an edge of Bj parallel to
the m-th coordinate axis, where j ∈ {1 . . . , k} and m ∈ {1, . . . , d}. Then
every convex body C ⊂ Ed can be covered by k homothetic copies of C whose
homothety ratios are r1, . . . , rk, where |rj | = pj1 + · · ·+pjd for j = 1, . . . , k.

Proof. Let P denote a parallelotope of the smallest possible volume con-
taining C. We do not make our considerations narrower by assuming that
P = Id (if P 6= Id, then we take an affine transformation τ such that
τ(P ) = Id and we consider the body C ′ = τ(C) instead of C). We apply
the Lemma. For each j ∈ {1, . . . , k}, take the numbers pj1

|rj | , . . . ,
pjd

|rj | in place
of λ1, . . . , λd, respectively. We see that for every j ∈ {1, . . . , k}, the body C
contains a parallelotope Sj , whose d independent edges determine vectors
pj1v1

|rj | , . . . ,
pjdvd

|rj | . Hence for every j ∈ {1, . . . , k}, the set rjSj is a translate
of Bj . Thus Bj is a homothetic copy of Sj , where the ratio of the corre-
sponding homothety hj is equal to rj . Since Sj ⊂ C ⊂ P for j = 1 . . . , k,
we conclude that C can be covered by homothetic copies h1(C), . . . , hk(C)
of C. �

The earlier mentioned covering by one copy of ratio −d follows immedi-
ately from Theorem 1 by taking k = 1 and B1 = Id.

Consider two special cases of Theorem 1. Just put k = 2q, where q ∈
{1, . . . , d}, and p1 m = · · · = pk m = 1

2 for m ≤ q and p1 m = · · · = pk m = 1
for m > q. For the second special case take k = td and pj m = 1

t for all
indexes, where t ∈ {1, 2, . . . }. We obtain the following corollary.

Corollary 1. Every convex body in Ed can be covered by 2q homothetic
copies of ratio −d + 1

2q for every q ∈ {0, 1, . . . , d}. It can be also covered by
td homothetic copies of ratio −d

t for every t ∈ {1, 2, . . . }.

A particular case of both statements of Corollary 1 is when we cover a
convex body by 2d homothetic copies of ratio −1

2d. Another particular case
of the first statement is about covering by two homothetic copies of ratio
−d + 1

2 .
Similarly, we can evaluate the homothety ratio for the covering by any

particular number of negative copies (see Corollary 4 for such a general
formula in E2). For instance, every convex body in Ed can be covered by 3
homothetic copies of ratio −d + 3

4 . This follows by taking p1 1 = p2 1 = 1
2 ,

p1 2 = p2 2 = 3
4 , p3 2 = 1

4 , and pi j = 1 in remaining cases.

We conjecture that every convex body in Ed can be covered by two nega-
tive homothetic copies of ratio −d+1 for d odd, and of ratio −d+1− 1

d+1 for
d even. Those values are attained for a d-dimensional simplex, as a simple
but time consuming calculation shows. Let us present only a hint of how
the two negative copies S1 and S2 are situated. If d is odd, then S2 is a
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translate of S1 by vector 1
d−1

−→
ab , where a and b are the centroids of two

opposite d−1
2 -dimensional faces of S1. If d is even, then S2 is a translate of

S1 by vector 1
d

−→
ab , where a is the centroid of a d

2 -dimensional face of S1 and
b is the centroid of the opposite d−2

2 -dimensional face.

The estimates of Corollary 1 can be also expressed in the following form,
where dxe means the smallest integer which is greater than or equal to x.

Corollary 2. Let C ⊂ Ed be a convex body. If −d ≤ λ ≤ −1
2d, then some

(1) 2d2d+2λe

homothetic copies of C with ratio λ cover C. If −1
2d ≤ λ < 0, then

(2)
⌈
−d

λ

⌉d

homothetic copies of ratio λ cover C.

If the number of equal negative homothetic copies is not very large, then
the estimates (1) and (2) are better than the estimate

(3)
(

1− 1
λ

)d

(d log d + d log log d + 5d), where d ≥ 3,

a special case of the formula (6) from the paper of Rogers and Zong [11].
It is easy to check that the estimates (1) and (2) remain better than (3),
asymptotically as d → ∞, for a polynomial number of negative covering
copies. In other words, for −λ of order log d. A calculation shows that if λ
is sufficiently small and if d ≤ 8, then (2) should be applied for obtaining
better estimates than (3), and if d ≥ 9, then (1) should be applied for this
purpose.

Here is also a comparison of (2) with (3) for d = 3. By (2), every 3-
dimensional convex body can be covered by 143 = 2744 homothetic copies
of ratio − 3

14 = −0.2142 . . . , while by (3) we need 2815 such copies. For
d = 3 and λ ≤ − 3

14 formula (2) always gives fewer copies than (3), while (3)
gives fewer copies for λ > − 3

14 .

Corollary 3. Every convex body in Ed can be covered by dd +1 homothetic
copies of ratio −1 + d−d(d + 1)−1. Any desired number of those copies can
be exchanged for copies of ratio 1− d−d(d + 1)−1.

Proof. Let xk = 1
d −

1
dk(d+1)

for k = 1, . . . , d, and yk = 1
d + d−1

dk(d+1)
for

k = 2, . . . , d. It is easy to check that (d− 1)xk + yk = 1 and that (k− 1)1
d +

xk + yk+1 + · · ·+ yd = 1− d−d(d + 1)−1.
In order to apply Theorem 1, we will dissect the cube Id into dd + 1

convenient boxes. Here is how we provide the tiling. We represent Id as the
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union of d horizontal strips of heights xd, . . . , xd, yd. We dissect each of the
strips of height xd into dd−1 boxes of successive widths 1

d , . . . , 1
d , xd.

At the second stage, the strip of height yd is dissected into d strips
by hyperplanes parallel to the (d − 1)-st coordinate axis. The (d − 1)-st
widths of successive strips are xd−1, . . . , xd−1, yd−1. Each of the strips of the
(d − 1)-th width equal to xd−1 is dissected into boxes of successive widths
1
d , . . . , 1

d , xd−1, yd.
Similarly, we make tilings in successive stages. At the (d− k +1)-st stage

we get (d− 1)dk boxes of successive widths 1
d , . . . , 1

d , xk, yk+1, . . . , yd.
At the last, d-th stage, we obtain d− 1 boxes of successive widths x1, y2,

. . . , yd. The total number of boxes so obtained is (d−1)dd−1 +(d−1)dd−2 +
· · · + (d − 1)d + d + 1 = dd + 1. From the equalities at the beginning of
the proof we see that the sum of the lengths of the independent edges of
each box is 1− d−d(d + 1)−1. Thus from Theorem 1 we obtain the claim of
Corollary 3. �

In particular, when all the copies in Corollary 3 are positive, we obtain
an estimate for the well known problem of Hadwiger [5] which asks if every
convex body C ⊂ Ed can be covered by 2d smaller positive homothetic
copies. For d = 3 we know only some estimates of the number of those
copies C, see [7], [8] and [11]. For d ≥ 3 the estimate of the number of
copies of positive ratio smaller than 1 presented in Corollary 3 is better
than the estimate from [7], but for d = 3 it is weaker than that from [8],
and for d ≥ 6 it is weaker than the estimate

(
2d
d

)
(d log d + d log log d + 5d)

presented in [2], [11] and [13]. Thus here we get the best estimates 257 in
E4 and 3126 in E5. The advantage of the estimate of Corollary 3 is that we
have a universal ratio of homothety. Remember that such estimates with a
universal homothety ratio were known only for d ≤ 3: Every 2-dimensional
convex body can be covered by 4 copies of ratio

√
2/2 (see [6]), and every 3-

dimensional convex body can be covered by 24 copies of a universal positive
ratio smaller than 1 (see [8]).

2. Covering a two-dimensional body.

Observe that every positive integer n can be represented either in the form
n = m2 + k, where m and k are positive integers such that 0 ≤ k ≤ m− 1,
or in the form n = m(m + 1) + k, where m and k are positive integers such
that 0 ≤ k ≤ m.

Corollary 4. Every convex body in E2 can be covered by n homothetic
copies of ratio −2m2−2m+k

m2(m+1)
provided n = m2 + k, where 0 ≤ k ≤ m − 1,

and of ratio −2m2−3m+k−1
m(m+1)2

provided n = m(m + 1) + k, where 0 ≤ k ≤ m.
Any desired number of those copies can be exchanged for copies with ratio
of the opposite sign.
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Figure 1 shows the idea of Corollary 4 and how it results from Theorem 1.
We consider here only n fulfilling 22 ≤ n ≤ 32 in order to fix our attention.
We see how homothety ratios −1,−11

12 ,−5
6 ,−7

9 ,−13
18 ,−2

3 are obtained for
n = 4, . . . , 9, respectively.

Figure 1.

We conjecture that a covering by 5 copies of ratio −2
3 is always possible

(this value cannot be improved for a triangle). Better estimates than cor-
responding estimates for n = 2, 3 and 4 are obtained in [3] and [9]. They
are −

√
2 for 2 copies, −1 for 3 copies (this ratio cannot be improved, as the

example of a triangle shows), and less than −1 for 4 copies. Recall the con-
jecture from [9] that every planar convex body can be covered by 4 copies
of ratio −4

5 . Below we present improvements of the estimates for covering
by 2 and by 7 negative copies. The example of a triangle shows that the
following estimate −4

3 for covering by two copies is the best possible. Let
us add that the estimate was conjectured in [9].

Theorem 2. Every convex body C ⊂ E2 can be covered by two homothetic
copies of ratio −4

3 .

Proof. Let C ⊂ E2 be a convex body. Let cde be a triangle contained in C
with the greatest possible area. In order to simplify further computations,
we will make some convenient assumptions. Since the affine image of this
triangle is a triangle of maximum area in the corresponding transformed
body, we loose no generality in assuming that c = c(−1, 0), d = d(1, 0), e =
e(0, 1). As usual, the numbers in brackets denote the coordinates of a given
point. The triangle with vertices t1(0,−1), t2(2, 1), t3(−2, 1), contains C (see
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Fig. 2). The reason is that the vertices of the triangle cde are in the sides of
the triangle t1t2t3 which has parallel sides (thus a point of C outside t1t2t3
would permit the construction of a triangle of a greater area in C). Denote
by o the centroid of the triangle cde. Let p1, p2, p3 be the boundary points of
C on the segments ot1, ot2, ot3, respectively. Without loss of generality we
can also assume that |ot3|/|op3| ≥ |ot1|/|op1| and |ot3|/|op3| ≥ |ot2|/|op2|. If
this assumption is not satisfied, we can apply an affine transformation which
changes the order of the vertices c, d, e.

In order to shorten further explanations, we introduce the following nota-
tion. A homothetic copy of a set with the homothety ratio −4

3 will be called
a copy. We say that a point is on the left (on the right) of a non-horizontal
line L if its first coordinate is not greater (not smaller) than the first coordi-
nate of the corresponding point of L on the same horizontal level. If a point
is denoted by a symbol, then its first and second coordinates are denoted by
x and y with just this symbol as the index.

Figure 2.

Denote by C1, C2 and C3 those parts of C whose points (x, y) fulfill the
inequalities y ≤ 1

3 , 1
3 ≤ y ≤ 2

3 and 2
3 ≤ y, respectively. Observe that the

part of the triangle t1t2t3 whose points (x, y) fulfill the inequality y ≤ 1
3

can be covered by one copy of the triangle cde. Thus C1 can be covered by a
copy of C. In order to prove that another copy of C is able to cover C2∪C3,
it is sufficient to show that C2∪C3 can be covered by a copy of the trapezoid
cdba, where a(xa,

1
2) and b(xb,

1
2) (with xa < xb) are points on the boundary

of C (see Fig. 2). The required copy is the trapezoid T = c′d′b′a′ , where the
copy of the segment cd is the segment d′c′ contained in the line y = 1, such
that all the points of C are on the left of the straight line containing a′c′,
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and such that a boundary point m(xm, ym) of C belongs to the segment
a′c′. Obviously, −3

2 ≤ xa ≤ −1
2 and 1

2 ≤ xb ≤ 3
2 .

Let l1, l2 be the boundary points of C on the line y = 2
3 (see Fig. 2). We

have |l1l2| ≤ 2. Here is why. If yp1 ≥ −1
3 , then xp2 ≤ 1 and xp3 ≥ −1 which

implies |l1l2| ≤ 2. Also yp1 < −1
3 gives |l1l2| ≤ 2 since the opposite leads to

the conclusion that the area of the triangle l1l2p1 is greater than the area of
the triangle cde.

Case 1: When ym ≤ 2
3 .

First we show that C2 ⊂ T .
Take the point s(xs,

1
3) on the straight line through a and e and the point

t(xt,
1
3) on the straight line through b and e. Let b−a−c−d− be the copy

of the trapezoid bacd with a− = t and b− = s. The trapezoid b−a−c−d−

covers C2. Obviously, xm ≤ xt. Consequently, C2 ⊂ T .
Now we show that C3 ⊂ T .
Denote by α the angle ∠acd and let β = 180o − ∠cdb. We can assume

that α ≥ β. The reason is that if α < β and if C3 is not a subset of T ,
then the convexity of C implies that a 6∈ T , a contradiction to the inclusion
C2 ⊂ T .

Take the point r(xr, 1) on the straight line through a and c. Since α ≥ β,
in order to show the inclusion C3 ⊂ T , it is sufficient to show that xr ≥ xd′

(see Fig. 2). The rest of Case 1 is devoted to this aim.
We omit an elementary calculation which gives xm ≤ 5

3 and

(4) xr − xd′ =
5
3

+ (2xa + 2)ym − xm.

If xa > −1, then xr − xd′ ≥ 5
3 + (2xa + 2)ym − 5

3 > 0. Thus we need
consider only the case when xa ≤ −1.

First assume that xb < 1. If ym ≤ 1
2 , then xm ≤ xt = 4

3xb. Moreover, m
is on the left of the straight line through e and b. Thus, ym ≤ 1− xm

2xb
and

by (4) we get xr − xd′ ≥ 5
3 + (2xa + 2)(1− xm

2xb
)− xm ≥ 2

3xa − 4
3xb + 7

3 > 0.
If ym > 1

2 , then xm ≤ xb < 1. Putting xm = 1, ym = 2
3 and xa = −3

2 in
(4) we obtain xr − xd′ > 0.

Next assume that xb ≥ 1. Consider three subcases.
Subcase 1: When 1

2 < ym ≤ 2
3 .

Assume that C3 is not a subset of T . Then the point u(xu, 2
3) from the

segment cd′ belongs to C. The point m is on the right of the straight line
parallel to the segment ac and passing through b, since otherwise we have
the false conclusion that b 6∈ T . Thus xm ≥ (ym − 1

2)(2xa + 2) + xb. Of
course, the point v(xv,

2
3) from the segment em belongs to C. We obtain

|uv| = xm

3− 3ym
− 4

3
xa +

4
3
ym(xa + 1)− 2

3
xm +

7
9
.
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Taking (ym − 1
2)(2xa + 2) + xb in place of xm and 1

2 in place of ym we
obtain |uv| > −2

3xa + 13
9 > 2. Since u and v are points on the segment

[l1, l2], we obtain a contradiction to the inequality |l1l2| ≤ 2 shown before
starting Case 1.
Subcase 2: When 1

3 ≤ ym ≤ 1
2 and when xa < 1

2x2
b −

2
3xb − 23

24 .
Assume that C3 is not a subset of T . The point w(2

3xb,
2
3) from the

segment eb belongs to C. Observe, that |uw| = 2
3xb − 4

3xa + 4
3ym(xa + 1)−

2
3xm + 7

9 . The point m is on the left of the straight line passing through
e and b. Thus ym ≤ 1 − xm

2xb
. Let q(xq, yq) be the common point of the

straight lines containing the segments eb and dt2. We get xm ≤ xq = 4xb
2xb+1 ,

which together with our assumption xa < 1
2x2

b −
2
3xb − 23

24 leads to the false
inequality

|uw| ≥
12x2

b − 16xb − 24xa − 23
18xb + 9

+ 2 > 2.

Subcase 3: When 1
3 ≤ ym ≤ 1

2 and when xa ≥ 1
2x2

b −
2
3xb − 23

24 .
Taking ym = 1

2 , xm = xq and xa = 1
2x2

b −
2
3xb − 23

24 in (4) we obtain
that xr − xd′ > 0.

Case 2: When ym > 2
3 .

The proof of the inclusion C2 ⊂ T is similar to Case 1.
Finally, we show that C3 ⊂ T .
Assume the contrary. If α < β , then a 6∈ T , a contradiction. Let α ≥ β.

Obviously the point z(xz,
2
3) ∈ md belongs to C. Observe that u ∈ C. We

have

(5) |uz| = 2
3
xm

(
1

ym
− 1

)
− 2

3ym
− 4

3
xa +

4
3
ym(xa + 1) +

16
9

.

Of course, m is on the right of the straight line by e and d. Thus, xm ≥
1−ym. Taking xm = 1−ym, xa = −1

2 and ym = 2
3 in (5) we get |uz| > 2,

a contradiction. �

The following estimate −2
3 is better than the estimate −7

9 resulting from
Corollary 4. We conjecture that the best possible ratio here is −10

17 =
0.5882 . . . . It is easy to show that a triangle can be covered by 7 copies
of ratio −10

17 and it cannot be covered if the negative ratio is over −10
17 .

Proposition. Every convex body C ⊂ E2 can be covered by 7 homothetic
copies of ratio −2

3 .

Proof. We can inscribe an affine-regular hexagon H = abcdef in C (see [1]).
Three of the lines containing the sides of H bound a triangle T1 containing
H and the other three a triangle T2 containing H. Since H is inscribed in
C, we see that C ⊂ T1 ∪ T2. We can assume that the center of symmetry
of H is the origin o of E2. Of course, −2

3H ⊂ −2
3C. Thus in order to show
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the promised estimate, it is sufficient to cover T1 ∪ T2 by 7 translates of
−2

3H. Observe that these are −2
3H and its translates by vectors 2

−→
omi for

i = 1, . . . , 6, where m1, . . . ,m6 are midpoints of the sides of −2
3H. �
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