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Given a three-manifold M and a cohomology class τ ∈
H1(M, Z/nZ), there is a naturally defined invariant of sin-
gular knots in M with exactly one double point, Vτ . It has
been known that for some manifolds Vτ is integrable and that
in these cases it defines an easily computed and highly effec-
tive knot invariant. This paper provides necessary and suffi-
cient conditions on M for the integrability of Vτ . The class of
manifolds for which Vτ is integrable (regardless of the choice
of τ ) is shown to include all hyperbolic manifolds, all comple-
ments of knots in irreducible homology spheres, all irreducible
Z/2Z-homology spheres, and most Seifert-fibered manifolds.

1. Introduction.

In [KL] we defined a new family of knot invariants (all of type 1) for knots
in 3-manifolds. We then illustrated the usefulness and simplicity of these
invariants for distinguishing knots and for addressing theoretical questions
regarding unknotting operations. These invariants were shown to be well-
defined for a large class of 3-manifolds, but we provided examples to show
that our results did not extend to S1 × S2. Here we will give a complete
description of the set of manifolds for which these knot invariants are well-
defined.

Beyond gaining a clearer understanding of a particular class of invariants,
our goal is to begin a detailed examination of the subtle interplay between
the topology of a 3-manifold and its knot theory. For instance, past work,
notably that of Kalfagianni [Ka], has demonstrated the utility of working in
irreducible 3-manifolds; here the necessity of irreducibility is observed. More
surprising is that more detailed 3-manifold structures play an equally central
role. In particular, our main examples demonstrate that the invariants are
not well-defined in most orientable 3-manifolds that contain S1 bundles over
non-orientable surfaces. That such constraints already appear in working
with type 1 invariants is surprising and begins to demonstrate the interplay
between classical 3-manifold topology and the more recent approaches to
knot theory.
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Another consequence of the results of this paper is that we provide a basis
for extending the invariants of [KL] to knots in any oriented 3-manifolds;
by taking the invariant in a certain quotient group it becomes well-defined.
Indeed we will show that there is a homomorphism from the fundamental
group of the free loop space on a 3-manifold M to a free abelian group such
that the invariants are well-defined in the cokernel of this homomorphism.
Thus one can extend the topological applications of [KL] to arbitrary ori-
ented 3-manifolds, with perhaps weaker conclusions.

Before we discuss the contents of this paper in detail, we will make a few
comments about the subject of finite type invariants for knots in 3-manifolds.

The study of finite type invariants for knots in S3 began with the work of
Vassiliev on the stratification of the space of knots and has since grown in
many directions. Generalizations to 3-manifolds other than S3 have emerged
from two different perspectives: Finite type invariants of 3-manifolds (such
as the work of Ohtsuki [O]) and finite type invariants of knots in 3-manifolds
(such as the work of Kalfagianni [Ka]). In both cases the type of an invariant
roughly corresponds to its complexity.

In the first approach one views a 3-manifold as surgery on a framed link
and the effect of Kirby moves is “factored out”. The second setting considers
invariants of knots in a 3-manifold whose extension to the space of singular
knots vanishes on singular knots with more than n crossings. In contrast
to the first approach using surgery presentations, this point of view permits
one to apply the important structure theorems in 3-manifold theory; notably
the torus theorems of Jaco-Shalen and Johannson, and the solution of the
Seifert conjecture of Casson-Jungreis and Gabai.

The problem solved in this paper is a complete determination of those
manifolds for which a certain family of invariants of singular knots with one
double point can be “integrated” to give a knot invariant. The singular
knot invariants we study are simple and defined homologically and yet the
structural properties of a 3-manifold affect whether the invariant can be
integrated.

Notice that invariants constructed from this second point of view are
somewhat unorthodox in knot theory. They are defined one free homotopy
class at a time, and are secondary or relative invariants in the sense that they
have no canonical normalizations. This corresponds to the fact that (except
for the trivial homotopy class) there is no natural choice of “trivial” knot.
Moreover, the group of type n invariants need not be finitely generated;
for example in [KL] we showed that the group of type 1 invariants for
nullhomotopic knots in the solid torus is uncountable.

We briefly recall the construction of the invariants of [KL]. Let M be a
compact, oriented 3-manifold. To each pair (τ, γ) where τ ∈ H1(M ;Z/n),
and γ is a free homotopy class in M satisfying τ(γ) = 0, we constructed a
function Vτ,γ(Kt) ∈ Z[Z/n] of homotopies Kt with K0 and K1 embedded
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knots in the class γ. (For our purposes we view Z[Z/n] as a free abelian
group.)

This function vanishes on isotopies, and if it also vanishes on self-homoto-
pies then we define

vτ,γ(K0,K1) = Vτ,γ(Kt).

Thus to make the knot invariants vτ,γ(K0,K1) well-defined, we must show
that Vτ,γ(Kt) vanishes if K0 = K1. This requirement can be recast most
succinctly in the following manner. Let FMγ denote the component of
the free loop space on M corresponding to the free homotopy class γ. By
restricting to self-homotopies, Vτ,γ defines a homomorphism

V̄τ,γ : π1(FMγ) −→ Z[Z/n].

Then vτ,γ(K0,K1) is well-defined if and only if V̄τ,γ is trivial. More generally
vτ,γ(K0,K1) is well-defined in the cokernel of V̄τ,γ .

The purpose of this article is to investigate the homomorphism V̄τ,γ using
techniques from classical 3-manifold topology. On the one hand, if this map
is trivial, we obtain well-defined, easily computed, and useful knot invariants.
If, however, the map is non-trivial, we obtain interesting classes in the first
cohomology of the free loop space on M , and in general we get invariants of
knots with values in the cokernel of V̄τ,γ .

The main result is Theorem 4.2, which characterizes precisely those man-
ifolds for which V̄τ,γ is zero for all (τ, γ). In Section 4 we define a class
M of irreducible orientable 3-manifolds which consists of those manifolds
not containing the orientable circle bundle over the punctured Klein bot-
tle, not containing certain embeddings of the orientable circle bundle over
a punctured Möbius band, and also excluding the orientable Seifert fibered
3-manifolds which contain non-vertical tori. (See Section 4 for the precise
definition of M. We remark here that the class M includes all hyper-
bolic manifolds, all complements of knots in irreducible homology spheres,
all irreducible Z/2-homology spheres, and most Seifert-fibered manifolds.
However, it excludes some irreducible Haken manifolds.)

Theorem 4.2. Let N be an oriented compact 3-manifold. The homomor-
phism

V̄τ,γ : π1(FNγ) −→ Z[Z/n]

vanishes for all τ ∈ H1(N ;Z/n) and all free homotopy classes γ satisfying
τ(γ) = 0 if and only if N is the connected sum of a manifold P in M and
a manifold Q with trivial first integral homology.

In particular, the relative knot invariants vτ (K0,K1) are well-defined for
all τ and all homotopic pairs of knots K0,K1 in N with τ(Ki) = 0 if and
only if N is the connected sum of a manifold in M and a manifold with
trivial first homology.
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We now outline the contents of the paper. In Section 2 we recall the
relevant definitions from [KL] and discuss the construction of the knot in-
variants vτ,γ from Vτ,γ . We explain how to interpret Vτ,γ as an equivariant
intersection number in a cyclic cover of M .

We also explain how the homomorphisms V̄τ,γ yield interesting cohomol-
ogy classes on the free loop space. Composing V̄τ,γ with any homomorphism
(of abelian groups) Z[Z/n] −→ Z yields cohomology classes in H1(FMγ ;Z).
We prove that these classes vanish on the based loop space ΩMγ if M is
irreducible.

Section 3 forms the heart of this paper. We construct 5 types of “basic
examples” of manifolds M which admit pairs (τ, γ) with V̄τ,γ non-zero. In
each case some aspect of the structure of M is used to find τ and γ for which
V̄τ,γ is non-zero.

The first type of example arises when M contains a non-separating 2-
sphere. The second type of example comes from a decomposition of M as
a connected sum of manifolds with non-trivial homology. The third (resp.
fourth) type of example arises when M contains a circle bundle over a punc-
tured Klein bottle (resp. a circle bundle over a punctured Möbius band).
Finally there are a few sporadic examples of closed irreducible Seifert fibered
manifold which admit non-vertical incompressible tori; these too give exam-
ples with V̄τ,γ non-zero.

In Section 4 we prove the main result stated above. The theorems on
incompressible tori in Haken 3-manifolds of Jaco-Shalen and Johannson as
well as the solution of the Seifert conjecture by Casson-Jungreis and Gabai
play a prominent role here. They are used to place a torus arising from a
self-homotopy into a good position so that V̄τ,γ can be easily computed.

To close we would like to clarify the relationship of the present work
with earlier work, especially that of [Ka]. Let M be a closed, orientable,
irreducible 3-manifold that is not a small Seifert fibered manifold and which
does not contain a circle bundle over a non-orientable surface. In [Ka] it is
proved that any invariant of singular knots in M that satisfies the “4-term
relation” can be integrated to yield a knot invariant. (The results of [Ka]
extended those of Lin [Li], which applied in the case of simply connected
manifolds.) Since the invariant we study here satisfies the 4-term relation,
Kalfagianni’s result can be applied to find a class of manifolds for which it
is integrable. Here we describe the exact class of 3-manifolds for which our
invariant is integrable; this class is larger than that given by the results of
[Ka]. Of course, one of our main goals is to explore the necessity of the
geometric constraints as well as their sufficiency.

We should also mention [V], in which a general theory of obstructions
to the integrability of singular knot invariants is developed. It is observed
there that certain geometric conditions on a 3-manifold can assure the van-
ishing of these integrability conditions. Irreduciblity is addressed in part by
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considering S1 × S2 (see also [KL]). The examples presented in this pa-
per provide further examples of this interplay between the geometry of the
3-manifold and the integrability of singular knot invariants.

2. Preliminaries.

We remind the reader of the construction of the invariants vτ from [KL].
These are Type 1 invariants in the sense that they vanish on all knots with
2 or more double points.

We consider triples (M, τ, γ), where:
(1) M is a compact oriented 3-manifold,
(2) τ ∈ H1(M ;Z/n), viewed as a homomorphism from H1(M ;Z) to Z/n,

and
(3) γ : S1 −→ M is a free homotopy class satisfying τ(γ) = 0.
Whenever M is understood, an appropriate pair will refer to a pair (τ, γ)

satisfying (2) and (3).

Definition 2.1. The term singular knot in M means a smooth immersion
of a circle into M whose singularity set consists only of a finite number of
double points such that the two vectors tangent to the circle at each double
point are linearly independent.

Given a singular knot K : S1 −→ M with one double point, we call the
two oriented loops in the image of K the lobes of K.

Definition 2.2. If K0 and K1 are homotopic embedded knots, a transverse
homotopy from K0 to K1 is a homotopy Kt, t ∈ [0, 1], so that for t 6∈
{t0, t1, · · · , tn}, Kt is an embedding, and Kti is a singular knot with one
double point such that Kti+ε and Kti−ε are the two non-singular resolutions
of Kti (in some order) for small enough ε. (A transverse homotopy always
exists between any two homotopic knots.)

Given a triple (M, τ, γ) and a transverse homotopy Kt : S1 −→ M,
t ∈ [0, 1] with K0 and K1 embedded, we define V(M,τ,γ)(Kt) ∈ Z[Z/n] =
Z[t, t−1]/(tn = 1) to be the signed sum

(2.1) V(M,τ,γ)(Kt) =
∑

i

εi(tτ(L1(i)) + tτ(L2(i)) − 2)

where the sum is over the i corresponding to the parameter ti when Kti

is singular, L1(i) and L2(i) denote the two lobes of the singular knot Kti ,
and εi denotes the sign of this crossing (i.e., the sign of the self-intersection
number of the trace of the homotopy on (ti− δ, ti + δ) ). For notational ease
we will sometimes abbreviate V(M,τ,γ) to Vτ,γ , Vτ , or V .

Let A(n) denote the subgroup of Z[Z/n] generated by elements of the
form tk + t−k − 2. By definition Vτ takes its values in A(n). Notice that
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A(n) is free abelian of rank [n
2 ] if n is non-zero and of infinite rank if n is

zero.

Lemma 2.3. The function Vτ of transverse homotopies extends to a well-
defined function from the set of maps K : [0, 1] −→ Maps(S1,M) such that
K0 and K1 are embedded knots in the class γ to the abelian group A(n).
Moreover, Vτ is additive with respect to composition of paths and depends
only on the homotopy class of K rel endpoints.

In particular, the restriction of Vτ to self homotopies defines a homomor-
phism

(2.2) π1(FMγ) −→ A(n)

where FMγ denotes the path component of the free loop space of M corre-
sponding to the class γ.

Proof. The only part of this which is not obvious is that Vτ (Kt) depends only
on the homotopy class of Kt rel the endpoints K0 and K1. This fact follows
from the interpretation of Vτ (Kt) as an equivariant intersection number, as
in Formula (2.3) below. �

Notation. We will denote the restriction of V(M,τ,γ) to self-homotopies
as well as the homomorphism of Equation (2.2) by V̄(M,τ,γ) : π1(FMγ) −→
A(n). Depending on context this will be abbreviated to V̄τ,γ , V̄τ or V̄ .

Remark. A convenient way to describe the construction given above is
to define an invariant of singular knots with one crossing to be fτ (K) =
tτ(L1) + tτ(L2) − 2 where the Li are the two lobes on K. The formula (2.1)
defines the integral of fτ ; this terminology comes from the fact that given
an invariant v of embedded knots one can derive an invariant f for singular
knots by the formula

f

(
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)
= v

(
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)
− v
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@@I

)
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The invariants of [KL] are defined by inverting this process; thus given a
pair of embedded knots K0 and K1 in the homotopy class γ and a homotopy
Kt between them, define

v(M,τ,γ)(K0,K1) = V(M,τ,γ)(Kt).

We will soon explore the extent to which this is well-defined. (Again we
abbreviate this as vτ,γ , vτ , or v as appropriate.)

In [KL] we showed that if τ is primitive, i.e., surjective as a homomor-
phism H1(M) −→ Z/n, then given any knot K0 there exists a knot K1 and
a homotopy Kt from K0 to K1 with Vτ (Kt) taking any prescribed value in
the subgroup A(n).
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Thus, as far as knot invariants are concerned, we conclude:

Theorem 2.4. Given a triple (M, τ, γ) and two knots K0,K1 in the class
γ, a relative knot invariant vτ (K0,K1) ∈ A(n)/Image V̄τ,γ is well-defined.

If τ is primitive then for any K0 and any a ∈ A(n)/Image V̄τ,γ there
exists a knot K1 homotopic to K0 so that vτ (K0,K1) = a.

In particular, the image of the homomorphism V̄τ,γ : π1(FMγ) −→ A(n)
provides an obstruction for vτ (K0,K1) to be well-defined in A(n). In Section
3 we will list all manifolds M for which there exists an appropriate pair (τ, γ)
with V̄τ,γ is non-trivial.

Remark. In [KL] we denoted vτ (K0,K1) by vτ (K0)−vτ (K1). We find the
current notation more convenient since it eliminates the need to choose a
base point. Some obvious formulas are

vτ (K0,K1) + vτ (K1,K2) = vτ (K0,K2)

and
vτ (K0,K1) = −vτ (K1,K0).

Of course vτ (K0,K1) = 0 if K0 and K1 are isotopic. These formulas are
meant to be taken in A(n)/Image V̄τ,γ . One can obtain an invariant of knots
(as opposed to pairs) by fixing a knot K0 in the homotopy class γ and then
taking the invariant K1 7→ vτ (K0,K1). This is the perspective taken in
[KL].

We next turn to a discussion of the “intersection condition” from [KL].
This is a reformulation of the map V̄τ,γ : π1(FMγ) −→ A(n) in terms of
equivariant intersection numbers in the cyclic cover of M determined by τ .
For what follows we assume that τ : H1(M) −→ Z/n with n 6= 0; the case
n = 0 can be understood by considering large values of n.

Choose the base point K0 ∈ FMγ to be any embedded knot in the class
γ. A loop representing a class β ∈ π1(FMγ ,K0) can be viewed as map β′ :
T 2 −→ M of a torus into M . Notice that τ vanishes on γ, and (since n 6= 0)
by composing the loop β with itself n times if necessary, we may assume
that β′ pulls τ back to the zero class on the torus. Thus β′ : T 2 −→ M lifts
to the n-fold cyclic cover M̃ of M induced by τ . Call this lift α : T 2 −→ M̃ ,
and denote by α0 : S1 −→ M̃ the restriction of this lift to the first factor;
thus α0 is a lift of K0.

M̃

α ↗ ↓

S1 ↪→ T 2 β′
−→ M

.
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Notice that Vτ (βn) = n · Vτ (β), and so for example V̄ : π1(FMγ) −→
Z[Z/n] is trivial if and only if n · V̄ is.

We confuse notation slightly and also let α ∈ H2(M̃,Z) denote the ho-
mology class represented by α and α0 ∈ H1(M̃,Z) denote the homology
class represented by α0. With this notation we proved in [KL] that

V̄τ,γ(β) =
n−1∑
s=0

(α · (ts + t−s)α0)(ts − 1) (2.3)

in Z[Z/n].
What this means is that we can construct elements in the image of V̄

by constructing interesting examples of tori in M̃ . Alternatively, vτ gives
a well-defined invariant if and only if this equivariant intersection number
vanishes for all maps of tori α : T −→ M̃ and all curves on such a torus.

As an application of this formula, we give more information about the
homomorphism V̄τ : π1(FMγ) −→ A(n) when M is an irreducible manifold.
The free loop space FMγ maps to M by evaluating a loop at 1 ∈ S1. The
fiber of this map is the space ΩMγ of based loops. The following theorem
says that the homomorphisms V̄τ,γ vanish on π1(ΩMγ).

Theorem 2.5. Given a triple (M, τ, γ) as above, the composite

π1(ΩMγ) −→ π1(FMγ) V̄−→A(n)

vanishes whenever π2(M) = 0; for example if M is irreducible.

Proof. As usual, it suffices to work with n non-zero; the case of n zero follows
by considering large n.

Fix a knot K in the homotopy class of γ and let β : (I, ∂I) −→ (ΩMγ ,K)
be a loop based at K. View β as a map of a torus into M , β′ : S1×S1 −→ M .
Notice that τ vanishes on both generators S1 × ∗ and ∗ × S1; indeed the
first generator represents γ and the restriction of β′ to the second is the
constant map. Thus β′ lifts to α : T 2 −→ M̃ , where M̃ −→ M denotes
the n-fold cover determined by τ . The lift α also restricts to the constant
map on ∗ × S1, and hence the homology class of α in H2(M̃) is spherical.
But π2(M̃) = π2(M) = 0, so that the homology class of α vanishes. From
Formula 2.3 for Vτ given above one sees that V̄τ vanishes on β. �

3. The basic examples.

In this section we will construct a number of examples of triples (M, τ, γ)
with V̄(M,τ,γ) non-trivial. In the following section we will prove that the
examples presented here form a complete list. The examples arise from 3
sources: Reducible manifolds, manifolds containing circle bundles over a
non-orientable surface, and the few closed Seifert fibered 3-manifolds con-
taining non-vertical tori.



KNOT INVARIANTS IN 3-MANIFOLDS AND ESSENTIAL TORI 81

A. Manifolds containing a punctured S1 × S2.

Let M be a once punctured S1 × S2. Let τ ∈ H1(M ;Z) denote the
Poincaré dual of the 2-sphere, viewed as a homomorphism π1M −→ Z and
let τn ∈ H1(M ;Z/n) denote the reduction of τ modulo n for some n different
from 0 or 1. Let γn denote the free homotopy class corresponding to a curve
mapping to the circle with degree n; thus τn(γn) = 0.

The solid torus drawn in Figure 1 represents a neighborhood of the core
circle and knots K0 and K1 in the class γn are illustrated. (In the figure,
n = 4.) The homotopy Kt given by the obvious crossing changes transform
K0 into K1, showing that

Vτn(Kt) =
n−1∑
s=0

(ts + t−s − 2) 6= 0.

Using the embedded sphere transverse to α one sees that K0 and K1 are
isotopic. Thus the image of V̄ : π1(FMγn) −→ A(n) is non-trivial for γn the
homotopy class corresponding to curves with winding number n.

Figure 1.

Notice that the classes τn vanish on the boundary of M , and so extend
to any manifold N containing M . To summarize:

Proposition 3.1. Let N be any 3-manifold containing a punctured S1 ×
S2. Then for each n 6= 0 there exists a class τn ∈ H1(N ;Z/n) and a free
homotopy class γn with τn(γn) = 0 so that the image of the homomorphism

V̄τn,γn : π1(FMγn) −→ A(n)

contains the subgroup spanned by the element
∑n−1

s=0 (ts + t−s − 2).

We conjecture that this element generates the image of V̄τn,γn for any n.
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B. Connected sums of manifolds with non-trivial homology.

We next show that if M is the connected sum of two 3-manifolds each of
which has non-trivial homology then there exists a pair (τ, γ) for which V̄
is non-trivial.

Let M be a connected sum M = N1#N2 so that H1(Ni;Z) 6= 0 for i = 1
and 2. There exists an integer n so that H1(Ni;Z/n) is non-zero for i = 1
and 2 and thus one can find a class τ ∈ H1(M ;Z/n) whose restriction to
N1 and N2 is non-trivial. Assume that τ is onto by replacing Z/n by the
image of τ if necessary.

Let α be a loop in N1 on which τ is non-trivial; say τ(α) = a ∈ Z/n− 0.
Similarly choose a loop β in N2 with τ(β) = b ∈ Z/n− 0. Pick a 6= −b; this
is always possible unless n = 2. If n = 2 see below. Finally let γ be the
homotopy class in M representing the commutator αβα−1β−1.

We can pick an embedded representative K for γ that meets the obvious
separating 2-sphere for the connected sum in exactly 4 points. One of the
4 strands that meets the 2-sphere can be pushed around this 2-sphere as in
the previous example, yielding a self homotopy containing 3 singular knots.
The value of V̄ can be computed for this self homotopy, and the result is
the non-trivial element ta+b − tb + ta − 2 + t−a − t−b + t−(a+b) of A(n).

If n = 2, just take γ to be the class represented by αβ. Note that τ takes
the value 1 ∈ Z/2 on α and β. Thus τ(γ) = τ(α) + τ(β) = 0. An embedded
representative for K can be chosen which intersects the separating 2-sphere
in two points. Pushing one strand around the 2-sphere as before yields a
self-homotopy with one double point. The value of V̄ for this homotopy is
2t− 2 6= 0.

In this example the curve γ is nullhomologous in M (when n 6= 2). Con-
trast this with the fact proven in [KL] that for any M and τ , V̄τ,γ is zero
whenever γ is nullhomotopic, or even when γ lies in the second commutator
subgroup of π1(M).

We summarize these facts in the following proposition.

Proposition 3.2. Let M be the connected sum of two 3-manifolds, M1 and
M2, each of which has non-trivial homology. Then there exists an integer n
such that H1(M1;Z/n) and H1(M2;Z/n) are both non-zero and for any such
n there exists a pair (τ, γ) for which V̄τ,γ : π1(FMγ) −→ A(n) is non-trivial.

Moreover, if n > 2, the curve γ can be taken to be nullhomologous in M .

Remark. For many connected sums, for example for connected sums of
manifolds in the class M defined below, one can compute the image of V̄τ,γ

for most τ and γ.

Examples A. and B. reduce the problem of listing those 3-manifolds M
admitting a pair (τ, γ) with V̄ non-zero to the case when M is irreducible,
or the connected sum of an irreducible manifold and a manifold with trivial
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first homology, i.e., a punctured homology sphere. We will show in the next
section that taking the connected sum of M with a punctured homology
sphere does not affect whether or not the image of V̄ is trivial.

Thus the remaining examples in this section are irreducible 3-manifolds
which admit pairs (τ, γ) with V̄τ,γ non-trivial.

Examples C and D involve manifolds which contain certain circle bun-
dles over non-orientable surfaces, and Example E involves a few exceptional
closed Seifert fibered manifolds. The underlying motivation for studying
these examples comes from the theory of torus decompositions of Haken
manifolds ([JS], [Jo]). In particular, the Seifert fibered components of the
characteristic submanifold of a Haken manifold contain all the essential tori
up to homotopy and so the search for examples with V̄ non-zero is reduced
to consideration of Seifert fibered manifolds.

We will see that except for the three 3-manifolds listed in Example E,
the only way for an irreducible 3-manifold to admit a pair (τ, γ) with V̄
non-zero is if M contains a Seifert fibration over a non-orientable surface.
Conversely, most (but not all) 3-manifolds containing a Seifert fibration over
a non-orientable base admit a pair (τ, γ) with V̄τ,γ non-zero.

C. The twisted S1 bundle over the punctured Klein bottle.

Before focusing on particular S1 bundles over surfaces, we need to make
some general observations that will clarify the discussion in this and the next
subsection. Let F be an arbitrary connected non-orientable surface and let
M be the orientable S1 bundle over F formed as the union of two copies of
the orientation I bundle over F . There are two natural embeddings of F
into M , h0, h1 : F → M , each of which gives a section of the bundle. We
denote the images by F0 and F1. Finally, there is a natural isomorphism
H1(M,Z) = H1(F0) ⊕ Z/2; the second summand is generated by a circle
fiber.

Let h−1
0 denote the inverse of h0 as a map defined on F0. The embed-

ding h1h
−1
0 induces a map on homology, h∗ : H1(F0) → H1(M), satisfying

h∗(x) = (x, ε(x)) ∈ H1(F0)⊕ Z/2, where ε is the orientation character.
If γ is a orientation preserving curve on F0, then it is homotopic to

h1h
−1
0 (γ); the homotopy is obtained by sliding γ along the fiber. How-

ever, if there is a double point on γ splitting γ into two lobes, each of which
is orientation reversing, then the images of the lobes under h1h

−1
0 are not

homotopic to the original lobes. In fact, as the previous paragraph indicates,
since the lobe λ is orientation reversing, if it represents a class x ∈ H1(F0)
then it represents (x, 0) ∈ H1(M) while h∗(λ) represents (x, 1) ∈ H1(M).

In Figure 2 below we illustrate the punctured Klein bottle F and a curve
J on F . For the remainder of this paper let M1 denote the twisted S1 bundle
over F for which the total space is orientable. (There is a unique such S1

bundle.) Note that M1 is irreducible.
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For any n, and any a ∈ Z/n, let τ : π1(M1) −→ Z/n denote the character
which factors through π1(F ) and takes the values a and −a on the twisted
bands illustrated in Figure 2.

If we consider J to be an map of S1 into F , then we can pull back the
S1 bundle over F to S1, and since J is orientation preserving, this pullback
bundle is trivial. Pick a section K ′ of this bundle. Its image in M1, that we
will denote by K, is a curve that projects to J under the bundle projection.
Furthermore we can assume that K is embedded, since the only possible
double point can be over the double point on J , and a small perturbation
will remove any possible self intersection. Let γ denote the free homotopy
class of K.

Figure 2.

There is a homotopy of K ′ to itself that pushes it once around the (trivial)
fibration. This maps to a self homotopy of K in M1. Two points of K lie
above the double point of J , and during this homotopy the two points travel
in opposite directions around the fiber. Hence, in the course of the homotopy
there are two singular knots. The direction of crossing is the same on each,
and the values of τ the lobes of these singular knots are a and −a in Z/n.
Hence, the value of V̄ on this self homotopy is 2(ta + t−a − 2).

Notice that the character τ used in this example restricts trivially to the
boundary of M1. Thus τ extends to every manifold containing M1 and hence
one obtains the following. (Note that n = 0 is allowed in this proposition.)

Proposition 3.3. Every manifold N containing M1 admits a pair (τ, γ) so
that the image of V̄τ,γ : π1(FNγ) −→ A(n) is non-trivial.

Notice that the image of V̄τ,γ : π1((FM1)γ) −→ A(n) is exactly the sub-
group spanned by 2(ta + t−a − 2). This can be seen as follows. Any map
of a torus to M1 is homotopic to a vertical torus. This is because π1(F )
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is free so any pair of commuting elements in π1(M1) must map to a cyclic
subgroup of π1(F ) by the induced homomorphism π1(M1) −→ π1(F ). Since
γ maps to the curve J in F , The vertical torus must lie over J up to ho-
motopy. But then it is easy to see that a self-homotopy of K is just a
product of the self-homotopies of the same type as the one constructed
above leading to a pair of double singular knots for each double point of the
curve in F . In particular, the knot invariant vτ (K0,K1) is well-defined in
A(n)/ < 2(ta + t−a − 2) >∼= Z[n/2]−1 ⊕ Z/2.

Notice that the composite of this invariant with the projection to Z/2
gives a type 1 invariant which is not the reduction of a vτ . (Nevertheless, it
turns out that for this example it is possible to construct a type 1 invariant
with values in Z which reduces to this Z/2 invariant.)

There is a circle on the punctured Klein bottle intersecting J exactly once.
Since the bundle over the Klein bottle has a section the torus lying over J
has a dual curve, and so any 3-manifold containing the twisted S1 bundle
over the punctured Klein bottle cannot be a rational homology sphere.

D. The twisted S1 bundle over the punctured projective plane.
Any non-orientable surface which does not contain a punctured Klein

bottle is homeomorphic to a k-punctured projective plane for some k ≥ 0.
Notice that there are exactly two circle bundles over the (unpunctured)
projective plane with orientable total space. One of these is the lens space
L(4, 1) which has a finite fundamental group, and hence V̄τ,γ vanishes for all
appropriate pairs (τ, γ). The other one is homeomorphic to the connected
sum of two RP3s. This example gives the only non-prime orientable Seifert
fibered space, and as Example B shows, it admits a pair (τ, γ) with V̄τ,γ

non-zero.
We will show that if M a circle bundle over the once-punctured projective

plane, then V̄τ,γ is zero for all (τ, γ). However, if M is a circle bundle over
the k-punctured projective plane for k > 1 then V̄τ,γ can be non-trivial for
some (τ, γ).

Proposition 3.4. Let N denote the orientable circle bundle over the Möbius
band and let M be an oriented compact manifold. Suppose an embedding
N ⊂ M , a class τ ∈ H1(M ;Z/n), and a self-homotopy Kt of a knot K ⊂ M
with τ([K]) = 0 are given. If the map of the torus determined by Kt is ho-
motopic into N , then V̄τ,γ(Kt) = 0.

Proof. If the map of the torus into N is compressible (i.e., not injective on
π1), then since N is irreducible and has torsion free fundamental group, the
homology class represented by this torus is spherical and thus trivial. Its
lift, α, to a finite cyclic cover of N is also trivial and so the intersection
numbers α · tsα0 vanish. Hence V̄ (Kt) = 0.

If the map is incompressible, then it is easy to see that the map of the
torus is homotopic to a vertical map, and since any orientation preserving
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curve in the Möbius band is homotopic into the boundary, the torus itself
is homotopic into the boundary of N . Thus any lift of the torus to a finite
cyclic cover M̃ of M is homotopic into the boundary of the inverse image
Ñ of N . Interpreting V̄ as an equivariant intersection number of a curve in
the torus with the translates of the torus, one can easily use the collaring of
∂Ñ in M to show that this intersection number vanishes. �

We will show that if M(k) denotes the orientable circle bundle over a
k-punctured projective plane for k > 1, then there do exist pairs (τ, γ) with
V̄τ,γ non-trivial. However, not every manifold containing M(k) admits such
examples. For example the preceding proposition shows that M(1) does not,
even though it contains M(k) for all k > 1. We will give a specific criterion
for which embeddings of M(k) into a 3-manifold provide examples with V̄
non-zero. It will turn out that if an embedding of M(k) in a 3-manifold
M gives an example with V̄ non-zero, then an embedding of M(2) in the
3-manifold already gives an example and so it suffices to test whether there
are any “bad” embeddings of M(2) in M .

We switch notation slightly; for the rest of this article we let M2 denote
the orientable S1 bundle over the twice punctured projective plane. It is the
union of the two orientable twisted I-bundles over the punctured Möbius
band, and so contains the punctured Möbius band F as a section. Fix such
a section.

Figure 3 shows the punctured Möbius band F and also a curve J in F .
This curve determines a vertical torus in M2 as the union of fibers over
J , and hence a self-homotopy of the knot in M2 obtained by perturbing J
slightly along the fibers to be embedded.

Figure 3.
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A simple computation shows that H1(M2;Z) = Zx ⊕ Zy ⊕ Z/2f where
x and y are represented by curves going around the untwisted band and
the twisted band in F respectively, and f is represented by the fiber in the
fibration.

Let τ : π1(M2) −→ Z/n be a homomorphism. Suppose that τ takes the
value a on the untwisted band and b on the twisted band. Also suppose that
τ takes the value e on the fiber f ; of course e is zero if n is odd or n = 0,
but for n even e can be either n/2 or zero.

A similar analysis as in the case of M1, using the comment in the first para-
graphs of Subsection 3.C shows that the value of V̄τ on this self-homotopy
is

(tb+t−b−2)+(tb+e+t−(b+e)−2)−(ta+b+t−(a+b)−2)−(ta+b+e+t−(a+b+e)−2)

in Z[Z/n]. This polynomial is non-zero except in the four cases: a = 0,
2b + a = 0, a = e, or 2b + a = e.

Remark. This example shows that the reduction mod 2 of V̄ need not be
zero. For example, take n = 8, a = b = 1 and e = 4.

Notice that τ restricts non-trivially to both components of ∂M2 if a and
a+2b are non-zero, or if e is non-zero. In particular, given an embedding of
M2 in a manifold M , there may not exist any cohomology class on M whose
restriction to M2 has all four a, a+2b, a+ e, and 2b+a+ e non-zero. With
this in mind we make the following definition. Observe that the fibration of
M2 by circles induces a fibration of each of its two boundary tori.

Definition 3.5. An embedding M2 ⊂ M is called simple if given any class
τ ∈ H1(M ;Z/n), the restriction of τ to one of the boundary tori of M2

vanishes on some curve intersecting the fiber transversally exactly once.

It is easy to check that an embedding is simple if and only if every τ ∈
H1(M ;Z/n) restricts to M2 so that one of a, a + 2b, a− e, and 2b− a− e
is zero. This immediately implies the following.

Proposition 3.6. If the oriented 3-manifold M admits a non-simple em-
bedding of M2, then M admits a pair (τ, γ) so that V̄τ,γ : π1(FNγ) −→ A(n)
is non-zero.

The following theorem provides a converse to this statement which covers
the cases of circle bundles over k-punctured projective planes for all k > 1.

Theorem 3.7. Let M be a 3-manifold and suppose that every embedding of
M2 into M is simple. Given a pair (τ, γ), let Kt be a self-homotopy of a knot
in the homotopy class γ. Suppose that as a map of a torus, Kt is homotopic
into a submanifold of M homeomorphic to the oriented circle bundle over a
k-punctured projective plane for k ≥ 1.

Then V̄τ,γ(Kt) = 0.
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Proof. The case when k = 1 follows from Proposition 3.4. Suppose M(k) ⊂
M is an embedding containing Kt for k > 1. (Recall M(k) denotes the
oriented circle bundle over the k-punctured projective plane.) If a boundary
component of M(k) contains a curve dual to the fiber on which τ vanishes,
then gluing in a solid torus to that boundary component in such a way
that this curve bounds a disc yields a manifold over which both the fibering
and τ extend; this manifold is just M(k − 1). Call a curve in a boundary
component dual to the fiber on which τ vanishes τ -reducible.

If all boundary components containing τ -reducible curves are filled in, one
obtains the manifold M(q) for some q ≤ k and a class τ ∈ H1(M(q);Z/n)
which does not vanish on any curve in ∂M(q) dual to the fiber. If q = 1,
then Proposition 3.4 implies that V̄τ (Kt) = 0. If q = 0 one need only fill in
all but one boundary component of M(k) to obtain M(1); again Proposition
3.4 shows that V̄τ (Kt) = 0.

Thus we assume that there are at least two boundary components of M(k)
which do not contain τ -reducible curves; this will lead to a contradiction in
all but one special case where we will show directly that V̄τ (Kt) = 0.

The following argument is a bit technical so we begin by sketching the
underlying idea. As in the previous examples, any generic orientation pre-
serving curve on the k-punctured projective plane, F (k), can be used to
construct a knot with an interesting self-homotopy in the orientable cir-
cle bundle over F (k), M(k). The value of a V̄τ,γ on that self-homotopy is
determined by the value of τ on the lobes, and in general this leads to a
complicated sum. However, note that M(k) contains M(2) in a variety of
ways (since F (k) contains F (2) in many ways) and the fact that each of
these is simple greatly constrains the possible values of τ on the various
lobes. The details of the argument call on careful bookkeeping that we now
undertake.

Fix a section s : F (k) −→ M(k) of the fibration M(k) −→ F (k) and
identify F (k) with its image. Label the boundary components of F (k) as
C1, C2, · · · , Ck and assume the numbering is chosen so that

τ(Ci) =

{
ai ∈ Z/n− {0} for i = 1, 2, . . . , `, and
0 for i = ` + 1, . . . k.

A collection of k − 2 arcs in F (k) which cuts F (k) into F (2) determines
an embedding of F (2) ⊂ F (k) and hence an embedding M(2) ⊂ M(k) ⊂ M .
Since every embedding of M2 in M is simple, by cutting along appropriate
arcs and using the fact that F (k) is non-orientable, we can arrange that
for any choice of signs εi ∈ {±1}, i = 1, · · · `, and any partition J ∪ Jc =
{1, 2, . . . , `} one of the two sums

(∗)
∑
j∈J

εjaj ,
∑
j∈Jc

εjaj
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is zero. An elementary argument implies that since ` ≥ 2, 2aj is zero for
each j = 1, . . . , `. This is a contradiction if n is odd or n = 0.

Thus we assume n is even and non-zero. Each aj equals n/2. If ` is even,
then the pair of sums in (∗) for J = {1} reduces to n/2, (`− 1)n/2, neither
of which is zero; again a contradiction.

This leaves the case when ` is odd. We will show that in this case
V̄τ (Kt) = 0. View F (k) as a disk with one twisted and k − 1 untwisted
bands attached. Label the corresponding generators of H1(F (k);Z) repre-
sented by loops which travel once around the band y and x1, · · ·xk−1. Then
(with the xi and y properly oriented) the boundary components of F (k) are
represented by the homology classes x1, · · · , xk−1 and 2y +

∑
i xi. Thus the

(unordered) set {
τ(x1), · · · , τ(xk−1), 2τ(y) +

∑
i

τ(xi)

}

contains ` repetitions of n/2 and k − ` repetitions of 0 since this is just the
set of aj and 0. Using the fact that ` is odd it is easy to show that this
implies that n is divisible by 4 and τ(y) = ±n/4.

Homotop the map of the torus given by Kt to be vertical; in fact assume
this torus lies over a self-transverse immersed orientation preserving curve
J in F (k). This is possible since M(k) contains no horizontal tori.

The double points of J can be separated into two sets. The essential
double points are those so that either (and hence both) of the loops obtained
by starting at the double point and traveling along J until one returns to
this double point is orientation reversing. The other double points of J are
called inessential double points.

An argument just as in Example C shows that for this homotopy,

V̄τ (Kt) =
∑

p essential

εp(tn/4 + t3n/4 + te+n/4 + te+3n/4 − 4)

= 2(tn/4 + t3n/4 − 2)
∑

p essential

εp

where e = τ(f) = 0 or n/2 and εp ∈ {±1} is the sign of the intersection
corresponding to p.

Thus to finish the argument it suffices to show that the sum of the signs of
the essential double points is zero. This is a statement about double points
of orientation preserving immersed curves in a punctured projective plane
and has nothing to do with τ . In particular, it is true if and only if it is
true in a (unpunctured) projective plane, since the orientable circle bundle
over F (k) extends to an orientable circle bundle over the projective plane.
Any such curve in a projective plane is nullhomotopic and hence regularly
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homotopic to a curve with no essential double points. A generic regular
homotopy pairs up the essential double points in pairs with canceling signs.

Thus the sum of the εp over the essential double points is zero, and so
V̄τ (Kt) vanishes as claimed. �

Notice that M2 is irreducible and has first homology H1(M2;Z) = Z2 ⊕
Z/2. From this it follows easily that M2 is not contained in any Z/2
homology sphere, or even in any rational homology sphere with X with
H1(X;Z) = Z/2⊕ T for T an odd torsion abelian group.

E. The Seifert fibered spaces containing horizontal tori.

We showed in [KL] (see also Section 4) that if Kt is a self-homotopy of
a knot in a Seifert fibered manifold M with orientable base, then V̄ (Kt)
vanishes provided that Kt (viewed as a map of a torus) is homotopic to a
vertical map. In light of the characteristic submanifold theorem of [JS] and
[Jo], as well as the main theorem of [G] and [CJ], the search for 3-manifolds
M which admit (τ, γ) with V̄τ,γ non-trivial is reduced to the examples con-
taining non-vertical tori.

There are only a few irreducible orientable Seifert fibered 3-manifolds
which admit non-vertical maps of tori. Two of these have no singular fibers,
namely the three torus T 3 and the orientable circle bundle over the Klein
bottle with Euler class zero. In T 3, any incompressible torus is homotopic
to a vertical torus in some fibration over T 2. Any oriented circle bundle over
the Klein bottle contains M1 and so Example C above shows that it admits
a pair (τ, γ) with V̄τ,γ non-trivial. There remain five examples; these have
singular fibers.

Let M(S2, (3, 1), (3, 1), (3,−2)) be the unique Seifert fibered space over
S2 with three singular fibers and Seifert invariants (3, 1), (3, 1), and (3,−2).
Equivalently, this is the unique (up to orientation) Seifert fibration over S2

with 3 singular fibers each of type 3, and with Euler class equal to zero. For
brevity we will denote this manifold M(3,3,3).

Similarly let M(2,4,4) denote M(S2, (2, 1), (4,−1), (4,−1)), let M(2,3,6) de-
note M(S2, (2, 1), (3,−1), (6,−1)), and let M(2,2,2,2) denote the Seifert
fibered space over S2 with four singular fibers M(S2, (2, 1), (2, 1), (2,−1),
(2,−1)). Finally, let M(2,2) denote the orientable Seifert fibered space over
the projective plane with two singular fibers and Euler class zero, i.e.,
M(2,2) = M(RP 2, (2, 1), (2,−1)).

The manifolds M(3,3,3), M(2,4,4), M(2,3,6), M(2,2,2,2) are the four non-trivial
orientable torus bundles over the circle with finite order monodromy, and
M(2,2,2,2) is a 2-fold cover of M(2,2). These five form a complete list of Seifert
fibrations of orientable manifolds which have singular fibers and which con-
tain non-vertical essential tori.



KNOT INVARIANTS IN 3-MANIFOLDS AND ESSENTIAL TORI 91

It is not hard to identify M(2,2,2,2) with the orientable circle bundle over
the Klein bottle (the identification is not fiber preserving) and so this man-
ifold contains M1. From Example C we know that there are appropriate
pairs (τ, γ) with V̄τ,γ non-trivial.

Also notice that M(2,2) contains M2 as the complement of the singu-
lar fibers. This embedding is non-simple; one can easily find a class τ ∈
H1(M(2,2);Z/2) whose restriction to M2 has a and a + 2b non-zero. From
Example D we know that there exists a pair (τ, γ) in M(2,2) with V̄τ,γ non-
zero.

The remaining examples, M(2,3,6), M(2,4,4), and M(3,3,3) do not contain a
circle bundle over a non-orientable surface. We will show that nevertheless
these admit a pair (τ, γ) so that V̄τ,γ is non-zero. The corresponding map
of a torus necessarily will be an incompressible, non-vertical torus.

The three manifolds M(2,3,6), M(2,4,4), and M(3,3,3) have the structure of
torus bundles over the circle with finite order monodromy. The monodromy
maps for M(2,3,6), M(2,4,4), and M(3,3,3) are given respectively by the linear
maps R2/Z2 −→ R2/Z2 determined by the matrices

A =
(

0 −1
1 1

)
, B =

(
0 1
−1 0

)
, and C =

(
0 −1
1 −1

)
.

We will find a pair (τ, γ) in M(3,3,3) with V̄τ,γ non-trivial; similar linear
algebra gives examples in M(2,3,6), M(2,4,4), and M(2,2,2,2).

The monodromy matrix C has order 3. Thus the torus bundle over S1

with monodromy C3 is just T 3 and is a 3-fold cyclic cover of M(3,3,3). It is
easy to check that the covering transformation t : T 3 −→ T 3 induces the
isomorphism on H1(T ) = Z3 given by the matrix

t =

1 0 0
0
0 C

 .

Let α : T 2 −→ T 3 be the map α(eix, eiy) = (eix, eix, eiy). Let α0 be the
restriction of α to S1 × {1}, so α0(eix) = (eix, eix, 1). Then

(t + t−1)α0 · α = det

(t + t−1)

1
1
0

 1
1
0

0
0
1


= 3.

Letting τ ∈ H1(M(3,3,3);Z/3) denote the character defining this three fold
cover and denoting by γ the homotopy class of the knot S1 α0−→T 3 −→ M(3,3,3)

the composite T 2 α−→T 3 −→ M(3,3,3) defines a self-homotopy Kt with

V̄τ,γ(Kt) = 3t + 3t−1 − 6.
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4. The class of admissible manifolds.

In this section we prove our main result characterizing those manifolds M
so that vτ is well-defined for all appropriate pairs (τ, γ).

Definition 4.1. Let M denote the class of all orientable compact irre-
ducible 3-manifolds excluding:

1. Any 3-manifold containing a circle bundle over the punctured Klein
bottle,

2. any 3-manifold containing a non-simple embedding of the orientable
circle bundle over the twice-punctured projective plane, and

3. the three manifolds M(3,3,3),M(2,3,6), and M(2,4,4).

Theorem 4.2. Let N be an oriented compact 3-manifold. The homomor-
phism

V̄τ,γ : π1(FNγ) −→ A(n)
vanishes for all τ ∈ H1(N ;Z/n) and all free homotopy classes γ satisfying
τ(γ) = 0 if and only if N is the connected sum of a manifold P in M and
a manifold Q with trivial first integral homology.

In particular, the relative knot invariants vτ (K0,K1) are well-defined for
all τ and all homotopic pairs of knots K0,K1 in N with τ(Ki) = 0 if and
only if N is the connected sum of a manifold in M and a manifold with
trivial first homology.

We essentially proved sufficiency in [KL]. The result in that article gives
a slightly weakened form of the following lemma.

Lemma 4.3. Let M ∈ M. Suppose that M̃ −→ M is an n-fold cyclic
covering of M with covering transformation generated by t : M̃ −→ M .
Let α : T 2 −→ M̃ be an essential map of a torus; i.e., α is injective on
fundamental groups and α is not homotopic into the boundary of M̃ . Let
α0 : S1 −→ M̃ denote the restriction of α to the first factor S1 ⊂ T 2 =
S1 × S1. Then the intersection number

(ts + t−s)α · α0

vanishes.

Proof. The proof of this lemma is essentially the same as the proof of Lemma
4.5 of [KL]; the only case not covered in that article is the following.

Let β : T 2 −→ M denote the composite of α and the covering projection.
Assume that β is an essential map (injective on π1 and not homotopic into
the boundary of M). Assume moreover that β is homotopic into a vertical
torus in a Seifert fibered submanifold C ⊂ M and that C is Seifert-fibered
over a non-orientable surface.

Then Proposition 3.4 and Theorem 3.7 imply that

0 = V̄ (β) = (ts + t−s)α · α0.
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All other cases follow exactly as in the proof of Lemma 4.5 of [KL]. �

Proof of Theorem 4.2. Assume that N has non-trivial first homology, oth-
erwise the statements are all trivially true.

If V̄τ,γ vanishes for all (τ, γ), consider a decomposition of N as a connected
sum N = P#Q with P prime such that H1(P ;Z) 6= 0. Then Example A of
Section 3 shows that P is not S1 × S2; hence P is irreducible. Example B
shows that Q must have trivial first homology, H1(Q;Z) = 0.

If P is not in M, then either P contains M1, a non-simple M2, or P is
one of M(3,3,3), M(2,3,6), or M(2,4,4). The remaining examples of Section 3
show that in any of these cases one can find an appropriate pair (τ, γ) such
that V̄τ,γ is non-trivial. Notice that τ extends over N = P#Q and that γ
can be viewed as a free homotopy class in N . Moreover, any map of a torus
into P can be pushed off a neighborhood of a point and so V̄τ,γ is non-trivial
in N . This contradiction means that P ∈M, as claimed.

For the converse, suppose that N = P#Q where P ∈M and H1(Q;Z) =
0. Let τ ∈ H1(P ;Z/n) and Kt a self-homotopy of a knot K0 with τ(K0) = 0.
To show that V̄τ (Kt) = 0 it suffices to prove this for n 6= 0 by taking the
reduction of an integer class modulo n for large enough n if necessary. Also,
as explained above, we may assume that the self-homotopy Kt lifts to the
n-fold cyclic cover Ñ −→ N determined by τ : H1(N) −→ Z/n.

Sticking to our notation we denote by β : T 2 −→ P the map given by
viewing the self-homotopy of K0 as a map of the torus, and we denote the
lift of β to Ñ by α : T 2 −→ Ñ . Its restriction to the lift of the knot is
denoted by α0 : S1 = S1 × ∗ −→ Ñ . What must be shown is that for each
s 6= 0, the intersection number (ts + t−s)α0 · α vanishes, where t : Ñ −→ Ñ
denotes the generator of the covering transformations.

Let P0 and Q0 denote the once punctured P and Q, and let S ⊂ N
denote the 2-sphere separating P0 from Q0 so that N is the union of P0

and Q0 along S. The preimage of S in Ñ consists of n 2-spheres which we
denote by S̃, tS̃, t2S̃, · · · , ts−1S̃. These 2-spheres separate Ñ into P̃0 and n
disjoint copies of Q0 translated cyclicly by the covering translations. This
is because τ vanishes on H1(Q0). Figure 4 illustrates the decomposition
Ñ = P̃0 ∪s tsQ0.

By a homotopy of β we may assume that β is transverse to S and hence
α is transverse to tsS̃ for each s. We now consider several possibilities of
how β(T 2) intersects the S.

If β(T 2) is disjoint from S then either β(T 2) lies entirely in Q0 or else it
lies entirely in P0. If β(T 2) lies entirely in Q0 then α and tsα have images
in different copies of Q0 lying above Q0 and so the intersection number
(ts + t−s)α · α0 vanishes for s 6= 0.
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Figure 4.

If β(T 2) lies entirely in P0, then fill in the boundary of P0 to obtain P

by attaching a 3-ball and extend τ over P . Also attach n 3-balls to P̃0 to
obtain the corresponding cover P̃ .

If β : T 2 −→ P is homotopic into the boundary of P , then α is homotopic
into the boundary of P̃ and using a collar of the boundary one sees easily
that (ts + t−s)α ·α0 vanishes. If π1P is finite, then so is π1P̃ , and hence the
curve α0 is nullhomologous. This implies that (ts + t−s)α · α0 vanishes.

If π1P is infinite and β : T 2 −→ P is not injective on fundamental groups,
then α : T 2 −→ P̃ is not injective on fundamental groups and since π(P̃ )
is torsion free α can be compressed. This implies that the homology class
carried by α in H2(P̃ ;Z) is represented by a spherical class, which must
vanish since π2(P̃ ) = 0.

This leaves the case when β : T 2 −→ P is essential. This case is covered
by Lemma 4.3 above.

Next we study the situation when β : T 2 −→ N intersects S. If every
curve in β−1(S) is inessential in T 2, then by a homotopy of β we may assume
that β(S1×∗) misses S, and then by working with innermost circles we may
surger α(T 2) to obtain a different representative of the homology class α
which is given by a map of a union of a torus containing α0 and a union of
2-spheres; so

α ∼ α′ : T 2 ∪i S2
i −→ Ñ − (∪st

sS̃).
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If α′(T 2) is contained in the preimage of Q0, then α0 has image in the
preimage of Q0 and since each component in this preimage has first homology
trivial, (ts + t−s)α ·α0 vanishes. The case when α′(T 2) is contained in P̃0 is
identical to the argument given above.

The only remaining case to consider is if β−1(S) contains an essential
curve in T 2. In this case we surger both α and the curve α0 simultaneously,
obtaining a map α′ homologous to α from a union of 2-spheres into the
complement of the tsS̃

α ∼ α′ : ∪iS
2
i −→ Ñ − (∪sS̃)

and a union of curves in the complement of the tsS̃ homologous to α0

α0 ∼ α′
0 : ∪jS

1
j −→ Ñ − (∪sS̃).

This time the expression (ts + t−s)α ·α0 = (ts + t−s)α′ ·α′
0 vanishes because

each intersection either takes place in some component of the preimage of
Q0 which has first homology trivial, or in the cover P̃0, in which every 2-
dimensional spherical homology class is zero. This completes the proof of
the Theorem. �
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