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We answer one of two questions asked by McMillan in 1970
concerning distortion at the boundary by conformal mappings
of the disk.

1. Introduction.

The purpose of this note is to answer a question of J.E McMillan concerning
boundary behavior of conformal mappings which was raised in the paper [4].
In that paper, McMillan gave a sufficient geometric condition for a subset
of the boundary of a domain to have harmonic measure zero and used it to
prove a result which we will describe below. A similar geometric lemma was
the key to the original proof of the twist point theorem in [5]. The reader
can refer to both of McMillan’s papers and to [6] for background on these
problems and more generally to [1], [3] and [7] for the ideas used in this
paper.

We will use ω(z0, F, Ω) to denote the harmonic measure of the set F in
the domain Ω from the point z0. Let D denote the unit disk in the complex
plane and let f : D → Ω be a conformal map. Let A denote the set of all
ideal accessible boundary points f(eiθ) of Ω when f has the nontangential
limit f(eiθ) at eiθ. Note that points of A are prime ends of Ω so that a single
complex coordinate may represent more than one point of A.

Let D(a, r) denote a disk with center a and radius r. Choose r0 <
d(f(0), A) where d denotes Euclidean distance. For each a ∈ A and for
each r < r0 let γ(a, r) ⊂ ∂D(a, r) be the crosscut of Ω seperating a from
f(0) which can be joined to a by a Jordan arc in Ω ∩ D(a, r). Let L(a, r)
denote the Euclidean length of γ(a, r) and let U(a, r) =

⋃
r′<r

γ(a, r′).

Let

A(a, r) =

r∫
0

L(a, ρ) dρ

denote the Lebesgue measure of U(a, r).
McMillan proved:
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Theorem 1.1. The set of a ∈ A such that

lim sup
r→0

A(a, r)
πr2

<
1
2

has harmonic measure zero.

Notice that this theorem implies that the set of a ∈ A such that

lim sup
r→0

L(a, r)
2πr

<
1
2

has harmonic measure zero.
McMillan also gave an example of a domain for which both

lim sup
r→0

A(a, r)
πr2

= 1 ω a.e.

and

lim inf
r→0

A(a, r)
πr2

= 0 ω a.e.

(implying the corresponding limits for L(a,r)
2πr ) and conjectured that

E1 =
{

a ∈ A : lim inf
r→0

A(a, r)
πr2

>
1
2

}
and

E2 =
{

a ∈ A : lim inf
r→0

L(a, r)
2πr

>
1
2

}
must be sets of harmonic measure zero.

Here, we will verify McMillan’s conjecture that the set E2 must always
have zero harmonic measure.

2. There are no points of density in f−1(E2).

With the notations and definitions of the introduction we prove:

Theorem 2.1. The harmonic measure of the set E2 is zero.

Proof. For any positive integers m and k, let

Em,k =
{

a ∈ A|L(a, r) >

(
1
2

+
1
m

)
2πr ∀r <

1
k

}
.

Since E2 is the countable union of sets Em,k, it suffices to show that each
Em,k has harmonic measure zero.

We will require the following lemma (see [7], p. 142) which is a conse-
quence of results of Beurling, [2].
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Lemma 2.1. Let f map D conformally into C and let 0 < δ < 1. If z ∈ D
and I is an arc of T with ω(z, I) ≥ α > 0 then there exists a Borel set B ⊂ I
with ω(z,B) > (1− δ)ω(z, I) such that

|f(ξ)− f(z)| ≤ Λ(f(S)) < K(δ, α)df (z) for ξ ∈ B

where Λ denotes linear measure, df (z) is the euclidean distance from f(z)
to the boundary of f(D), S is the non-euclidean segment from z to ξ and
where K(δ, α) depends only on δ and α.

The basic idea of the proof of Theorem 2.1 is that since points of Em,k

are separated from f(0) by circular arcs of wide angle and large radius, if
f−1(Em,k) has a point of density then Lemma 2.1 will provide enough wide
angled circular arcs of a fixed radius to wrap around on themselves and
disconnect the domain Ω.

Suppose then that η ∈ T is a point of density of f−1(Em,k) and let I
denote an arc of T centered at η.

Given δ1 > 0 we can choose I such that

|f−1(Em,k) ∩ I|
|I|

> (1− δ1).(1)

Given δ2 > 0 we can find 0 < r(I, δ2) < 1 such that

ω((1− r(I, δ2))η, I, D) = 1− δ2

and this determines the point zI = (1− r(I, δ2))η.
If we are given δ3 > 0 then if δ1 is sufficiently small, (1) implies that

ω(f−1(Em,k), zI , D) > (1− δ3).

By Lemma 2.1, if we are given δ4 > 0 then there is a Borel set B ⊂ I such
that

ω(zI , B, D) > (1− δ4)(1− δ2)
and such that

|f(ξ)− f(zI)| < K(δ4, (1− δ2))df (zI) ∀ξ ∈ B.(2)

It follows that

ω(f−1(Em,k) ∩B, zI , D) > 1− (δ2 + δ3 + δ4 − δ2δ4)(3)

and that (2) holds for all ξ ∈ f−1(Em,k) ∩ B. Notice that the constant K
only depends on δ2 and δ4.

Since f(η) ∈ A we can choose I so that Kdf (zI) << 1
k where k is the

integer in the definition of Em,k. The finite number of steps required to get
a contradiction in the construction to follow will only depend on the number
m in the definition of Em,k. By choosing a sufficiently small arc I, we can
arrange that in each step of our construction, the positive number

δ ≡ δ2 + δ3 + δ4 − δ2δ4
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is small enough so that the construction can proceed to the next step. We
assume that these conditions hold on the size of the interval I.

Let w0 = f(0), w1 = f(zI), d0 = df (zI) and let x1 be a point of ∂Ω such
that |x1−w1| = d0. Let the letters c1, c2, . . . denote positive constants which
will be assumed to be sufficiently small in each step of the construction but
will ultimately depend only on the number m in the definition of the set
Em,k and not on f , Ω, or δ. Let C1, C2, . . . denote other constants which
may be purely numerical or which may depend only on the number m.

First let 0 < c0 � 1 and c1 � π
mc0. We will see that these choices allow

for rotation by a fixed positive angle of certain separating circular arcs in
consecutive steps of the construction to follow. The arc of ∂D(x1, c1d0)
which intersects the interior of D(w1, d0) extends to a crosscut of Ω and
determines a unique subdomain U1 ⊂ Ω not containing w1. We proceed to
find a point close to x1 which is contained in Em,k. By Harnack’s inequality,

ω(w1, ∂U1 ∩ ∂Ω ∩D(x1, c1d0),Ω) ≥ C1ω(w′
1, ∂U1 ∩ ∂Ω ∩D(x1, c1d0),Ω)

where w′
1 is the point on the line between w1 and x1 such that |x1 − w′

1| =
c1d0

2 . By the comparison principle for harmonic measure and the Beurling
projection theorem, ([1], p. 43),

ω(w′
1, ∂U1 ∩ ∂Ω ∩D(x1, c1d0),Ω) ≥ C2 > 0.

So by Lemma 2.1 and Equation (3), if δ is sufficiently small, (δ << C1C2),
there is a constant C3 such that

ω(w1, ∂U1 ∩ ∂Ω ∩D(x1, c1d0) ∩ Em,k,Ω) ≥ C3 > 0.

Choose a point x∗1 ∈ ∂U1 ∩ ∂Ω ∩ D(x1, c1d0) ∩ Em,k. If c0 is sufficiently
small then the arc of {z ∈ C : |x∗1 − z| = c0d0} which intersects D(w1, d0)
has an angle greater than π(1 − 1

2m). This arc must therefore be part of
the crosscut whose length is L(x∗1, c0d0) > π(1 + 1

m). Denote by ab the
segment with endpoints a ∈ C and b ∈ C. Let w∗

1 be the point on x∗1w1 with
|x1 − w∗

1| = c0d0 and consider the annulus

R1 = {z ∈ C : (1− c2)|x∗1 − w∗
1| < |x∗1 − z| < (1 + c2)|x∗1 − w∗

1|}
where c2 � π

mc0. Let S1 be the component of R1 ∩ Ω which intersects
D(w1, d0) and let x2 be a point of ∂Ω∩S1 such that x∗1x2 has minimal angle
clockwise from x∗1w

∗
1.

Let S∗1 denote the sector of R1 clockwise between x∗1w
∗
1 and x∗1x2. The

circular arc ∂D(x2, c2d0) ∩ S∗1 is part of a crosscut of Ω which determines
a unique subdomain U2 of Ω not containing w∗

1. By an argument similar
to the previous one using Harnack’s inequality, the comparison principle
for harmonic measure and the Beurling projection theorem but now in the
annular sector S1, it follows that

ω(w1, ∂Ω ∩ ∂U2 ∩D(x2, c2d0),Ω) > C4 > 0.
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We remark that C4 depends on c0, c1, c2 and therefore only on m and that
the remaining constants Cj may have similar dependence on m.

A simple geometric argument shows that there is a point x∗2 in D(x2, c2d0)
∩Em,k and a constant c3 > 0 determined by the diameter of the Em,k ∩
D(x2, c2d0) such that the set of distances

{|x∗2 − w| : w ∈ D(x∗1, c1d0) ∩ ∂Ω}

contains an interval J1 of length greater than c3d0.
Let R2 = {w ∈ C : |w − x∗2| ∈ J1} and let S2 be the component of

R2 ∩ Ω which intersects S1. Each of the circular arcs of S2 centered at x∗2
is a crosscut of Ω. If there is such a crosscut L1 ⊂ S2 ∩ Ω which does not
separate x∗2 from w0 then we repeat the above construction of S2 but in the
counterclockwise direction from x∗1w

∗
1. Then any circular arc L2 ⊂ S2 ∩ Ω

centered at x∗2 which intersects S1, separates x∗2 from w0. For otherwise, w0

is contained in both subdomains of Ω determined by the concave sides of L1

and L2. Since w0 lies on the convex side of any circular arc which defines
L(a, r) for some a ∈ A and r > 0 and therefore of any arc of S1, this is
impossible. If one choice of S2, clockwise or counterclockwise from x∗1w

∗
1,

fails to separate x∗2 from w0 we choose the other. Otherwise, the construction
can continue, as described below, in both directions until the non-separating
case occurs and after that point, a topological argument similar to the above
allows the construction to continue in the remaining direction.

We have now arranged that each of the circular arcs of S2 centered at x∗2
separates x∗2 from w0 and can be joined to x∗2 by a Jordan arc lying inside S1.
Therefore, since x∗2 ∈ Em,k, each circular arc of S2 has an angular measure
greater than (1 + 2

m)π. Let w2 be a point of S2 ∩ S1 and let x3 be a point
of ∂Ω ∩ S2 which minimizes the clockwise angle from x∗2w2 to x∗2x3. Let S∗2
denote the sector of R2 clockwise between x∗2w2 and x∗2x3. As before the
circular arc ∂D(x3, c3d0) ∩ S∗2 extends to a crosscut of Ω which determines
a unique subdomain of U3 ⊂ Ω not containing w1. The same harmonic
measure argument as before but now done in the union of annular corridors
S1 ∪ S2 shows that

ω(w1, ∂Ω ∩ ∂U3 ∩D(x3, c3d0),Ω) > C6 > 0.

If δ > 0 is sufficiently small, then as before, Lemma 2.1 and (3) imply that

ω(w1, ∂Ω ∩ ∂U3 ∩D(x3, c3d0) ∩ Em,k,Ω) > C7 > 0

and we find x∗3 ∈ ∂Ω∩∂U3∩D(x3, c3d0)∩Em,k such that the set of distances

{|x∗3 − w| : w ∈ D(x∗2, c3d0) ∩ ∂Ω}

contain an interval J3 of length greater than c4d0, where c4 depends only on
the previous ci and on m. Note that since the constants satisfy ci << c0

π
m ,

there is a numerical constant c > 0 such that the clockwise angle from x∗1x
∗
2
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to x∗2x
∗
3 is at least (1 + c

m)π. The construction continues in this way so that
having found annular corridors S1, . . . Sj with centers x∗1, x

∗
2, . . . x

∗
j we find

x∗j+1 ∈ Em,k so that there is an interval of distances Jj between x∗j+1 and the
part of ∂Ω in a disk of radius c`d0 centered at x∗j . The intersection of the an-
nulus centered at x∗j+1 determined by Jj with Ω contains a component Sj+1

which intersects Sj . Concentric circular arcs of this annular piece separate
x∗j+1 from w0 (or else the construction continues in the other direction) and
each such circular arc can be joined to x∗j+1 through the annular corridor
Sj by a Jordan arc contained in the circle. Therefore, each such arc has an
angle greater than (1+ 2

m)π. Let wj+1 be a point of Sj+1∩Sj and find xj+2

which minimizes the clockwise angle between x∗j+1wj+1 and x∗j+1xj+2. The
construction can continue if δ > 0 is sufficiently small since the harmonic
measure of the end of Sj+1 near xj+2 from w1 in S1∪S2∪. . . Sj+1∪D(w1, d0)
is greater than some positive numerical constant.

But it is clear from the construction that the union of annular corridors
S1 ∪ · · · ∪Sj must wrap around on itself after a finite number of steps which
only depends on m. The union of annular corridors thus formed, being a
subset of Ω, would contain a closed curve in Ω whose interior component
contains the points x∗i ∈ ∂Ω. Since Ω is simply connected, this contradiction
shows that f−1(Em,k) does not contain a point of density and therefore must
have measure zero. Therefore Em,k has harmonic measure zero in Ω. �

Note. The authors have now answered the question left open here. The
result will appear in a forthcoming paper.
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