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We consider certain positive definite functions on a finitely
generated free group G that are defined with respect to a
given basis in terms of word length and the number of nega-
tive-to-positive generator exponent switches. Some of these
functions are eigenfunctions for right convolution by the sum
of the generators, and give rise to irreducible unitary repre-
sentations of G. We show that any state of the reduced C*-
algebra of G whose left kernel contains a polynomial in one of
the generators must factor through the conditional expecta-
tion on the C*-subalgebra generated by that generator. Our
results lend some support to the conjecture that an element
of the complex group algebra of G can lie in the left kernel
of only finitely many pure states of the reduced C*-algebra of
G.

1. Introduction.

Let G be the free group on n generators u1, u2, . . . un, where n ≥ 2. We
will regard the complex group algebra CG variously as a subalgebra of the
reduced C*-algebra C∗r (G) (the operator norm closure of the image of CG
under the left regular representation of G on `2(G)) and as a subalgebra of
the full group C*-algebra C∗(G) (the completion of CG in the norm obtained
by taking the supremum over all unitary representations of G). Positive
definite functions on G will be thought of as extended linearly to positive
functionals on the *-algebra CG and thence to positive linear functionals
on C∗(G) or, if appropriate, on C∗r (G); a positive functional on CG that
extends positively to C∗r (G) will be called reduced. The term state refers
to positive definite functions or positive linear functionals which take the
value 1 at the identity of G. Pure states are extreme points of the set of
states of the the relevant *-algebra; they give rise by a familiar construction
to irreducible unitary representations of G. For a scalar λ and an algebra
element x, a λ−eigenstate of x is a state with x − λ in its left kernel, that
is, a state annihilating (x− λ)∗(x− λ).

The work reported on below is motivated in large part by a conjecture
about how CG fits into C∗r (G), namely that each nonzero element of CG
belongs to the left kernel of only finitely many pure states of C∗r (G). In other
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words, we surmise that for each nonzero y in CG, the (convex) set of states
on G weakly associated to the left regular representation and annihilating
y∗y has only finitely many extreme points. We will show this when y is the
sum of the generators minus a scalar of modulus

√
n, in which case the set

of states in question is a singleton, and also when y is a polynomial in one
of the generators. Our results on λ−eigenstates of u1 + u2 + · · · + un for
|λ| <

√
n point strongly in the direction of the conjecture, but leave open

the faint possibility that there might be an essential difference between the
interior and the boundary of the spectrum of u1+u2+· · ·+un as an operator
on `2(G).

We remark that such operators can have no eigenvectors in `2(G). This
follows from a result of P.A. Linnell [L] stating that for many torsion-free
groups, including free groups, the `2−kernel of a matrix with entries in the
group algebra must have integer von Neumann dimension. In particular, no
nonzero element of the group algebra can convolve a nonzero `2−function
to zero.

Whatever the fate of the conjecture, we hope to persuade the reader that
it is edifying to look for pure eigenstates, especially but not exclusively
those that come from C∗r (G), of particular elements of CG. An example
of what can come from this pursuit under favorable circumstances is the
program recounted in [FTP] of harmonic analysis on G from the point of
view of radial functions, in which pure eigenstates for the symmetrized sum
of generators

u1 + u−1
1 + u2 + u−1

2 + · · ·+ un + u−1
n

play a central role. (Uniqueness of the eigenstates for this element among ra-
dial functions is established fairly easily in [FTP]; the question of a whether
a C∗r (G)−eigenstate for the symmetrized sum must be radial is open.) See
also [FTS] for harmonic analysis based on arbitrary linear combinations of
the uj + u−1

j ’s.
Our treatment of eigenstates for the unsymmetrized sum in Section 2

below begins with the definition of a certain family of functions φ on G.
We show by calculating matrix eigenvalues that each such φ is so to speak
positive definite over the positive semigroup of G. This yields a Hilbert
space on which the uj ’s act isometrically. An appropriate dilation then
yields a unitary representation of G on a larger Hilbert space from which
φ can be recovered by composing with a vector state. Using the result of
Linnell mentioned above, we show that u1 + u2 + · · · + un has exactly one
eigenvalue (depending on which φ one starts with) in this representation,
with a one-dimensional eigenspace. It follows from this that different φ’s
give rise to unitarily inequivalent irreducible unitary representations of G.
In Section 3 we consider these functions in the context of a somewhat larger
set of states, defined, like the original φ’s, in terms of word length and the
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number of negative-to-positive generator exponent changes. We determine
which of these are states of the reduced C*-algebra. We also indicate how the
irreducible representations in Section 2 (for an appropriate range of spectral
values) can be realized in terms of the action of G on its combinatorial
boundary; the measures on the boundary that we consider are rather like
those treated by G. Kuhn and T. Steger in [KS]. We prove uniqueness
of the C∗r (G)−eigenstate of the sum of the generators for eigenvalues of
modulus

√
n in Section 4, and show also that states of C∗r (G) whose left

kernel contains a given polynomial in a generator uj must factor through
the conditional expectation on the C*-algebra generated by uj . When we
identify this C*-algebra with the algebra of continuous functions on the unit
circle, the relevant pure states are point evaluations at zeros of modulus 1 of
the given polynomial preceded by the conditional expectation; hence, there
are only finitely many such pure states.

Heartfelt thanks are owed the referee of this paper, who patiently pointed
out numerous faux pas, and suggested that the rather cumbersome argument
originally provided for Theorem 4.5 be replaced by the straightforward proof
that now appears.

2. The eigenstates and their representations.

In seeking eigenstates, reduced or not, for u1 +u2 + · · ·+un, we may confine
our attention to spectral values in the interval [0, n]. This is because for
each complex z of modulus 1 there are automorphisms of both C∗r (G) and
C∗(G) sending each uj to zuj . It is convenient to divide by n and use [0, 1]
for the parameter interval. Thus a in the unit interval corresponds to the
spectral value na. For such a, define φa on G by

φa(s) = a|s|−2γ(s)

(
na2 − 1
n− 1

)γ(s)

,

where |s| is the length of s as a reduced word in the given generators and their
inverses, and γ(s) is the number of negative-to-positive generator exponent
changes in s. (Thus for example γ(u−2

1 u3
2u
−1
1 ) = 1.) We will often write φ

instead of φa. In case a is 0 or 1/
√
n, we take 00 to be 1. Let us check that

n∑
j=1

φ(suj) = naφ(s)

for every s in G. Since φ(1) = 1 and φ(uj) = a for each j, this is true when
s = 1. If s ends in u−1

i for some i, then |suj | = |s|+ 1 and γ(suj) = γ(s) + 1
for j 6= i, while |sui| = |s| − 1 and γ(sui) = γ(s), so

n∑
j=1

φ(suj) =
(
n− 1
a

· na
2 − 1
n− 1

+
1
a

)
φ(s) = naφ(s).
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(For the case a = 0, take limits in this calculation.) If s ends in ui for some
i, then φ(suj) = aφ(s) for every j, and again the formula holds. Notice,
incidentally, that |s−1| = |s| and γ(s−1) = γ(s) for every s in G, so φ is
selfadjoint.

Our main project in this section is to show that φ is positive definite
and that the unitary representation of G to which it gives rise is irreducible.
The case a = 0, alas, requires somewhat special treatment, so we will assume
until further notice that 0 < a ≤ 1. To save space, let us write

b =
na2 − 1
n− 1

.

Let G+ be the unital semigroup in G generated by u1, u2, . . . , un, and let
G+

k be the set of group elements in G+ of length k. For k = 1, 2, . . . , let Ak

be the nk × nk matrix with entries indexed by G+
k ×G+

k whose (s, t)-entry
is φ(s−1t). Since φ is real-valued and satisfies φ(s) = φ(s−1), the matrices
Ak are hermitian.

Lemma 2.1. The matrix Ak is positive semidefinite for k = 1, 2, . . . .

Proof. Notice that A1 is the n × n matrix with 1’s on the diagonal and b
in every off-diagonal position. The spectrum of A1 is easily seen to be

{1− b, 1 + (n− 1)b},

so since −(n− 1)−1 < b ≤ 1, we have A1 ≥ 0. For the inductive step, regard
G+

k+1 as the disjoint union of n copies of G+
k by writing

G+
k+1 = u1G

+
k ∪ u2G

+
k ∪ · · · ∪ unG

+
k .

We can then write Ak+1 in terms of Ak as an n × n matrix of nk × nk

matrices. Namely, Ak+1 has Ak in each of the n diagonal blocks, and all of
its off-diagonal blocks are a2kb times the nk × nk matrix Ek with all entries
equal to 1. This is because φ(s−1u−1

i ujt), for s, t in G+
k , is φ(s−1t) if i = j

and a2kb if i 6= j. It follows by induction on k that the entries in every row
of Ak sum to the common value

1 + (n− 1)b+ (n− 1)na2b+ · · ·+ (n− 1)nk−1a2k−2b = (na2)k.

Let λ be an eigenvalue of Ak+1 which is not an eigenvalue of Ak. The
corresponding eigenvector is an n-tuple (ξ1, ξ2, . . . , ξn) of vectors ξj with
entries indexed by G+

k satisfying

(Ak − λ)ξi + a2kbEk

∑
j 6=i

ξj

 = 0

for i = 1, 2, . . . , n. The range of Ek, vectors with all entries the same, is
invariant under Ak (since the latter has constant row sums). Because Ak−λ
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is invertible, it follows that each ξi belongs to the range of Ek. Let ci denote
the common value of the entries of ξi. Then

((na2)k − λ)ci + nka2kb
∑
j 6=i

cj = 0

for i = 1, 2, . . . n, which is to say that λ is an eigenvalue of (na2)kA1, hence
nonnegative. If we know that Ak ≥ 0, then Ak+1 ≥ 0.

The Hilbert space H of the representation we seek is constructed as fol-
lows. By Lemma 2.1, there is for each positive integer k a finite dimensional
complex inner product space Ek spanned by vectors {∆s : s ∈ G+

k } with
inner product 〈·, ·〉 satisfying 〈∆t,∆s〉 = φ(s−1t). (We write E0 for the one-
dimensional inner product space spanned by the unit vector ∆1.) Because

(na)−1φ
(∑

xui

)
= φ(x) = (na)−1φ

(∑
u−1

i x
)

for all x in CG, we have an isometry from Ek into Ek+1 for each k sending
∆s to (na)−1

∑
i ∆sui . Let H0 be the Hilbert space inductive limit of the

resulting tower E0 → E1 → E2 → · · · . Thus H0 is the closed linear span of
{∆s : s ∈ G+}, and these vectors satisfy∑

i

∆sui = na∆s and 〈∆t,∆s〉 = φ(s−1t).

Left multiplication by each generator ui gives rise to an isometry Vi of H0

into itself. Let H ′
i be the kernel of Vi, in other words, the orthogonal com-

plement in H0 of the range of Vi. For each i, let S−i be the subset of G
consisting of the reduced words ending in a negative power of ui, with nat-
ural orthonormal basis {δs : s ∈ S−i }. The Hilbert space H is by definition

H = H0 ⊕
n⊕

i=1

(
`2(S−i )⊗H ′

i

)
.

For each i, let Ui be the unitary operator on H that maps H0 to ViH0 by Vi,
maps δu−1

i
⊗H ′

i to H ′
i = H0 	 ViH0 by erasing the tensor, and maps δs ⊗ η

to δuis ⊗ η for all other s ending in a negative generator power, and for η in
the appropriate space H ′

j . Denote by π the unitary representation of G on
H that takes ui to Ui.

We now show that φ(s) = 〈π(s)∆1,∆1〉 for all s in G. This is mostly a
matter of decomposing π(s)∆1 into orthogonal pieces as in the definition of
H.

Lemma 2.2. For i = 1, 2, . . . , n, and s ∈ G+ \ {1} not beginning with ui,
the vectors

∆1 − a∆ui and ∆s − a|s|−1b∆ui
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both belong to H ′
i, and hence

U∗i ∆1 = a∆1 + δu−1
i
⊗ (∆1 − a∆ui),

U∗i ∆s = a|s|−1b∆1 + δu−1
i
⊗ (∆s − a|s|−1b∆ui).

Proof. Take t in G+. Calculating in H0, we have

〈∆1 − a∆ui , ∆uit〉 = φ(t−1u−1
i )− aφ(t−1) = a|t|+1 − aa|t| = 0,

and

〈∆s − a|s|−1b∆ui , ∆uit〉 = φ(t−1u−1
i s)− a|s|−1bφ(t−1)

= a|t|+1+|s|−2b− a|s|−1ba|t| = 0.

Thus ∆1 and ∆s are written with respect to the orthogonal decomposition
H0 = UiH0 ⊕H ′

i as

∆1 = a∆ui + (∆1 − a∆ui) , ∆s = a|s|−1b∆ui + (∆s − a|s|−1b∆ui),

and the rest of the lemma follows by noticing that U∗i ∆ui = ∆1, while
U∗i η = δu−1

i
⊗ η for η in H ′

i.

Proposition 2.3. φ(s) = 〈π(s)∆1,∆1〉 for all s in G.

Proof. Write ψ(s) = 〈π(s)∆1,∆1〉. The argument that ψ(s) = φ(s) is by
induction on |s|. The cases |s| = 0, |s| = 1 are clear. For (part of) the
induction, consider ψ(tu−1

i ) versus ψ(t), where t is a reduced word in G
that doesn’t end in a positive power of ui. We have

π(t)U∗i ∆1 = π(t)(a∆1 + δu−1
i
⊗ η)

for appropriate η in H ′
i by Lemma 2.2. Furthermore, the definition of π and

our assumption on t ensure that

π(t)(δu−1
i
⊗H ′

i) ⊆ `2(S−i )⊗H ′
i.

Since ∆1 is orthogonal to the latter subspace, we have ψ(tu−1
i ) = aψ(t). In

the same situation, we can compare ψ(tu−1
i uj) with ψ(tu−1

i ) when i 6= j.
Indeed, Lemma 2.2 shows that for appropriate ξ in H ′

i we have

π(t)U∗i Uj∆1 = π(t)U∗i ∆uj = π(t)(b∆1 + δu−1
i
⊗ ξ),

and hence ψ(tu−1
i uj) = bψ(t) = (b/a)ψ(tu−1

i ). We must show as well that
ψ(suj) = aψ(s) for every generator uj if s ends in a positive generator power.
It follows from Lemma 2.2 and the definition of π that for such an s, we have
π(s−1)∆1 = c∆1 + ρ, where ρ is orthogonal to H0, and c is a real constant
namely c = ψ(s−1) = ψ(s). (Start with ∆1 and apply each factor u±i of s−1

in succession. The last factor applied has exponent −1.) Thus

U∗j π(s−1)∆1 = ca∆1 + δu−1
j
⊗ η + U∗j ρ
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for appropriate η in H ′
j . Since H 	 H0 is invariant under U∗j , this makes

ψ(u−1
j s−1) = ca = aψ(s), and finally ψ(suj) = aψ(s). Thus, when the

length of a word is increased by 1 by non-cancelling right multiplication by
a generator or its inverse, the value of ψ is multiplied by b/a or a depending
on whether or not γ increases by 1. This is the same rule that φ obeys, so
φ and ψ must coincide.

The next proposition implies that π is irreducible, and that different a’s
in the interval (0, 1] give rise to unitarily inequivalent representations.

Proposition 2.4. The only eigenvalue that u1 + · · ·+ un has in the repre-
sentation π is na. The eigenspace consists of scalar multiples of ∆1.

Proof. We have already observed that
∑

j ∆suj = na∆s for all s in G+. In
particular, (

∑
j Uj − na)∆1 = 0.

Suppose that λ is an eigenvalue for
∑

j Uj with eigenvector ξ. We first
claim that ξ must belong to H0. Fix a generator ui, and take η in H ′

i. Define
f0 on S−i (the set of reduced words in G ending in a negative power of ui)
by f0(s) = 〈ξ, δs ⊗ η〉. Then f0 ∈ `2(S−i ) and satisfies

∑
j f0(u−1

j s) = λf0(s)
for all s in S−i . This is because

λf0(s) =

〈∑
j

Uj

 ξ, δs ⊗ η

〉
=

〈
ξ,
∑

j

(δu−1
j s ⊗ η)

〉
.

Pick a different generator uh and let σ be the automorphism of G that
interchanges ui and uh, and fixes the other generators. Define f in `2(G)
by setting f(s) = f0(s) for s in S−i , and f(s) = −f0(σ(s)) for s in S−h , and
f(s) = 0 for all other s in G. This makes

∑
j f(u−1

j s) = λf(s) for all s in
G. (Equality holds for s in S−i ∪ S−h by construction. In case s = 1, the
right-hand side is 0 and the left-hand side is f(u−1

i )+f(u−1
h ), which is 0. For

all other s, we have f(s) = 0, and each summand on the left is 0.) In other
words, when we let G act on `2(G) by the left regular representation, the `2

function f belongs to the kernel of u1+· · ·+un−λ (as an operator on `2(G)).
By 3.6 in [L] (the result of Linnell mentioned in the introduction), this forces
f, and hence f0, to vanish everywhere. Since η in H ′

i was arbitrary, we have
shown that ξ is orthogonal to each summand `2(S−i ) ⊗ H ′

i, which means
ξ ∈ H0.

Consider now 〈ξ,∆s〉 for s in G+. For such s and any generator uj , we
have

λ〈ξ,∆ujs〉 = 〈ξ, (U∗1 + · · ·+ U∗n)∆ujs〉.
Because ξ ∈ H0, we see by applying Lemma 2.2 to the right-hand side that

(∗) λ〈ξ,∆ujs〉 = 〈ξ,∆s〉+ (n− 1)a|s|b〈ξ,∆1〉.
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With s = 1, this becomes

( ∗ ∗) λ〈ξ,∆uj 〉 = (1 + (n− 1)b)〈ξ,∆1〉 = na2〈ξ,∆1〉.
Since ∆u1 + · · ·+ ∆un = na∆1, when we sum on j in (∗∗) we obtain

λna〈ξ,∆1〉 = n2a2〈ξ,∆1〉.
In case 〈ξ,∆1〉 6= 0, we have λ = na, and when we replace ξ by ξ′ =
ξ − 〈ξ,∆1〉∆1 (a vector in the na-eigenspace meet H0 orthogonal to ∆1),
equation (∗) above becomes

na〈ξ′,∆ujs〉 = 〈ξ′,∆s〉

for all generators uj and all s in G+. The right-hand side is zero when s = 1,
so by induction ξ′ is orthogonal to all the ∆s’s, so ξ′ = 0, finishing the proof
in this case. If, on the other hand, 〈ξ,∆1〉 = 0, the same argument using
(∗) shows ξ = 0 if λ 6= 0, while if λ and 〈ξ,∆1〉 are both 0, then (∗) simply
says that 〈ξ,∆s〉 = 0 for all s in G+, and again ξ = 0.

We turn now to the hitherto excluded case a = 0, which is best argued
separately.

Proposition 2.5. Let b = −1/(n − 1), and define φ on G by φ(s) = bγ(s)

if |s| = 2γ(s), and φ(s) = 0 otherwise. Then φ is positive definite. Fur-
thermore, zero is the only eigenvalue of u1 + · · · + un in the cyclic unitary
representation of G on Hilbert space to which φ gives rise, and the eigenspace
is one-dimensional.

Proof. The reason φ is positive definite is that it is the pointwise limit of
functions that are positive definite by Proposition 2.3. Looking at the part
of the corresponding representation space spanned by vectors from G+, we
see that there is a Hilbert space H0 which is the closed linear span of unit
vectors ∆s (s in G+) satisfying∑

i

∆sui = 0 and 〈∆t,∆s〉 = φ(s−1t).

(Notice that this makes ∆s and ∆t orthogonal if either s or t has length
greater than 1.) Using the same notation as in the construction immediately
before Lemma 2.2, we obtain the Hilbert space

H = H0 ⊕
n⊕

i=1

(
`2(S−i )⊗H ′

i

)
and unitary operators U1, . . . , Un on H — with Ui taking δu−1

i
⊗ η to η for

η in H ′
i = H0 	 UiH0, and so forth. This apparatus gives rise in turn to a

unitary representation π of G on H with cyclic vector ∆1.
Define ψ on G by ψ(s) = 〈π(s)∆1,∆1〉. By construction, ψ and φ coincide

on G+; they are both 1 at 1 and vanish on the rest of G+. A reduced word in
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G \G+ can be written in the form su−1
j v, where v (possibly empty) belongs

to G+ and does not begin with a positive power of uj , and s is a reduced
word (possibly empty) not ending in a positive power of uj . The definition
of φ entails that ∆v ∈ H ′

j if v = 1 or if |v| > 1. In case v = ui for some i 6= j,
the orthogonal projection of ∆v on H ′

j is ∆ui − b∆uj . Thus

π(u−1
j v)∆1 =

{
b∆1 + δu−1

j
⊗ (∆ui − b∆uj ) v = ui for i 6= j

δu−1
j
⊗∆v v ∈ G+ \ {u1, . . . , un}.

This makes

ψ(su−1
j v) =

{
bψ(s) v = ui for i 6= j

0 v ∈ G+ \ {u1, . . . , un}.

The same holds for φ, whence it follows that φ and ψ coincide on all of G.
Suppose now that λ is an eigenvalue of U1 + · · ·+ Un with eigenvector ξ.

We must show that λ = 0 and ξ is a scalar multiple of ∆1. That ξ belongs
to H0 follows exactly as in the proof of Proposition 2.4. For any s in G+

and any generator uj we have

λ〈ξ,∆ujs〉 =

〈
ξ,
∑

i

U∗i ∆ujs

〉
=
{
〈ξ,∆s〉 s ∈ G+ \ {1}

0 s = 1 .

This is because in the first case, U∗i ∆ujs is orthogonal to H0, hence to ξ, for
i 6= j, and in the second case, the right-hand side is

〈ξ,∆1 + b(n− 1)∆1〉 = 〈ξ,∆1 −∆1〉.

If λ is different from zero, we get < ξ,∆uj >= 0 for all j and then 〈ξ,∆s〉 = 0
for all other s in G+ \ {1}, forcing ξ to be a multiple of ∆1, so ξ = 0. On
the other hand, λ = 0 forces 〈ξ,∆s〉 = 0 for s in G+ \ {1}, so ξ in this case
must be a multiple of ∆1.

We now summarize the results of this section.

Theorem 2.6. Let G be the free group on the generators u1, . . . , un, where
n ≥ 2. Let | · | denote the corresponding length function on G, and let γ be
the function on G that counts the number of negative-to-positive exponent
changes, from left to right, in a reduced word in these generators. Given
0 ≤ a ≤ 1, define φ on G by

φ(s) = a|s|−2γ(s)

(
na2 − 1
n− 1

)γ(s)

.

Then φ is a pure na-eigenstate of G, the unitary representation of G on
Hilbert space to which φ gives rise is irreducible, and different values of a
yield unitarily inequivalent representations.
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Proof. We have exhibited a representation π of G on a Hilbert space H
with cyclic vector ∆1 such that φ(s) = 〈π(s)∆1,∆1〉 for s in G. We have
further shown that the kernel of π(u1) + · · ·+ π(un)− na consists of scalar
multiples of ∆1. Thus, projection on the subspace spanned by ∆1 belongs to
the double commutant of π(G). By cyclicity of ∆1, it follows that the double
commutant must include all bounded operators on H, which means that π
is irreducible. Finally, the point spectrum of π(u1) + · · · + π(un), namely
{na} by Propositions 2.4 and 2.5, is invariant under unitary transformation
of π.

For other spectral values, rotate Theorem 2.6. More precisely, to multiply
the spectral value na by a phase eiθ and thereby cover the entire spectrum
of u1 + · · ·+un relative to C∗(G), simply compose φ with the automorphism
of CG that multiplies each uj by eiθ. Let τ : G→ Z be the homomorphism
sending each uj to 1. Then

s 7→ eiτ(s)θa|s|−2γ(s)

(
na2 − 1
n− 1

)γ(s)

is a pure naeiθ− eigenstate of G, and different spectral values give rise to
unitarily inequivalent irreducible representations. Multiplying by −1, in
particular, we see that the interval [0,1] in Theorem 2.6 can be replaced by
the interval [-1,1].

3. More states; reduced states.

For a in the interval [−1, 1], the function s 7→ a|s|−2γ(s) is positive definite on
G. This follows from [DMFT] after a simple change of generators. Namely,
consider the “u1−length” function | · |1 on G that adds the absolute values
of all exponents of u1 in a reduced word. Notice that |st|1 = |s|1 + |t|1
whenever there is no cancellation in multiplying s and t, so s 7→ a|s|1 is
positive definite by Theorem 1 of [DMFT]. To apply this to our situation,
consider the automorphism β of G that fixes u1 and takes uj to u1uj for
j = 2, . . . , n; one checks easily that |β(s)|1 = |s| − 2γ(s) for s in G.

Positive-definiteness of s 7→ a|s|1 is all we need for the sequel, but it will
not take us too far afield to look at the corresponding unitary representations
in the spirit of the partial tensor product construction used in the previous
section. Fix a in [−1, 1] and consider the positive definite function k 7→ a|k|

on the group of integers. (The reason this is positive definite is that

1 +
∞∑

k=1

ak(eikθ + e−ikθ) =
1− a2

1 + a2 − 2a cos θ

for −1 < a < 1.) Let π0 be the associated unitary representation on the
Hilbert space H0, with cyclic vector ∆1, thought of as a representation of
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the subgroup of G generated by u1. Thus, 〈π0(u1)k∆1,∆1〉 = a|k| for all
integers k. Let H ′

0 be the subspace of H0 orthogonal to ∆1; it is more or
less immediate that the vectors π0(uk

1)∆1 − a|k|∆1 for k 6= 0 span a dense
subspace of H ′

0. Let S be the subset of G consisting of all nonempty reduced
words not ending in a power of u1, that is, all reduced words ending in a
power of uj for some j > 1. Define the Hilbert space H by

H = H0 ⊕
(
`2(S)⊗H ′

0

)
.

Let U1 be the unitary operator on H such that U1ξ = π0(u1)ξ for ξ in H0

and U1(δs⊗η) = δu1s⊗η for s in S and η in H ′
0. Define unitaries U2, . . . , Un

by:
Uj∆1 = ∆1; Ujη = δuj ⊗ η;

Uj(δu−1
j
⊗ η) = η; and Uj(δs ⊗ η) = δujs ⊗ η

for η in H ′
0 and s in S \ {u−1

j }. Let π be the representation of G on H that
takes ui to Ui for i = 1, . . . , n.

Proposition 3.1. The representation π satisfies 〈π(s)∆1,∆1〉 = a|s|1 for
all s in G, and is irreducible. Different values of a in [−1, 1] give rise to
unitarily inequivalent representations.

Proof. Notice that π(s)H ′
0 = δs ⊗H ′

0 for s in S, so in particular π(s)H ′
0 is

orthogonal to ∆1. It follows that

〈π(suk
1)∆1,∆1〉 = 〈π(s)(π(uk

1)∆1 − a|k|∆1 + a|k|∆1),∆1〉

= a|k|〈π(s)∆1,∆1〉

for s in S and any integer k, because π(uk
1)∆1 − a|k|∆1 ∈ H ′

0. It is further-
more plain that multiplying s in G on the left by a power of uj for j ≥ 2 does
not change the value of 〈π(s)∆1,∆1〉. Our formula for 〈π(·)∆1,∆1〉 follows.

To distinguish between different values of a, fix sequences {sk}, {tk} in the
subgroup of G generated by u2, . . . , un such that |sk| → ∞ and |tk| → ∞
as k → ∞. We claim that the sequence {π(sku1tk)} converges in the weak
operator topology to a times the orthogonal projection on ∆1. To see this,
let η = U1∆1 − a∆1, so η ∈ H ′

0, and π(sk)η = δsk
⊗ η. This means that

π(sk)η → 0 weakly as k →∞ and hence

π(sku1tk)∆1 = π(sku1)∆1 = π(sk)(a∆1 + η) → a∆1

weakly. For any η in H ′
0, we have π(sku1tk)η = δsku1tk ⊗ η for all k, and

for any s in S, we have π(sku1tk)δs ⊗ η = δsku1tks ⊗ η for sufficiently large
k. It follows that π(sku1tk)ξ → 0 weakly for any ξ in H orthogonal to ∆1,
which establishes our claim. The property that all sequences of this type
have weak-operator limit a certain scalar times a one-dimensional projection
is of course invariant under unitary transformation of π.



162 W. PASCHKE

If a 6= 0, the argument just given also shows that π is irreducible, since
∆1 is a cyclic vector. In case a = 0, the representation π is the one that
comes from the left action of G on its quotient by the subgroup generated
by u2, . . . , un, and irreducibility can be proved directly in several ways.

We now consider a two-parameter family of states on G defined in terms
of | · | and γ. For real a and b, define ψa,b on G by

ψa,b(s) = a|s|−2γ(s)bγ(s).

Proposition 3.2. The function ψa,b is positive definite if and only if

−1 ≤ a ≤ 1 and
na2 − 1
n− 1

≤ b ≤ 1.

Proof. Assume that ψa,b is positive definite. The inequalities |a| ≤ 1 and
b ≤ 1 are immediate because ψa,b takes the values 1, a, and b at 1, u1, and
u−1

1 u2 respectively. The quadratic inequality comes from the observation
that

ψa,b

((
na−

∑
i

u−1
i

)(
na−

∑
i

ui

))
= n2a2 − 2na

∑
i

ψa,b(ui) +
∑
i,j

ψa,b(u−1
i uj)

= −n2a2 + n+ n(n− 1)b.

Suppose conversely that the indicated inequalities hold. It is then straight-
forward to find α and r with

−1 ≤ r ≤ 1, 0 ≤ α ≤ 1, a = rα, and b =
nα2 − 1
n− 1

.

It follows from Proposition 3.1 that ψr,1 is positive definite, while ψα,b is pos-
itive definite by Proposition 2.3, since ψα,b = φα. We have ψa,b = ψr,1ψα,b,
so ψa,b is positive definite.

We next sort out which values of (a, b) in the region specified by Proposi-
tion 3.2 give rise to reduced states of G, that is, to states whose associated
unitary representation is weakly contained in the regular representation.

Proposition 3.3. For a, b as in Proposition 3.2, the state ψa,b is reduced if
and only if

b ≤ 1− na2

n− 1
.

Proof. Fix a and b satisfying the inequalities in Proposition 3.2, and write
ψ = ψa,b. By Theorem 3.1 in [H], whether or not ψ is reduced depends on
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whether the radius of convergence of the power series with order k coefficient

Ck ≡
∑
|s|=k

|ψ(s)|2

has radius of convergence at least 1, or less than 1. We can obtain the
Ck’s explicitly in the present instance by solving a pair of one-step linear
difference equations. For k ≥ 1, let

Ak =
∑

{|ψ(s)|2 : |s| = k, s ends in a positive generator power}

and let Bk be the corresponding sum over words ending in a negative gen-
erator power, so Ck = Ak +Bk. Notice that A1 = B1 = na2.

If a 6= 0, we have

Ak+1 = na2Ak + (n− 1)
b2

a2
Bk

Bk+1 = (n− 1)a2Ak + na2Bk.

(For the first equation, take s ending in a positive generator power with
|s| = k+1. Then either s = tuiuj for some j, with n choices for i and ψ(s) =
aψ(tui), or s = tu−1

i uj , with n−1 choices for i and ψ(s) = (b/a)ψ(tu−1
i ). The

second equation is proved similarly.) If furthermore b 6= 0, the recurrence
has two distinct eigenvalues, namely

λ+ = na2 + (n− 1)b and λ− = na2 − (n− 1)b

with eigenvectors (±b, a2). The solution may be written

Ak =
n

2
(a2 + b)λk−1

+ +
n

2
(a2 − b)λk−1

−

Bk =
n

2
(a2 + a4/b)λk−1

+ +
n

2
(a2 − a4/b)λk−1

− .

By continuity, this holds as well when a = 0, so the solution above covers
the entire case b 6= 0. When b = 0, the coefficient matrix is lower triangular
and one calculates directly that

Ak = λk and Bk =
kn− k + 1

n
λk,

where λ is the common value of λ+ and λ−, namely na2.
If

b >
1− na2

n− 1
,

we have λ+ > 1, and hence the power series with coefficients Ck has radius
of convergence less than 1. If

b ≤ 1− na2

n− 1
,
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then also |a| ≤
√
n and

|b| ≤ 1− na2

n− 1
,

which makes |λ+| ≤ 1 and |λ−| ≤ 1. In this case, then, the power series has
radius of convergence at least 1.

Remark 3.4. (a) If a and b satisfy |b| < (1−na2)/(n−1), then
∑
Ck <∞,

that is ψa,b ∈ `2(G), so the associated representation is contained (not just
weakly contained) in the regular representation. In particular, ψa,b cannot
be a pure state in this situation.

(b) The proposition above shows that the state φa considered in Section
2 is reduced if and only if |a| ≤ 1/

√
n.

It is opportune to remark here as well that the spectral radius of u1+· · ·+
un as an operator on `2(G) is indeed

√
n, as 3.4(b) suggests. (The spectral

radius is at least
√
n by 3.4(b), and in the other direction, the operator norm

of the kth power is at most (k + 1)nk/2 by Haagerup’s inequality [H].)

At least for spectral values of modulus strictly between 0 and
√
n, the re-

duced eigenstates in Section 2 for the sum of the generators can be obtained
via the action of G on its combinatorial boundary. The compressed account
that follows is in the spirit of G. Kuhn and T. Steger [KS]; the boundary
representations considered here differ only slightly from the ones they treat.
As in [KS], let Ω denote the set of all (one-way) infinite reduced words in
the generators uj and their inverses. When given the product topology, this
is a compact space on which G acts by left multiplication. For a reduced
word s in G, write Ω(s) for the cylinder set consisting of all infinite words
in Ω that begin with s. Let Ω(1) = Ω. Defining a probability measure µ on
Ω amounts to specifying µ(Ω(s)) in [0,1] for each s in G in such a way that
µ(Ω(1)) = 1 and

µ(Ω(s)) =
∑

{µ(Ω(sv)) : |v| = 1, |sv| = |s|+ 1}.

If µ is quasiinvariant under the left action of G, and if p1, p2, . . . , pn are
complex-valued measurable functions on Ω such that

|pj(ω)|2 =
dµ(u−1

j ω)
dµ(ω)

for µ−almost all ω, then we obtain a unitary representation π of G on
L2(Ω, µ) by sending each uj to the unitary Uj defined on L2 by

(Ujξ)(ω) = pj(ω)ξ(u−1
j ω).

The particular type of measure on Ω that we want to consider here is
defined in terms of positive real numbers α+, α−, α0, α1 satisfying

n(α+ + α−) = 1 = nα0 + (n− 1)α1.
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Let µ(Ω(uj)) = α+ and µ(Ω(u−1
j )) = α− for each j. Once µ(Ω(·)) has been

defined on words of length k, extend the definition to words of length k+1 by
letting µ(Ω(sv)) (where |v| = 1 = |sv|−|s|) be either µ(Ω(s))α1 or µ(Ω(s))α0

depending on whether sv ends or doesn’t end with a generator exponent
change. (For example, µ(Ω(u2u1u2)) = α+α

2
0, while µ(Ω(u2u

−1
1 u2)) =

α+α
2
1, and µ(Ω(u2u1u

−1
2 )) = α+α0α1.) It is then straightforward to show

that

dµ(u−1
j ω)

dµ(ω)
=



α−α1/α+ ω ∈ Ω(ui) (i 6= j)

α0 ω ∈ Ω(u−1
i ) (any i)

1/α0 ω ∈ Ω(ujui) (any i)

α−/(α+α1) ω ∈ Ω(uju
−1
i ) (i 6= j)

.

Take λ in the real interval (0,
√
n). Define α’s for the construction above

by

α+ =
(n− 1)λ2

n(n2 − λ2)
, α− =

n− λ2

n2 − λ2
, α0 =

λ2

n2
, α1 =

n− λ2

n(n− 1)
,

and let µ be the corresponding measure on Ω. Define the functions pj by

pj(ω) =


(λ− n/λ)/(n− 1) ω ∈ Ω(ui) (i 6= j)

λ/n ω ∈ Ω(u−1
i ) (any i)

n/λ ω ∈ Ω(uj)

.

One checks readily that pj is appropriately related to the Radon-Nikodym
derivative of the translate of µ by uj . Let π be the resulting representation
of G on L2(Ω, µ), and let ξ0 be the constant function 1 on Ω. Define a state
φ on G by φ(s) = 〈π(s)ξ0, ξ0〉, that is,

φ(s) =
∫

Ω
P (s, ω) dµ(ω),

where P (· , ·) is the (nonzero-real-valued) cocycle such that P (uj , ·) = pj for
each j. A routine but tedious calculation, which we omit, establishes that
this state φ coincides with the state φλ/n constructed in Section 2.

The calculation we are leaving out here may be viewed as a mild test of
the conjecture set forth in the introduction to this paper. It is more or less
immediate that the sum of the functions pj above is the constant function
λ, in other words that ξ0 is a λ−eigenvector for π(u1 + · · · + un), which
makes 〈π(·)ξ0, ξ0〉 a λ−eigenstate for the sum of the generators. Further-
more, Theorem 2.7 in [S] (see also Theorem 1X in [KS]) says that π (like
all other boundary representations) is weakly contained in the left regular
representation, so one knows that this state is reduced even before checking
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that it coincides with φλ/n. It would appear at first glance that breaking
some of the symmetry in the construction above ought to yield a great many
reduced λ−eigenstates for the sum of the generators. The only requirements
are: (1) a quasiinvariant probability measure µ; and (2) (measurable) com-
plex functions z1, . . . , zn on Ω of modulus 1 such that

n∑
j=1

zj(ω)
√
dµ(u−1

j ω)/dµ(ω) = λ

for almost every ω. Condition (2) seems not particularly onerous; for in-
stance, in the case of two generators, (2) amounts to∣∣∣∣√dµ(u−1

1 ω)/dµ(ω)−
√
dµ(u−1

2 ω)/dµ(ω)
∣∣∣∣ ≤ λ

≤
√
dµ(u−1

1 ω)/dµ(ω) +
√
dµ(u−1

2 ω)/dµ(ω)

almost everywhere. This seems to be not so easy to achieve, however. Mod-
est numerical experimentation instead favors the conjecture that the essen-
tial supremum of∣∣∣∣√dµ(u−1

1 ω)/dµ(ω)−
√
dµ(u−1

2 ω)/dµ(ω)
∣∣∣∣

is always greater than or equal to the essential infimum of√
dµ(u−1

1 ω)/dµ(ω) +
√
dµ(u−1

2 ω)/dµ(ω),

with equality only in the situation of the previous paragraph. In any event,
questions of uniqueness of reduced eigenstates plainly have a good deal to
do with the behavior of quasiinvariant measures on Ω.

4. Paucity of eigenstates.

We conjecture that for |λ| ≤
√
n, there is only one reduced λ−eigenstate for

u1 + · · ·+ un − λ, namely the one exhibited in Section 2. We will prove this
below in case λ =

√
n (so by rotating, for |λ| =

√
n).

Henceforth we will work in C∗r (G), and think of group elements and the
group algebra as acting on `2(G) via the left regular representation. Let

T =
1√
n

(u1 + · · ·+ un),

so T belongs to L(`2(G)), the algebra of bounded operators on `2(G). Let
S+ be set of reduced words in G beginning with a positive generator power,
and let S− = G \S+, so S− consists of 1 together with the words beginning
with a negative generator power. Let P be the orthogonal projection of
`2(G) on `2(S+), and write Q = I − P, the projection on `2(S−).
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The state whose uniqueness we are trying to prove is φ1/
√

n from Section
2, which we will write simply as φ. Notice that φ(s) = n−|s|/2 if γ(s) = 0
(that is, if s ∈ G+(G+)−1) and φ(s) = 0 if γ(s) > 0.

Lemma 4.1.
(a) If f is a state of L(`2(G)) such that

f(P ) = 1 and f((T ∗ − I)(T − I)) = 0,

then f(s) = φ(s) for all s in G.
(b) If instead

f(Q) = 1 and f((T − I)(T ∗ − I)) = 0,

then f(s) = φ(σ(s)) for all s in G, where σ is the automorphism of G
that sends each generator uj to its inverse.

Proof. (a) We show first that f(s) = 0 for s not in G+(G+)−1. Indeed, if
γ(s) > 0, then s contains u−1

i uj for some i 6= j. For sufficiently large m,
and any t1, t2 in G+ of length m, we can write t−1

1 st2 as v−1
1 u−1

i ujv2 with
no cancellation, where v2, v1 end in positive generator powers. Notice that

v−1
1 u−1

i ujv2S
+ ⊆ S−,

so Pv−1
1 u−1

i ujv2P = 0. It follows that P (T ∗)m s TmP = 0 for sufficiently
large m. The hypotheses on f make f(P (T ∗)mXTmP ) = f(X) for all X in
L(`2(G)), so f(s) = 0.

It is now easy to see that f and φ coincide on G+(G+)−1. Namely for
any s in G+(G+)−1, including s = 1, we have

f(su−1
j ) = f(su−1

j T ) =
1√
n
f(s)

because γ(su−1
j ui) > 0 for i 6= j. Likewise

f(ujs) =
1√
n
f(s).

Since f(1) = 1, iteration gives f(s) = n−|s|/2 when γ(s) = 0.
(b) The slight asymmetry between (a) and (b) that results from our

putting 1 in S− rather than in S+ is harmless because

v−1
1 u−1

i ujv2 ∈ S− \ {1}
in the argument above for (a).

The next lemma records two simple observations.

Lemma 4.2.
(a) QTT ∗Q = Q;
(b) Pu−1

i ujT
∗Q = 0 for i 6= j.
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Proof. (a) Notice that

TT ∗ =
1
n

nI +
∑
i6=j

uiu
−1
j

 .

For i 6= j, we have Quiu
−1
j Q = 0.

(b) Plainly, Pu−1
i Q = 0 and furthermore Pu−1

i uju
−1
k Q = 0 provided

k 6= j. Thus

Pu−1
i ujT

∗Q =
1√
n

n∑
k=1

Pu−1
i uju

−1
k Q = 0.

Theorem 4.3. The only reduced
√
n−eigenstate of u1 + · · ·un is φ, given

by

φ(s) =
{
n−|s|/2 s ∈ G+(G+)−1

0 else
.

Proof. Let ψ be such an eigenstate. Identifying ψ with a state of C∗r (G) and
then extending to a state f on all of L(`2(G)), we have f((T ∗−I)(T−I)) = 0.
In light of Lemma 4.1(a), we need only show f(P ) = 1 (that is, f(Q) =
0) in order to prove the theorem. Suppose that f(Q) > 0. Let g be the
state of L(`2(G)) defined by g(X) = f(QXQ)/f(Q). Then g(Q) = 1, and
furthermore

g((I − T )(I − T ∗)) = f(Q)−1(f(Q)− f(QTQ)− f(QT ∗Q) + f(QTT ∗Q)).

Because QT ∗Q = T ∗Q, and because I − T ∗ is in the right kernel of f , we
have f(QT ∗Q) = f(Q). Taking adjoints gives f(QTQ) = f(Q). Lemma
4.2(a) now makes g((I−T )(I−T ∗)) = 0. It follows from Lemma 4.1(b) that
g(u−1

i uj) = 1/n for i 6= j. Consider now f(u−1
i uj). We have

f(Pu−1
i ujQ) = f(Pu−1

i ujT
∗Q) = 0

by Lemma 4.2(b). (We have already shown that f((Q−QT )(Q−T ∗Q)) = 0,
so f(XQ) = f(XT ∗Q) for all X in L(`2(G)).) Taking adjoints and swapping
i and j shows that f(Qu−1

i ujP ) = 0. Plainly Pu−1
i ujP = 0, so we have

f(u−1
i uj) = f(Qu−1

i ujQ) = f(Q)g(u−1
i uj) =

f(Q)
n

for i 6= j. Now f(T ∗T ) = f(I) = 1 because I − T is in the left kernel of f .
This forces the sum over unequal i and j of f(u−1

i uj) to vanish, but by what
we have just shown, this sum is (n− 1)f(Q). Thus f(Q) must after all be 0.

We conclude this paper with a look at the states of C∗r (G) that have a
polynomial in one of the generators in their left kernel. The simplest case is
u1 − z, where z is a complex scalar of modulus 1. Let G1 be the subgroup
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of G generated by u1, and let χ1 be the characteristic function of G1. It is
easily checked that

χ1(s) = lim
k→∞

1
k
〈sξk, ξk〉

for every s in G, where ξk is the characteristic function of {u1, u
2
1, . . . , u

k
1},

so χ1 is a reduced state of G. It is plainly also a 1−eigenstate for u1. To
obtain z−eigenstates (for |z| = 1), precede χ1 by the automorphism of the
group algebra that sends u1 to zu1 and fixes the other generators. This gives
the reduced z−eigenstate χz, which satisfies χz(u

j
1) = zj and χz(s) = 0 for

s in G \G1. Let us write πz for the unitary representation of G constructed
from χz.

The representations πz were first considered by H. Yoshizawa in [Y], where
it is shown that these representations are irreducible, unitarily inequivalent
to one another, and weakly contained in the left regular representation.
These facts also follow from the lemma below, of course. Notice, by the
way, that π1 is the representation of G that comes from its left action on
G/G1.

Lemma 4.4. For |z| = 1, the only reduced state ψ of G such that ψ(u1) = z
is χz.

Proof. We may take z = 1 without loss of generality. The Cauchy-Schwarz
inequality shows that ψ(u1s) = ψ(su1) = ψ(s) for every s in G, so ψ is
identically 1 on G1, and constant on each double coset G1sG1. If s /∈ G1,
then 0 belongs to the norm-closed convex hull of G1sG1 in C∗r (G). (This
follows from Theorem IV J in [AO] because the double coset contains an
infinite free subset of G, and also from the averaging result in [A].) Thus
ψ(s) = 0.

The following theorem (whose proof was kindly supplied by the referee
of this paper in place of a more involved argument) shows that only finitely
many reduced pure states ofG can have a polynomial in one of the generators
in their left kernel, namely (if the generator is u1) the χz’s for unimodular
zeros z of the polynomial.

Theorem 4.5. Let p be a polynomial with complex coefficients, and let ψ
be a reduced state of G such that ψ(|p(u1)|2) = 0. Then ψ must be a convex
combination of χz’s for z’s among the zeros of p on the unit circle. Said
another way, the only representations π of G weakly contained in the left
regular representation such that π(p(u1)) has a nonzero kernel are direct
sums of πz’s (with p(z) = 0).

Proof. Let H,π, ξ be the Hilbert space, unitary representation, and unit
cyclic vector constructed from π, so ψ(s) = 〈π(s)ξ, ξ〉. Thus, π(p(u1))ξ = 0.
Restricting to the C∗−subalgebra A of C∗r (G)generated by u1 — which we
identify in the usual way with the algebra of continuous complex functions



170 W. PASCHKE

on the unit circle — we find that ψ|A is a convex combination of point
masses at zeros of p on the circle. By considering π(g(u1))ξ for continuous
functions g on the circle that take the value 1 at a particular zero of p and
vanish at all the other zeros that p has on the circle, we obtain nonzero
vectors ξ1, . . . , ξk in H and distinct modulus-one zeros z1, . . . , zk of p such
that

π(f(u1))ξ =
k∑

j=1

f(zj)ξj

for all continuous functions f on the circle. By construction (or for other
reasons), the vectors ξj are pairwise orthogonal and sum to ξ. (Only the
zeros of p that contribute positively to ψ|A as a convex combination of
point masses are counted among the zj ’s; we ignore the other zeros of p.)
For j = 1, . . . , k, let αj = ||ξj ||2 and let Hj be the closed subspace of H
spanned by π(G)ξj . Since 〈π(u1)ξj , ξj〉 = 〈π(u1)ξ, ξj〉 = αjzj , the reduced
state α−1

j 〈π(·)ξj , ξj〉 must by 4.4 be χzj and the representation obtained
by restricting π to Hj must be the Yoshizawa representation πzj . These
subrepresentations are therefore irreducible and unitarily inequivalent. It
follows that the subspaces Hj are orthogonal to one another. (If Pi is the
orthogonal projection of H on Hi, then the restriction of Pi to Hj interwines
the restrictions of π to Hj and Hi.) The orthogonality of the Hj ’s makes

〈π(s)ξ, ξ〉 =
k∑

j=1

〈π(s)ξj , ξj〉 =
k∑

j=1

αjχzj (s)

for all s in G.
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