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We extend the work done by Bolker and Roth in calculat-
ing the dimensions of the stress spaces of complete bipartite
frameworks. We will present results which are analogous to
those known for complete bipartite frameworks, yet hold for
a much wider class of bipartite frameworks. The main results
give the dimensions of the stress spaces for certain classes of
frameworks, which are easily calculated using only the number
of bars, the number of joints, and knowledge of the geometry
of the specific realization of the framework.

1. Introduction.

A bar and joint framework in d-space is a pair (J,E), where J is an indexed
set of points {a1, a2, a3, . . . , av} from Pd (projective d-space), called the
joints, and E is a set of unordered pairs {{ai, aj}, . . . } called the bars. This
also defines an obvious graph associated with the bar and joint framework
called the underlying graph.

Definition 1.1. A bipartite framework is a framework whose underlying
graph is bipartite.

For the remainder of this paper we use Kmn to denote both the complete
bipartite framework and the underlying complete bipartite graph Kmn.

One reason the rigidity of bipartite frameworks is of such interest is be-
cause they are examples of frameworks that contain no triangles. In fact,
around the turn of the century it was known that the framework K33 in the
plane was stress-free if the joints were in generic position; yet if the 6 joints
of the framework fell on a conic, there would be a stress and the framework
would become nonrigid or flexible [1]. Moreover, in 1978 Whiteley made
a similar conjecture for K46 in 3-space. In 1980, Bolker and Roth wrote
the paper “When is a bipartite graph a rigid framework?” [1] which gives a
formula for the dimension of the stress space of any realization of a complete
bipartite framework in d-space. The result of Bolker and Roth will be stated
after some notation is presented. The purpose of this paper is to generalize
the results of Bolker and Roth to some classes of bipartite frameworks which
are not complete.
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We study the dimension of the stress space because the existence of a
stress implies that some bars are redundant. Identifying the number of re-
dundant bars is crucial to determining the infinitesimal rigidity of a frame-
work. For more on combinatorial rigidity one should see [5, 4, 2, 6, 7].

For a bipartite framework G with independent vertex sets A and B, a
stress is a real valued function λab on the bars such that

1.
∑

a∈A λabab = 0 for all b ∈ B
2.

∑
b∈B λabab = 0 for all a ∈ A

where λab = 0 when {a, b} /∈ G and ab denotes the Plücker coordinates of
the wedge product of the points a and b from Pd.

We denote the stress space of a bipartite framework G by ΩG. Hence ΩG

is the space of real |A| × |B| matrices satisfying Equations 1 and 2, given
above, and having zeros in the prescribed positions.

2. Notations.

We have had to generalize the notation of Bolker and Roth to make sense
in this more general setting. For simplicity most of the needed notation is
stated here.

Let G be a bipartite framework and λ ∈ ΩG. Denote ρa =
∑

b∈B λab for
every a ∈ A and γb =

∑
a∈A λab for every b ∈ B, respectively called the row

sums and column sums of a stress.
For each b ∈ B define Ab(G) = {a ∈ A|{a, b} ∈ G} and for each a ∈ A

define Ba(G) = {b ∈ B|{a, b} ∈ G}.
Given a bipartite framework on the vertex sets A = {a1, a2, a3, . . . , am}

and B = {b1, b2, b3, . . . , bn} define the linear map τG : ΩG → Rm+n by

τG(λ) = (ρa1 , ρa2 , ρa3 , . . . , ρam , γb1 , γb2 , γb3 , . . . , γbn).

Much of our work will be done in projective d−space. To simplify matters,
unless otherwise stated, we will use the standard homogeneous coordinates
for points from Pd. The standard homogeneous coordinates for a nonzero
point x ∈ Pd with x = (x1, x2, . . . , xd+1) is the coordinates of 1

xj
x where xj

is the value of latest nonzero entry of x.
Let S = {s1, s2, s3, . . . , st} ⊂ Pd; fix the homogeneous coordinates of the

points of S; and define

D(S) =

{
(α1, α2, α3, . . . , αt)

∣∣∣ t∑
i=1

αisi = 0

}
⊂ Rt.

Note that the t-tuple of zeros is in D(S). Furthermore, D(S) is closed under
addition and scalar multiplication and is therefore a vector space over R.
We call D(S) the vector space of dependencies of S.
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We also will make use of the Kronecker product of an l-tuple with a
k-tuple which is defined as follows: Given two points

a = (a1, a2, a3, . . . , al) ∈ Pl−1

and

b = (b1, b2, b3, . . . , bk) ∈ Pk−1,

using the standard homogeneous coordinates, define a ⊗ b to be the l × k
matrix M with Mij = ai · bj . Moreover, given two sets E ⊂ Pl−1 and F ⊂
Pk−1 we use E ⊗ F to denote the vector space of finite linear combinations
of elements of the form e⊗ f with e ∈ E and f ∈ F .

Finally, we will use the following notations:

D(C2
G) = D({c⊗ c|c ∈ CG}),

where CG is given by

CG = {a ∈ A|a ∈ 〈Ba(G)〉} ∪ {b ∈ B|b ∈ 〈Ab(G)〉}.

Now we may state the Bolker and Roth result for bipartite frameworks.
Let Kmn be a complete bipartite framework on the vertex sets A and B

such that |A| = m and |B| = n. Define C = (A ∩ 〈B〉) ∪ (〈A〉 ∩ B). Note
that C = CKmn .

Theorem 2.1. dim(ΩKmn) = dim(D(A)) dim(D(B)) + dim(D(C2)).

In order to apply these results on the stress spaces of general bipartite
frameworks we must determine dim(D(C2

G)). For points in P2 Crapo has a
nice geometric interpretation of dim(D(C2

G)) [3]. The table below summa-
rizes these results for C ⊂ P2

dim D(C2) Realization and cardinality of the set C

|C| − 6 |C| ≥ 6 in general position
|C| − 5 |C| ≥ 5 points fall on a conic
|C| − 4 |C| ≥ 4 points fall on four distinct points, no three

collinear or all fall on a line and a point off the line
|C| − 3 |C| ≥ 3 fall on three non-collinear points or on a line
|C| − 2 |C| ≥ 2 fall on two points
|C| − 1 |C| ≥ 1 fall on one point

Table 1.

In general, it is complicated to calculate dim(D(C2
G)) when the points of

CG lie in Pd with d > 2.
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3. Some Introductory Results.

For the remainder of this paper we will use the sets A and B to indicate the
vertex sets of a given bipartite framework.

As in the Bolker and Roth paper we find the dimension of the stress space
ΩG by calculating both the dim(ker(τ)G) and dim(Im(τ)G).

With this end in mind, we state the following three lemmas. They are
stated separately from the main results because they hold for all bipartite
frameworks G.

Lemma 3.1. If G is a bipartite framework, then ker(τ)G ⊂ D(A)⊗ D(B).

Proof. Let λ ∈ ΩG and assume λ ∈ ker(τ)G. Hence λ satisfies the following:
1. For every b ∈ B we have

∑
a λaba = 0 and,

2. For every a ∈ A we have
∑

b λabb = 0.

The above shows that every row of λ is an element of D(B) and every
column of λ is an element of D(A). We now prove λ ∈ D(A)⊗ D(B).

Define an ordering of the entries Mij of an m × n matrix M , according
to the following ordering on the indices: Mij is earlier than Mkl if

1. i < k or
2. i = k and j < l.
Let λij be the earliest nonzero entry of λ and construct the following

element of D(A)⊗ D(B): Let µB = (λi1, λi2, . . . , λin) ∈ D(B) and let µA =
(λ1j , λ2j , . . . , λmj) ∈ D(A). Hence, w = 1

λij
µA ⊗ µB ∈ D(A) ⊗ D(B) and

therefore N = λ− w is a matrix whose rows and columns are still elements
of D(A) and D(B) respectively. Now we show Nkl = 0 if Nkl is earlier in the
ordering than Nij . Assume first Nkl 6= 0 with Nkl < Nij . This implies that

wkl =
λilλkj

λij
6= 0.

Therefore both λil 6= 0 and λkj 6= 0. Now, if k < i, then λkj 6= 0, which
contradicts the fact that λij was the earliest nonzero entry. On the other
hand, if k = i and l < j then λil 6= 0 brings us to the same contradiction.
Therefore, the earliest nonzero position of N appears later than Nij . Con-
tinuing in this manner we write λ as a linear combination of elements from
D(A)⊗D(B). Consequently we see ker(τ)G ⊂ D(A)⊗D(B), as required. �

This gives us an upper bound on dim(ker(τ)G).
The following lemma is proved in Chapter 11 of Crapo’s book [2]. It is

independent of the framework G.

Lemma 3.2. Assume that λ is a matrix λ : A×B → R, ρ and γ are maps
ρ : A → R and γ : B → R, and B1 ⊂ B such that B1 is a basis for the span
of B. If

(1)
∑

a λaba = γbb for all b ∈ B −B1, and
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(2)
∑

b λabb = ρaa for all a ∈ A,

then the following are equivalent:
(i)

∑
a λaba = γbb for all b ∈ B1,

(ii)
∑

a ρaa⊗ a =
∑

b γbb⊗ b.

This lemma is used later when showing that D(C2
G) ⊂ Im(τ)G.

The following lemma will give an upper bound for dim(Im(τ)G).

Lemma 3.3. Let G be a bipartite framework. Then Im(τ)G ⊂ D(C2
G).

Proof. Let λ ∈ ΩG. Hence, we have
1.

∑
a λaba = γbb,

2.
∑

b λabb = ρaa

where λab = 0 if {a, b} /∈ G. Hence τ(λ) = (ρa, . . . , γb, . . . ). Clearly λ
satisfies conditions 1, 2, and i of Lemma 3.2. Therefore we may conclude∑

a

ρaa⊗ a =
∑

b

γbb⊗ b

and
Im(τ)G ⊂ D((A ∪B)2).

We conclude from 1, above, that if b /∈ CG then γb = 0. Similarly, 2 yields,
if a /∈ CG then ρa = 0. Hence τ(λ) ∈ D(C2

G)and therefore Im (τ)G ⊂ D(C2
G).

We note that zeros can always be added in the appropriate positions so that
D(C2

G) ⊂ D((A ∪B)2). �

4. Frameworks With Complete Bipartite Spanning
Subframeworks.

We will be interested in realizations of bipartite frameworks on the vertex
sets A and B which have the following property:

Definition 4.1. We say a bipartite framework G has a complete bipartite
spanning subframework if there exists a complete bipartite subframework of
G on the vertex sets A and B1 ⊂ B, such that B1 is a basis for 〈B〉.

Theorem 4.2. Let G be a bipartite graph with a complete bipartite spanning
subframework. Order the elements of the set B so that

B1 = {bp+1, bp+2, bp+3, . . . , bn},
then dim(ker(τ))G =

∑p
j=1 dim(D(Abj

(G))).

Proof. Take the following elements as a basis for D(B):

wj = (0, 0, . . . , 1, . . . , 0, βp+1, βp+2, . . . , βn)

where the 1 is in the jth position. For each j = 1, 2, 3, . . . , p choose {f1j , f2j ,
. . . , fkjj}, a basis for D(Abj

(G)) where kj = dim(D(Abj
(G))) . Here we
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mention that we can make each fij an m-tuple by adding the zeros in the
appropriate positions. Thus, we will have fij ∈ D(A).

Let D = {Dij} be the set of elements from D(A)⊗ D(B) given by

Dij = fij ⊗ wj .

We claim D is a basis for ker(τ)G. It will be convenient to define the
following: For any matrix M let Colk(M) denote the kth column of M .
Note, by construction, Colh(Dij) = 0 for h ≤ p except when h = j, in which
case Colj(Dij) = fij .

Clearly |D| =
∑p

j=1 dim(D(Abj
(G))). We first show that D is indepen-

dent. Assume ∑
l

∑
i

νilDil = 0.

Since Colj(
∑

l

∑
i νilDil) =

∑
i νijfij , we can conclude for each j = 1, 2, 3,

. . . , p that we have
∑

i νijfij = 0. Therefore νij = 0 for every i and j
because, for each j, {f1j , f2j , f3j , . . . , fkjj} is independent. Hence, D itself
is independent.

Now we show 〈D〉 = ker(τ)G. By construction, every element of D has
zeros in the positions i, j where {ai, bj} /∈ G, hence for any coefficients νij

we have ∑
ij

νijDij ∈ ker(τ)G.

Therefore, 〈D〉 ⊆ ker(τ)G.
Conversely, let λ ∈ ker(τ)G. We will show that there are coefficients νij

such that λ =
∑

ij νijDij . For any j with 1 ≤ j ≤ p we have Colj(λ) ∈
D(Abj

(G)). Therefore, there are coefficients νij such that

Colj(λ) =
kj∑

i=1

νijColj(Dij).

Hence, Colj(λ−
∑kj

i=1 νijDij) = 0. Therefore, Colj(λ−
∑

l

∑kl
i=1 νilDil) = 0

for j = 1, 2, 3, . . . , p.
Let E = λ−

∑
l

∑kl
i=1 νilDil. We see E is a linear combination of m× n

matrices each having the property that their rows are elements of D(B).
Therefore E itself has this property. But Colj(E) = 0 for j = 1, 2, 3, . . . , p.
Since each row of E is an element of D(B), which can be nonzero only on a
basis of 〈B〉, we may conclude that E = 0. We have shown ker(τ)G = 〈D〉.
Thus, dim(ker(τ)G) =

∑
j dim(D(Abj

(G))). �

Theorem 4.2 gives the dim(ker(τ)G) for any realization of a framework
containing a complete bipartite spanning subframework. Next we find the
dim(Im(τ)G) for these frameworks.
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Theorem 4.3. A pair of vectors (ρa, a ∈ A) and (γb, b ∈ B) are row and
column sums of a stress of a bipartite framework G with a complete spanning
subframework if and only if

(i)
∑

a ρaa⊗ a =
∑

b γbb⊗ b and
(ii) ρa = 0 if a /∈ 〈Ba(G)〉, γb = 0 if b /∈ 〈Ab(G)〉.

Proof. Let λ ∈ ΩG. Then its row and column sums ρa and γb satisfy
(1)

∑
a λaba = γbb and

(2)
∑

b λabb = ρaa.

Using Lemma 3.2 we see that property (i) holds for a stress of any bipartite
framework.

Furthermore, since λ is a stress, it is clear from (2) that if a /∈ 〈Ba(G)〉
then ρa = 0. Similarly, using (1) we find γb = 0 whenever b /∈ 〈Ab(G)〉.

Conversely, assume (i) and (ii), and let B1 ⊂ B be the basis of 〈B〉 so that
the subframework on the sets A and B1 is a complete bipartite framework.

Note, for every s ∈ B − B1, we know γss ∈ 〈As(G)〉. Hence, for each
s ∈ B −B1, there exist scalars λas such that∑

a

λasa = γss

where λas = 0 if {a, s} /∈ G.
Furthermore, since ρaa ∈ 〈Ba〉 ⊂ 〈B〉 we have

ρaa−
∑

s∈B−B1

λass ∈ 〈B〉 for all a ∈ A.

Hence, for every a ∈ A, there exist scalars λax with x ∈ B1 such that∑
x∈B1

λaxx = ρaa−
∑

s∈B−B1

λass.

Therefore, ∑
b∈B

λabb = ρaa for all a ∈ A.

Again, using Lemma 3.2, we conclude that for all x ∈ B1,∑
a

λaxa = γxx.

Therefore λ is a stress with the required row and column sums. �

Corollary 4.4. Let G be a bipartite framework with a complete bipartite
spanning subframework. Order the elements of the set B so that

B1 = {bp+1, bp+2, bp+3, . . . , bn}.
Then

dim(ΩG) =
p∑

j=1

dim D(Abj
(G)) + dim D(C2

G).
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Notice that in the case where G is a complete bipartite framework
Abj

(G) = A for every bj ∈ B2 and p = dim D(B). Hence,

p∑
j=1

dim D(Abj
(G)) = dim(D(A)⊗ D(B))

and CG = (A ∩ 〈B〉) ∪ (〈A〉 ∩ B). Therefore if G is a complete bipartite
framework this theorem gives the same result as the theorem of Bolker and
Roth.

Obviously, not every bipartite framework has a complete bipartite span-
ning subframework. In fact, one should note that having a complete bipartite
spanning subframework is dependent upon the particular realization of the
framework. For example, let G be the framework obtained by removing the
two bars, {a1, b1} and {a2, b2} from K44 realized in the plane. Furthermore,
assume that the set A has no three points collinear and the set B has no
three points collinear. One can easily check that, for this realization, G has
no complete bipartite spanning subframework. On the other hand, if G is
realized so that B is collinear, then there is a complete bipartite spanning
subframework. Simply choose B1 = {b3, b4}.

Now, we answer the question: Does the formula from Corollary 4.4 yield
the proper dimension of the stress space for frameworks not satisfying its
conditions? The next two examples give both a case when a framework G
has no complete bipartite spanning subframework and Corollary 4.4 does
not yield the proper dimension and a case when a different realization of G,
still having no complete bipartite spanning subframework, has Corollary 4.4
yielding the proper dimension.

As above, let G be a framework obtained by removing the two bars {a1, b1}
and {a2, b2} from K44 realized in the plane. Furthermore let the joints of
G be in generic position. In this case dim(D(C2

G)) = 2 from Table 1. From
this we would hope dim(Im(τ)G) = 2. However, one can check that this
realization has dim(Im(τ)G) = 1.

Now, assume that G is realized, as seen in Figure 1, where we have no
three points of the set A being collinear, no three points of the set B being
collinear, the points {a1, a3, a4, b2, b3, b4} are on one conic, and the points
{a2, a3, a4, b1, b3, b4} are on a different conic. Here we have CG = A ∪ B,
dim(D(C2

G)) = 2 and we can show, in this case, we do have dim(Im(τ)G) = 2.
Alternatively, there are some frameworks for which Corollary 4.4 applies

to all but a few very special realizations. For example, if we let G = K44

in the plane with only the bar {a1, b1} removed, then every realization of G
with distinct points, such that b1 is in the span of B −{b1}, has a complete
bipartite spanning subframework. Therefore, we can calculate the dimension
of the stress space for G in any of these realizations. In fact we can use Corol-
lary 4.4 to predict the realizations for which ΩG would change. For instance,
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Figure 1. Special Realization of K44.

if all the points of CG fall on a circle, then we still have dim D(Ab1) = 0 but
now dim(D(C2

G)) = 3.

5. Conclusion.

As one can see, the dimension of ΩG may change dramatically for each
realization of the framework G. Furthermore, the examples of the previous
section show that the dim D(C2

G) is not capable of predicting these changes
in frameworks with no complete bipartite spanning framework. Although
there are techniques which allow us to calculate the dimension of the stress
space of any bar and joint framework, there are still no results which yield
the geometric insight that the Bolker and Roth’s result and this result give
for general bipartite frameworks.
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