Pacific Journal of Mathematics

EXISTENCE AND UNIQUENESS OF SOLUTIONS ON BOUNDED DOMAINS TO A FITZHUGH–NAGUMO TYPE ELLIPTIC SYSTEM

Carolus Reinecke and Guido Sweers

Volume 197 No. 1 January 2001

PACIFIC JOURNAL OF MATHEMATICS Vol. 197, No. 1, 2001

EXISTENCE AND UNIQUENESS OF SOLUTIONS ON BOUNDED DOMAINS TO A FITZHUGH–NAGUMO TYPE ELLIPTIC SYSTEM

Carolus Reinecke and Guido Sweers

In this paper we prove the existence and uniqueness of the boundary layer solution to a semilinear eigenvalue problem consisting of a coupled system of two elliptic partial differential equations. Although the system is not quasimonotone, there exists a transformation to a quasimonotone system. For the transformed system we may and will use maximum (sweeping) principle arguments to derive pointwise estimates. A degree argument completes the uniqueness proof.

1. Introduction.

We consider the following nonlinear eigenvalue problem:

$$
\begin{cases}\n(\mathbf{P}_{\lambda}) \quad \begin{cases}\n-\Delta u = \lambda (f(u) - v) & \text{in } \Omega, \\
-\Delta v = \lambda (\delta u - \gamma v) & \text{in } \Omega, \\
u = v = 0 & \text{on } \Gamma = \partial \Omega,\n\end{cases}\n\end{cases}
$$

with $\lambda, \delta, \gamma > 0$ and where $\Omega \subset \mathbb{R}^N$ is a smooth bounded domain. As usual, a domain is an open connected set. The nonlinearity f is assumed to be smooth and like a third order polynomial. We prove the existence of a curve of positive solutions (u_λ, v_λ) to (P_λ) for λ large enough. These solutions are shown to be, except for a boundary layer of width $O(\lambda^{-1/2})$, close to $(\rho, (\delta/\gamma)\rho)$ where ρ a positive zero of $f(s) - (\delta/\gamma)s$ and $f'(\rho) < 0$. The stability of these solutions as equilibria of the parabolic system

(1)
$$
\begin{cases} u_t = \Delta u + \lambda (f (u) - v) & \text{in } \mathbb{R}^+ \times \Omega, \\ v_t = \Delta v + \lambda (\delta u - \gamma v) & \text{in } \mathbb{R}^+ \times \Omega, \\ u = v = 0 & \text{on } \mathbb{R}^+ \times \Gamma, \end{cases}
$$

with appropriate initial conditions is also proven. Finally it is shown that these solutions are unique in an appropriate order interval.

The question of existence of solutions to (P_{λ}) with $\lambda = 1$ and with different kinds of nonlinearities was studied by Klaasen and Mitidieri [9] and De Figueiredo and Mitidieri [7], see also Rothe [21] and Lazer and McKenna [12]. The fact that the second equation can be inverted to solve v in terms of u and that the problem can then be wri[tten](#page-1-0) as a single equation in u was used extensively. In particular this single equation can be treated by variational techniques. Using this approach it was shown for example in $[9]$ with $f(u) = u(u-1)(a-u)$, $0 < a < 1/2$ and in [7] for more general f of the same type, that there exist at least two nontrivial solutions, under the assumptions that δ/γ is small enough and Ω contains a large enough ball. By rescaling, this implies that there exist nontrivial solutions to (P_λ) if λ is large and δ/γ small.

Our treatment of the problemd[iffe](#page-29-1)rs from the va[riat](#page-28-2)ional approach mentioned above. By imposing some natural restrictions on the parameters, which are satisfied if δ/γ is small, it is possible to make a transformation of (P_{λ}) and a modification of f to obtain a quasimonotone system. Solutions [to](#page-28-3) [the](#page-28-4) quas[imo](#page-29-2)notone system in a certain range correspond to solutions to the original problem. This approach was also used in $\boxed{19}$ as well as in $\boxed{14}$ for other systems of equations. The advantage of working with a quasimonotone system is that for [suc](#page-1-0)h systems a comparison principle holds. From this follows the existence of solutions between an ordered pair of sub- and supersolutions. For such [syst](#page-28-5)ems one also has an analogue of McNabb's *sweeping principle*, see [15], [2], [4] and [22]. This will be a main tool in many of the [p](#page-28-0)roofs.

Usin[g](#page-28-1) this quasimonotone approach we are able to give a complete quali[tati](#page-1-0)ve description of a specific solution to (P_{λ}) . This qualitative description allows us to prove uniqueness and stability results. Results in this direction were obtained by Lazer and McKenna [12] for a system with $\delta = \gamma$ and f such that $f(s)/s$ is decreasing on \mathbb{R}^+ . Existence and positivity of solutions were considered in [9] and [7].

If we set $\delta = 0$ in (P_{λ}) then the problem reduces to the well studied scalar problem

(S_λ)
$$
\begin{cases}\n-\Delta u = \lambda f(u) & \text{in } \Omega, \\
u = 0 & \text{on } \Gamma.\n\end{cases}
$$

There is an extensive literature on such kin[d of](#page-1-0) problems. We just mention $[2]$, $[4]$, $[13]$ and more recently $[5]$. We note that our treatment of the quasim[on](#page-6-0)otone system is similar to the treatment of problem (S_{λ}) as was done in $[2]$ and $[4]$. Th[e r](#page-17-0)esults of the p[res](#page-24-0)ent paper were announced in $[20]$.

The structure of the paper is as follows. In the next section the precise assumptions on the nonlinearity f are stated, as well as the conditions which we impose on the parameters γ and δ . It is then shown how (P_{λ}) can be transformed to a quasimonotone system. The main results are also stated in this section. In Section 3 we prove several auxiliary results. The proofs of the main theorems are given in Section 4. In Appendix A we define our notion of sub- and supersolutions for quasimonotone systems and give some related results. In particular we state a version of the sweeping principle for quasimonotone systems. This principle is used repeatedly in the proofs.

2. Assumptions and main results.

The assumptions on f are the following.

Condition A. The function $f \in C^{1,1}(\mathbb{R})$, $f(0) \geq 0$ and there exists $\sigma_0 > 0$ such that for every $0 \le \sigma < \sigma_0$ there exist $\rho_{\sigma}^- < \rho_{\sigma}^+$ with $\rho_{\sigma}^+ > 0$ such that

- (1) $f(\rho_{\sigma}^{\pm}) = \sigma \rho_{\sigma}^{\pm}$ and $f(s) > \sigma s$ for $\rho_{\sigma}^- < s < \rho_{\sigma}^+$;
- (2) $f'(s) < 0$ for all $s \in (\rho_{\sigma_0}^+, \rho_0^+)$;
- (3) $J_{\sigma}(\rho) > 0$ on $(0, \rho_{\sigma}^{+})$ for all $0 \le \sigma < \sigma_{0}$ where

(2)
$$
J_{\sigma}(\rho) := \int_{\rho}^{\rho_{\sigma}^{+}} (f(s) - \sigma s) ds.
$$

See Figure 1.

E[xam](#page-28-6)ple 1. The function $f(u) = au - u^3$ with $a > 0$, see [12] and [7], satisfies Condition A above with $\sigma_0 = 2a/3$.

Example 2. Consider the function $f(u) = u(a - u)(u - 1)$ with $a > 0$. Condition A holds if $a < 1/2$. In this case $\sigma_0 = (2a^2 - 5a + 2)/9$. With this nonlinearity problem (P_{λ}) is an extension of the FitzHugh-Nagumo equations, see $[9]$ and $[10]$.

As was said in the introduction, an important step in our analysis is to transform (P_{λ}) and to modify f in order to obtain a quasimonotone system. For the definition of a quasimonotone system and some results for such systems we refer to Appendix A. In order to transform system (P_{λ}) we need the following assumption on the parameters δ and γ :

Condition B1. Let $M := \max\{-f'(s) : 0 \le s \le \rho_0^+\}$ and suppose that $\gamma - 2$ √ $\delta > M$.

We define β and α by

(3)
$$
\beta := \frac{1}{2}(\gamma - M) - \frac{1}{2}\sqrt{(\gamma - M)^2 - 4\delta},
$$

$$
\alpha = \gamma - \beta.
$$

If Condition B1 holds then $\beta \in \mathbb{R}$ and $\alpha, \beta > 0$. Note that $-\beta(\beta + M) =$ $\delta - \gamma \beta$ and that

(5)
$$
\vartheta := 1 - \frac{\delta}{\gamma \beta} > 0.
$$

One may verify that (u, w) is a solution to

(Q_λ)
$$
\begin{cases}\n-\Delta u = \lambda (f (u) - \beta u + \beta w) & \text{in } \Omega, \\
-\Delta w = \lambda (f (u) + M u - \alpha w) & \text{in } \Omega, \\
u = w = 0 & \text{on } \Gamma,\n\end{cases}
$$

if and only if $(u, \beta u - \beta w)$ is a solution to (P_{λ}) .

Let $\tilde{f} \in C^{1,1}(\mathbb{R})$ be a functi[on](#page-3-1) satisfying $\tilde{f}(s) = f(s)$ for all $s \in [0, \rho_0^+]$ with \tilde{f}, \tilde{f}' bounded on R and with $\tilde{f}'(s) + M \geq 0$ for all $s \in \mathbb{R}$. If we replace f in (Q_λ) by \tilde{f} the system becomes quasimonotone. Since we are interested in solutions (u, v) to (P_{λ}) with u positive and max $u < \rho_{\delta/\gamma}^+ \leq \rho_0^+$ we can assume without loss of g[en](#page-4-0)erality the following:

Condition A*. The function f satisfies Condition A with f and f' bounded and $f'(s) + M \ge 0$ for all $s \in \mathbb{R}$ and $f(s) \le 0$ for $s \ge \rho_0^+$.

Another condition which we impose is:

Condition B2. The constant β defined in (3) satisfies $\beta < \sigma_0$.

Under this condition one has [fo](#page-28-4)r λ large enough a positive nontrivial solution to the scalar prob[lem](#page-4-1)

$$
\begin{cases}\n-\Delta u = \lambda (f (u) - \beta u) & \text{in } \Omega, \\
u = 0 & \text{on } \Gamma,\n\end{cases}
$$

which has its maximum in the interval (ρ_{β}^-) $\bar{\beta}, \rho_{\beta}^{+}$), see [4]. This solution will be used to obtain a nontrivial subsolution to (Q_{λ}) for λ large enough. The definition of sub- and supersolutions is given in Appendix A.

We make some remarks on Conditions B1 and B2. Both conditions are satisfied if δ/γ is small enough. More precisely, for fixed $\delta > 0$, B1 and B2 are satisfied if

$$
\gamma > \begin{cases} M + 2\sqrt{\delta} & \text{if } 0 \le \delta < \sigma_0^2; \\ M + \sigma_0 + \delta/\sigma_0 & \text{if } \delta \ge \sigma_0^2. \end{cases}
$$

In the first theorem we prove the existence of [a cu](#page-1-0)rve of positive solutions to (P_{λ}) .

Theorem 2.1 (Existence of a curve of solutions). Let f satisfy Condition A, let γ , δ be such that Conditions B1 and B2 hold and assume that Γ is C^3 . Then there exist $\lambda^* > 0$ and a function $\Lambda \in C^1([\lambda^*, +\infty), C^2(\overline{\Omega}) \times C^2(\overline{\Omega}))$ such that $(u_\lambda, v_\lambda) := \Lambda(\lambda)$ is a positive solution, i.e., $u_\lambda, v_\lambda \geq 0$, to (P_λ) for all $\lambda \geq \lambda^*$. Furthermore

(1)
$$
\max u_{\lambda} \in (\rho_{\delta/\gamma}^-, \rho_{\delta/\gamma}^+)
$$
 and $\max v_{\lambda} \in \frac{\delta}{\gamma}(\rho_{\delta/\gamma}^-, \rho_{\delta/\gamma}^+);$
(2) $\lim_{\lambda \to \infty} \Lambda(\lambda) = \left(\rho_{\delta/\gamma}^+, \frac{\delta}{\gamma} \rho_{\delta/\gamma}^+\right)$ uniformly on compact subsets of Ω .

The stability of the solutions obtained in the theorem above will be considered in the space $X := C(\overline{\Omega}) \times C(\overline{\Omega})$. For $\lambda > \lambda^*$ we define the linear operator $A_{\lambda}: D(A_{\lambda}) \subset X \to X$ by

(6)
$$
D(A_{\lambda}) := \{(u, v) \in X; (\Delta u, \Delta v) \in X\}
$$

and

(7)
$$
A_{\lambda}\begin{pmatrix} u \\ v \end{pmatrix} := \begin{pmatrix} -\Delta & 0 \\ 0 & -\Delta \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} - \lambda \begin{pmatrix} f'(u_{\lambda}) & 1 \\ \delta & -\gamma \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}
$$

for $(u, v) \in D(A_\lambda)$. Here u_λ is the first component of $\Lambda(\lambda)$. In the definition of $D(A_\lambda)$, Δu and Δw are to be understood in distributional sense.

Theorem 2.2 (Stability). Assume that the conditions of Theorem 2.1 hold and let λ^* and Λ be as in that theorem. For every $\lambda \geq \lambda^*$ the solution $\Lambda(\lambda) = (u_{\lambda}, v_{\lambda})$ to (P_{λ}) is an exponentially stable equilibrium solution to the initial value problem (1) i.e., for every $\lambda \geq \lambda^*$ there exists $\nu_{\lambda} > 0$ such that the spectrum $\sigma(A_{\lambda})$ is contained in $\{\nu \in \mathbb{C}\colon \text{Re}\,\nu > \nu_{\lambda}\}.$

Our last the[orem](#page-1-0) is a result on the uniqueness, in a restricted sense, of solutions to (P_λ) .

Theorem 2.3 (Uniqueness in order interval). Assume that the conditions of Theorem 2.1 hold and let λ^* and Λ be as in that theorem. For every function $z \in C_0(\Omega)$ with $z \geq 0$ and $\max z \in (\rho_{\beta}^{-})$ $\overline{\beta}$, $\rho_{\delta/\gamma}^+$ there exists $\lambda_z > \lambda^*$ such that if (u, v) is a solution to (P_{λ}) with $\lambda > \lambda_z$ and $u \in [z, \rho^+_{\delta/\gamma}]$ then $(u, v) = \Lambda(\lambda).$

In general one cannot expect uniqueness of solutions. Indeed it may for example be the case that the trivial solution is a stable solution to the problem. Then there will exist a third, unstable solution in $[0, \Lambda(\lambda)]$. This is the case when f is as in Example 2 and Conditions B1 and B2 hold, see $\left[19\right]$.

We end this section with a summary of the notation that will be used.

Notation:

- Let $u_1, u_2 \in C(\overline{\Omega})$. We write
	- $u_1 > u_2$ if $u_1(x) > u_2(x)$ for all $x \in \Omega$; $u_1 \geq u_2$ if $u_1 > u_2$ and $u_1 \neq u_2$;

 $u_1 > u_2$ if $u_1(x) > u_2(x)$ for all $x \in \Omega$.

- For $(u, w) \in C(\overline{\Omega}) \times C(\overline{\Omega})$ we shall use $(u, w)(x) = (u(x), w(x))$.
- Let $(u_i, w_i) \in C(\overline{\Omega}) \times C(\overline{\Omega}), i = 1, 2$. We write
	- (u_1, w_1) > (u_2, w_2) if $u_1 > u_2$ and $w_1 > w_2$;
	- $(u_1, w_1) \geq (u_2, w_2)$ if $(u_1, w_1) \geq (u_2, w_2)$ and $(u_1, w_1) \neq (u_2, w_2)$;
	- $(u_1, w_1) > (u_2, w_2)$ if $u_1 > u_2$ and $w_1 > w_2$.
- If $(u_1, w_1) \ge (u_2, w_2)$ we denote by $[(u_1, w_1), (u_2, w_2)]$ the order interval

$$
\{(u, w) \in C(\bar{\Omega}) \times C(\bar{\Omega}); (u_1, w_1) \le (u, w) \le (u_2, w_2) \}.
$$

- By $\mathcal{D}^+(\Omega)$ we denote the set of $z \in C_0^{\infty}(\Omega)$ with $z \geq 0$ and $\mathcal{D}'(\Omega)$ denotes the usual space of distributions.
- For $u_1, u_2 \in C(\overline{\Omega})$ we say $-\Delta u_1 \leq u_2$ in $\mathcal{D}'(\Omega)$ -sense if

$$
\int_{\Omega} u_1(-\Delta z) dx \le \int_{\Omega} u_2 z dx
$$

for all $z \in \mathcal{D}^+(\Omega)$.

• For a Banach space X we denote the bounded linear operators from X into X by $\mathcal{L}(X)$.

3. Preliminary results.

3.1. Estimates for positive solutions.

Proposition 3.1. Let B be the unit ball in \mathbb{R}^N . Suppose that f satisfies Condition A^* . Then there exists $\lambda_B > 0$ such that the problem

(8)
$$
\begin{cases}\n-\Delta u = \lambda_B(f(u) - \beta u + \beta w) & \text{in } B, \\
-\Delta w = \lambda_B(f(u) + M u - \alpha w) & \text{in } B, \\
u = w = 0 & \text{on } \partial B,\n\end{cases}
$$

has a solution (U_B, W_B) with the following properties:

- (1) $0 \leq (U_B, W_B) < (\rho_{\delta/\gamma}^+, \vartheta \rho_{\delta/\gamma}^+),$ with $\vartheta = 1 \delta/(\gamma \beta)$.
- (2) U_B and W_B are radially symmetric with

 $U'_{B}(0) = W'_{B}(0) = 0$ and $U'_{B}(r), W'_{B}(r) < 0$ on $(0, 1]$.

(3) $(U_B(0), W_B(0)) > (\rho_{\delta/\gamma}^-, \vartheta \rho_{\delta/\gamma}^-)$ and $W_B(0) \geq \vartheta \tau$ where $\tau := U_B(0)$.

P[r](#page-6-1)oof. S[inc](#page-28-4)e Condition B2 holds, $J_{\beta}(\rho) > 0$ for all $0 \le \rho < \rho_{\beta}^+$. This implies that for λ large enough, say $\lambda = \lambda_B$, there exists a positive solution \underline{u} to

$$
\begin{cases}\n-\Delta u = \lambda (f (u) - \beta u) & \text{in } B, \\
u = 0 & \text{on } \partial B,\n\end{cases}
$$

with max $\underline{u} \in (\rho_{\beta}^{-})$ $\bar{\beta}, \rho_{\beta}^{+}$, see [4]. Then $(\underline{u}, 0)$ is a subsolution to (8). Since $(\rho^+_{\delta/\gamma}, \vartheta \rho^+_{\delta/\gamma})$ is a supersolution with $(\underline{u}, 0) < (\rho^+_{\delta/\gamma}, \vartheta \rho^+_{\delta/\gamma})$ there exists a solution (U_B, W_B) with $\underline{u} < U_B < \rho_{\delta/\gamma}^+$ and $0 < W_B < \vartheta_{\delta/\gamma}$ to (8), see Proposition A.3. Using an extension due to Troy, [24], of results of Gidas, Ni and Nirenberg, $[8]$, to quasimonotone systems, we have that U_B and W_B are radially symmetric with $U_B'(0) = W_B'(0) = 0$ and $U_B'(r)$, $W_B'(r) < 0$ on the interval $(0, 1)$. Also $(-\Delta + \lambda_B \alpha) W_B = \lambda_B(f(U_B) + MU_B) \geq 0$ and by the strong maximum principle $W'_{B}(1) < 0$. Let $\tau := U_{B}(0)$. With $V_B = \beta (U_B - W_B)$ it also follows from the maximum principle that

(9)
$$
\max V_B < (\delta/\gamma)\tau.
$$

Indeed, $(-\Delta + \lambda_B \gamma)(V_B - \delta \tau/\gamma) = \lambda_B (U_B - \tau) \leq 0$ in B, with $V_B = 0$ on ∂B ∂B and (9) follows. Since V_B is also radially symmetric and decreasing, $V_B(0) = \beta (\tau - W_B(0)) < (\delta/\gamma)\tau$ and hence

$$
W_B(0) > (1 - \delta/(\gamma \beta))\tau = \vartheta \tau > \vartheta \rho_{\delta/\gamma}^-.
$$

Also $V'_{B}(1) = \beta (U'_{B}(1) - W'_{B}(1)) < 0$ and hence $U'_{B}(1) < W_{B}'(1) < 0$. \Box

Next we construct a family of subsolutions to (Q_λ) using the functions U_B and W_B . These subsolutions will be used to determine by sweeping the shape of the solutions to (Q_{λ}) in a certain order interval. We fix $z^* \in \Omega$ and let

(10)
$$
\lambda^* := \lambda_B \operatorname{dist}(z^*, \Gamma)^{-2}.
$$

Lemma 3.2. For all $\lambda \geq \lambda^*$ we set

$$
Z_{\lambda}(x) := \begin{cases} (U_B, W_B) \left((\lambda/\lambda_B)^{1/2} (x - z^*) \right) & \text{for} \quad |x - z^*| \le (\lambda_B/\lambda)^{1/2} ; \\ 0 & \text{for} \quad |x - z^*| > (\lambda_B/\lambda)^{1/2}, \end{cases}
$$

with (U_B, W_B) as in Proposition 3.1. Then Z_{λ} is a subsolution to (Q_{λ}) and (11) $Y := (\rho_{\delta/\gamma}^+, \vartheta \rho_{\delta/\gamma}^+)$

is a supersolution to (Q_{λ}) with $Z_{\lambda} < Y$.

Proof. It follows directly that Y is a supersolution. The function Z_{λ} is continuous and $Z_{\lambda}(x) = 0$ for $x \in \Gamma$. Denote by $Z_{\lambda,i}$, $i = 1,2$, the two components of Z_{λ} . Let $z \in \mathcal{D}^+(\Omega)$. Then, with $B_{\lambda} = B(z^*, (\lambda_B/\lambda)^{1/2})$ and n denoting the outward normal, we obtain by the Green identity:

$$
\int_{\Omega} Z_{\lambda,1}(-\Delta z) dx = \int_{B_{\lambda}} Z_{\lambda,1}(-\Delta z) dx
$$

\n
$$
= - \int_{B_{\lambda}} (\Delta Z_{\lambda,1}) z dx - \int_{\partial B_{\lambda}} \left(Z_{\lambda,1} \frac{\partial z}{\partial n} - z \frac{\partial Z_{\lambda,1}}{\partial n} \right) dS
$$

\n
$$
\leq \lambda \int_{\Omega} (f(Z_{\lambda,1}) - \beta Z_{\lambda,1} + \beta Z_{\lambda,2}) z dx.
$$

A similar result holds for $Z_{\lambda,2}$. Finally $\max Z_{\lambda,1} = Z_{\lambda,1} (z^*) = \tau \langle \rho_{\delta/\gamma}^+$ and $\max Z_{\lambda,2} = Z_{\lambda,2} (z^*) = W_B (0) < \vartheta \rho_{\delta}^+$ $\frac{1}{\delta/\gamma}$.

Since Z_{λ} is a subsolution to (Q_{λ}) and Y is a supersolution to (Q_{λ}) with Z_{λ} < Y th[ere e](#page-7-0)xists at least one solution in the order interval $[Z_{\lambda}, Y]$. For every fixed $\lambda \geq \lambda^*$ we define for all $y \in \Omega$ satisfying $dist(y, \Gamma) > (\lambda_B/\lambda)^{-1/2}$ the functions

(12)
$$
Z_{\lambda}^{y}(x) := Z_{\lambda}(x + z^* - y).
$$

Repeating the proof of Lemma 3.2 one sees that for $\lambda \geq \lambda^*$,

$$
\mathcal{S}_{\lambda} := \left\{ Z_{\lambda}^{y} \, ; \, y \in \Omega \text{ such that } \operatorname{dist}(y, \Gamma) > (\lambda_B/\lambda)^{1/2} \right\}
$$

is a family of subsolutions. We shall use the sweeping principle with functions in S_λ to obtain, at least for λ large enough, estimates of solutions to (Q_{λ}) in the order interval $[Z_{\lambda}, Y]$. In order to estimate a solution in $[Z_{\lambda}, Y]$ in all of Ω as well as on the boundary we make the following assumption on $Γ$ which holds if $Γ ∈ C³$:

• Ω satisfies a uniform interior sphere co[ndi](#page-4-1)tion, that is, there exists $\varepsilon_{\Omega} > 0$ such that $\Omega = \cup \{B(y, \varepsilon) : y \in \Omega \text{ and } \text{dist}(y, \Gamma) > \varepsilon_{\Omega}\}.$

We may suppose that $\Omega_{\varepsilon} := \{y \in \Omega; \text{dist}(y, \Gamma) > \varepsilon\}$ is connected for all ε ≤ εΩ.

Lemma 3.3. There exists $\lambda^{\times} > \lambda^*$ and $b > 0$ such that for all $\lambda > \lambda^{\times}$ we have the follo[wing](#page-4-1) estimate for every sol[ut](#page-28-4)ion $(u, w) \in [Z_\lambda, Y]$ to (Q_λ) :

(13) $(u(x), w(x)) > \min\{b\lambda^{1/2} \text{dist}(x, \Gamma), \tau\} (1, \vartheta),$

with $\vartheta = 1 - \delta/(\gamma \beta)$ and τ as in Proposition 3.1.

Proof. Let $\varepsilon_{\lambda} := (\lambda_B/\lambda)^{1/2}$ and $\lambda^{\times} := \max{\{\lambda^*, \lambda_B \varepsilon_{\Omega}^{-2}\}}$ $\left\{\frac{-2}{\Omega}\right\}$. Suppose that $(u, w) \in [Z_\lambda, Y]$ is a solution to (Q_λ) with $\lambda > \lambda^\times$. As in [4] there exists for every $y \in \Omega_{\varepsilon_{\lambda}}$ a curve in $\Omega_{\varepsilon_{\lambda}}$ connecting y with z^* . Using the sweeping

principle, Proposition A.6, it follows that $(u, w) > Z_{\lambda}^{y}$ $(u, w) > Z_{\lambda}^{y}$ $(u, w) > Z_{\lambda}^{y}$ for all $y \in \Omega_{\varepsilon_{\lambda}}$. Using $(u(x), w(x)) \ge \sup_{y \in \Omega_{\varepsilon_{\lambda}}} Z_{\lambda}^{y}$ $\lambda(x)$ one finds (13).

The next lemma improves the estimate we found in the previous one.

Lemma 3.4. For every $\varepsilon > 0$ and $\lambda > \lambda^{\times}$ there exists a constant $b(\varepsilon) > 0$, independent of λ , such that for every solution $(u, w) \in [Z_{\lambda}, Y]$ to (Q_{λ}) it holds that

(14)
$$
(u(x), w(x)) > \min\left\{b(\varepsilon)\lambda^{1/2}\mathrm{dist}(x, \Gamma), \rho_{\delta/\gamma}^+ - \varepsilon\right\}(1, \vartheta),
$$

with $\vartheta = 1 - \delta/(\gamma \beta)$. In particular there exists $b_0 > 0$ such that

(15)
$$
(u(x), w(x)) > \min \left\{ b_0 \lambda^{1/2} \operatorname{dist}(x, \Gamma), \rho_{\sigma_0}^+ \right\} (1, \vartheta).
$$

Proof. Let $\lambda > \lambda^{\times}$ be fixed and suppose $(u, w) \in [Z_{\lambda}, Y]$ is solution to (Q_{λ}) . If $\rho_{\delta/\gamma}^+ - \varepsilon \leq \tau$ then (13) holds with $b(\varepsilon) = b$ and b as in the previous lemma.

Suppose $\rho^+_{\delta/\gamma} - \varepsilon > \tau$. Since $f(s) - (\delta/\gamma)s > 0$ for all $s \in (\rho^-_{\delta/\gamma}, \rho^+_{\delta/\gamma})$ there exists $\ell_{\epsilon} > 0$ such that

$$
f(s) - (\delta/\gamma)s > \ell_{\varepsilon} (s - \tau)
$$
 for all $s \in [\tau, \rho_{\delta/\gamma}^+ - \varepsilon].$

From Lemma 3.3 it follows that $(u(x), w(x)) > (\tau, \vartheta \tau)$ for all $x \in \Omega$ such that dist $(x, \Gamma) > \lambda^{-1/2} \tau/b$. For subsolutions we need the function $e \geq 0$ satisfying

(16)
$$
\begin{cases}\n-\Delta e = \mu e & \text{in } B_1 \\
e = 0 & \text{on } \partial B_1\n\end{cases}
$$

where μ is the principal eigenvalue and B_1 the unit ball in \mathbb{R}^N . We normalize e such that $e(0) = 1$. Let $\mu_{\varepsilon} = \mu/\ell_{\varepsilon}$ and

$$
\Omega':=\left\{y\in \Omega\,;\, \text{dist}(y, \Gamma) > (\sqrt{\mu_{\varepsilon}}+\tau/b)\lambda^{-1/2}\right\}.
$$

We fix $y \in \Omega'$ and let $B := B(y, (\mu_{\varepsilon}/\lambda)^{1/2})$. For every $t \in [0,1]$ we define the functions (U_t, W_t) on \overline{B} by

$$
U_t(x) := \tau + t(\rho_{\delta/\gamma}^+ - \varepsilon - \tau)e((\lambda/\mu_{\varepsilon})^{1/2}(y - x)),
$$

\n
$$
W_t(x) := \vartheta U_t(x).
$$

Then $\mathcal{T} := \{ (U_t, W_t) \, ; \, t \in [0, 1] \}$ is a family of subsolutions to the problem

(17)
$$
\begin{cases}\n-\Delta p = \lambda(f(p) - \beta p + \beta q) & \text{in } B, \\
-\Delta q = \lambda(f(p) + Mp - \alpha q) & \text{in } B, \\
p = u & \text{on } \partial B, \\
q = w & \text{on } \partial B.\n\end{cases}
$$

Using the sweeping principle it follows that

$$
(u(y), w(y)) > (U_1(y), W_1(y)) = (\rho_{\delta/\gamma}^+ - \varepsilon, \vartheta(\rho_{\delta/\gamma}^+ - \varepsilon)).
$$

Since $y \in \Omega'$ was arbitrary we have that

(18) $(u(x), w(x)) > (\rho_{\delta/\gamma}^+ - \varepsilon, \vartheta(\rho_{\delta/\gamma}^+ - \varepsilon))$ if $dist(x, \Gamma) > (\mu_{\varepsilon} + \tau/b)\lambda^{-1/2}$. Define $b(\varepsilon) := \tau (\tau/b + \sqrt{\mu_{\varepsilon}})^{-1}$, and note that $\min\{b\lambda^{1/2} \text{dist}(x, \Gamma), \tau\} \ge$ $b(\varepsilon) \lambda^{1/2} \text{dist}(x, \Gamma)$ if dist $(x, \Gamma) \le (\sqrt{\mu_{\varepsilon}} + \tau/b)\lambda^{-1/2}$. Hence by Lemma 3.3

 $(u(x), w(x)) > b(\varepsilon) \lambda^{1/2} \text{dist}(x, \Gamma)$ $(1, \vartheta)$

for all x with dist $(x, \Gamma) \le (\sqrt{\mu_{\varepsilon}} + \tau/b)\lambda^{-1/2}$. This proves (14) while (15) follows by choosing $b_0 = b(\varepsilon)$ with $\varepsilon = \rho_{\delta/\gamma}^+ - \rho_{\sigma_0}^+$. — Первый процесс в постановки программа в серверном становки производительно становки производительно станов
В серверном становки производительно становки производительно становки производительно становки производительн

The next lemma will be used in the proof of Theorem 2.3.

Lemma 3.5. Let $z_0 \in C_0(\Omega)$ be nonnegative with $\max z_0 \in (\rho_{\beta}^{-})$ $\bar{\beta}$, $\rho_{\delta/\gamma}^{+}$). There exists $\lambda_{z_0} > 0$ such that if (u, w) is a solution to (Q_λ) with $u \in$ $[z_0, \rho^+_{\delta/\gamma}]$ and $\lambda > \lambda_{z_0}$ then $(u, w) \in [Z_\lambda, Y]$.

Proof. First note that if $u \in [z_0, \rho^+_{\delta/\gamma}]$ then $(u, w) \in [(z_0, 0), Y]$. Let $x_0 \in$ Ω be such that $z_0(x_0) = \max z_0$. Choose $\rho \in (\rho_{\beta}^{-})$ $(\frac{\pi}{\beta}, \tau)$, where τ is as in Proposition 3.1, and $r_0 > 0$ such that $\rho < z_0(x) \le u(x)$ for all $x \in B(x_0, r_0)$. Since $f(s) - \beta s > 0$ for all $s \in (\rho_{\beta}^{-})$ $(\overline{\beta}, \rho_{\beta}^{+})$ there exists $\ell > 0$ such that

$$
f(s) - \beta s > \ell(s - \rho)
$$
 for all $s \in [\rho, \tau]$.

Let e and μ be as (16) with $e(0) = 1$. Suppose that

(19)
$$
\lambda > (\mu/\ell)r_0^{-2}.
$$

Then $r_{\lambda} := r_0 - \sqrt{\mu/(\lambda \ell)} > 0$. Let $y \in B(x_0, r_{\lambda})$ be fixed and define on $B = B(y, \sqrt{\mu/(\ell\lambda)}) \subset B(x_0, r_0),$

$$
U_t(x) = \rho + t(\tau - \rho)e\left(\sqrt{\ell \lambda/\mu}(y - x)\right).
$$

It holds that $\mathcal{T} := \{(U_t, 0) : t \in [0, 1]\}$ is [a fa](#page-10-0)mily of subsolutions to (17) with u_{λ}, w_{λ} , instead of u, w. By a sweeping argument, starting with $(U_0, 0)$ one concludes that $(u(y), w(y)) > (U_1(y), W_1(y)) = (\tau, 0)$. Since $y \in B(x_0, r_\lambda)$ was arbitrary we have that $(u, w) \geq (\tau, 0)$ on $B(x_0, r_\lambda)$.

Let $Z_{\lambda,i}^{x_0}$, $i = 1,2$, denote the two components of $Z_{\lambda}^{x_0}$ defined in (12). The function $Z_{\lambda,1}^{x_0}$ has support $\overline{B}(x_0,\sqrt{\lambda_B/\lambda})$. Hence, if (19) is replaced by the st[ron](#page-8-2)ger condition $\lambda > 0$ √ $\overline{\lambda_B} + \sqrt{\mu/\ell}$ ² r_0^{-2} , then $r_\lambda > \sqrt{\lambda_B/\lambda}$ and $(u, w)(x) > (Z_{\lambda,1}^{x_0}, 0)$ for all $x \in \Omega$.

From this it follows that $(u, w) \in [Z_{\lambda}^{x_0}, Y]$. Indeed, using the fact that $Z_{\lambda}^{x_0}$ is a subsolution one has that $-\Delta(w - Z_{\lambda,2}^{x_0}) + \alpha(w - Z_{\lambda,2}^{x_0}) \geq 0$ in $\mathcal{D}'(\Omega)$ sense.

As in the proof of Lemma 3.3 it now follows that $(u, w) \in [Z_\lambda, Y]$. \Box

3.2. The semilinear problem on the half space. In this section we consider the following problem

(20)
$$
\begin{cases}\n-\Delta U = f(U) - \beta U + \beta W & \text{in } \mathbb{R}^N_+, \\
-\Delta W = f(U) + MU - \alpha W & \text{in } \mathbb{R}^N_+, \\
U = W = 0 & \text{on } \partial \mathbb{R}^N_+.\n\end{cases}
$$

The main result which we prove is that there exists a positive solution (U, W) to (20) such that

(21)
$$
\lim_{x_1 \to \infty} (U, W) (x_1, x') = (\rho_{\delta/\gamma}^+, \vartheta \rho_{\delta/\gamma}^+) \text{ uniformly in } x' \in \mathbb{R}^{N-1},
$$

with $\vartheta = 1 - \delta/(\gamma \beta)$. Moreover there exists only one such solution and $(U, W)(x_1, x') = (u, w)(x_1)$ where (u, w) a solution to the problem

(22)
$$
\begin{cases}\n-u'' = f(u) - \beta u + \beta w & \text{in } \mathbb{R}^+, \\
-u'' = f(u) + Mu - \alpha w & \text{in } \mathbb{R}^+, \\
u(0) = 0, \quad w(0) = 0, \\
u'(0) = \kappa, \quad w'(0) = \nu,\n\end{cases}
$$

for some appropriate initial data κ and ν . It is standard that we have for every pair $(\kappa, \nu) \in \mathbb{R}^2$ at least locally a unique solution to (22) which can be continued to some maximum [int](#page-4-4)erval. We denote such a solution by $(u, w)_{\kappa,\nu} = (u_{\kappa,\nu}, w_{\kappa,\nu})$. First we show that there exists a unique pair (κ,ν) such that the corresponding solutio[n e](#page-11-0)xists for all $r \in \mathbb{R}^+$, is positive and tends to $(\rho^+_{\delta/\gamma}, \vartheta \rho^+_{\delta/\gamma})$ at infinity. Some properties of this solution that are needed later, are also proven.

Proposition 3.6. Assume that f satisfies Condition A^* . Then there exists a unique pair $(\bar{\kappa}, \bar{\nu})$ such that the solution $(u, w)_{\bar{\kappa}, \bar{\nu}}$ to (22) is positive and satisfies

(23)
$$
\lim_{r \to \infty} (u, w)_{\bar{\kappa}, \bar{\nu}} (r) = (\rho^+_{\delta/\gamma}, \vartheta \rho^+_{\delta/\gamma}),
$$

with $\vartheta = 1 - \delta/(\beta \gamma)$. Moreover $\bar{\kappa} > \bar{\nu} > 0$ and $(u, w)_{\bar{\kappa}, \bar{\nu}}$ has the following properties:

- (1) $0 < (u, w)_{\bar{\kappa}, \bar{\nu}} (r) < (\rho^+_{\delta/\gamma}, \vartheta \rho^+_{\delta/\gamma})$ for all $r > 0$;
- (2) $u_{\bar{\kappa},\bar{\nu}}(r) > w_{\bar{\kappa},\bar{\nu}}(r)$ for all $r > 0$;
- (3) $(u', w')_{\bar{\kappa}, \bar{\nu}}(r) > (0, 0)$ for all $r \in \mathbb{R}^+$ and $(u', w')_{\bar{\kappa}, \bar{\nu}}(r) \to (0, 0)$ as $r \rightarrow \infty$.

The proof of this proposition consists of a number of lemmas. We also need to co[nsid](#page-12-0)er the following system

(24)
$$
\begin{cases}\n-u'' &= f(u) - v & \text{in } \mathbb{R}^+, \\
-v'' &= \delta u - \gamma v & \text{in } \mathbb{R}^+, \\
u(0) &= 0, \quad v(0) = 0, \\
u'(0) &= \kappa, \quad v'(0) = \eta.\n\end{cases}
$$

Again we denote solutions to (24) by $(u, v)_{\kappa, \eta}$ with the understanding that the solutions are defined on a maximum interval. We point out the fact that for $\kappa, \nu \in \mathbb{R}$ it holds that the solution $(u, v)_{\kappa, \beta(\kappa-\nu)}$ to (24) is given by $(u_{\kappa,\nu}, \beta(u_{\kappa,\nu}-w_{\kappa,\nu}))$ where $(u, w)_{\kappa,\nu}$ is the solution to (22).

For a solution $(u, v) = (u, v)_{\kappa, \eta}$ to (24) we have the following identity for all $r \geq 0$:

(25)
$$
\left((u')^2 - \kappa^2 \right) - \frac{1}{\delta} ((v')^2 - \eta^2) = -2 \int_0^u f(s) \, ds + 2uv - \frac{\gamma}{\delta} v^2.
$$

Indeed, differentiating

$$
H(r) := u'(r)^{2} - \frac{1}{\delta}v'(r)^{2} + 2\int_{0}^{u(r)} f(s) ds - 2u(r)v(r) + \frac{\gamma}{\delta}v(r)^{2},
$$

(24) implies that $H'(r) = 0$ for all $r \ge 0$. Hence $H(r) = H(0)$ for all $r \ge 0$, which gives (25) .

We shall often use the followingo[ne](#page-11-0) dimensional maximum principle, see e.g., [11, Theorem 2.9.2].

Lemma 3.7. If $g \in C^2[0, +\infty)$ is bounded, $g(0) \ge 0$ and $-g'' + cg \ge 0$ with $c > 0$, then $g(r) > 0$ for all $r > 0$. Moreover, if $g(0) = 0$ then $g'(0) > 0$.

Our first lemma is on the derivatives of soluti[on](#page-28-7)s to (22).

Lemma 3.8. Suppose that $(u, w)_{\kappa, \nu}$ $(u, w)_{\kappa, \nu}$ $(u, w)_{\kappa, \nu}$ is a solution to (22) with $\kappa, \nu > 0$ and $(u, w)_{\kappa,\nu}(r) > (0,0)$ for all $r > 0$. Then $(u', w')_{\kappa,\nu}(r) > (0,0)$ for all $r \ge 0$.

Proof. Since the system is quasimonotone this follows from a moving plane argument, similar to the method used by Gidas, Ni and Nirenberg [8]. See also $\boxed{2}$ where a similar argument is used for a scalar equation.

Lemma 3.9. For a [bou](#page-12-0)nded solution $(u, w)_{\kappa,\nu}$ to (22) with $u_{\kappa,\nu} \geq 0$ it holds that $0 < \nu < \kappa$ and $0 < w_{\kappa,\nu}(r) < u_{\kappa,\nu}(r)$ for all $r > 0$.

Proof. Denote by (u, w) the solution $(u, w)_{\kappa,\nu}$. Since w is bounded and satisfies $-w'' + \alpha w = f(u) + Mu \geq 0$ with $w(0) = 0$ we have by Lemma 3.7 that $\nu > 0$ and $w(r) > 0$ for all $r > 0$. Let $\eta = \beta(\kappa - \nu)$. As observed earlier, the solution $(u, v) = (u, v)_{\kappa, \eta}$ to (24) is given by $(u, \beta(u-w))$. Since v is bounded with $v(0) = 0$ and $-v'' + \gamma v = \delta u \geq 0$ it holds again by Lemma 3.7 that $\eta > 0$ and $v(r) > 0$ for $r > 0$. Hence $\kappa > \nu$ and $w(r) < u(r)$ for $r > 0$.

Lemma 3.10. If $(u, w)_{\kappa,\nu}$ is a positive solution to (22) such that (23) holds then

$$
\lim_{r \to \infty} (u', w')_{\kappa, \nu}(r) = 0.
$$

Proof. Defi[ne](#page-11-0) $u_K(r) := \rho_{\delta/\gamma}^+ - u_{\kappa,\nu}(r+K)$ and $w_K(r) := \vartheta \rho_{\delta/\gamma}^+ - w_{\kappa,\nu}(r+K)$. It holds th[at](#page-12-0) u_K and w_K converge uniformly to zero on [0, 1] as $K \to \infty$. From (22) we have that they rema[in](#page-12-1) bounded in $C^2[0,1]$. By interpolation u_K , w_K converge to zero in $C^1[0,1]$. Therefore $(u', w')_{\kappa,\nu}(K) =$ $(u'_K, w'_K)(0) \to (0, 0)$, as $K \to \infty$.

Let $(u, w)_{\kappa,\nu}$ be a solution to (22) for which (23) holds. Then $(u, v)_{\kappa,\eta}$ with $\eta = \beta (\kappa - \nu)$ is a solution to (24) and $v_{\kappa,\eta} = \beta (u_{\kappa,\nu} - w_{\kappa,\nu}) \rightarrow (\delta/\gamma) \rho_{\delta,\eta}^+$ δ/γ as $r \to \infty$. Using Lemma 3.10 and letting $r \to \infty$ in (25) we obtain the following [rel](#page-11-1)ationship between κ and ν :

(26)
$$
\kappa^2 - \frac{\beta^2}{\delta} (\kappa - \nu)^2 = 2 \int_0^{\rho_{\delta/\gamma}^+} \left(f(s) - \frac{\delta}{\gamma} s \right) ds.
$$

This will be used to prove the uniqueness of such solutions. Next we show that there exists initial data $(\bar{\kappa}, \bar{\nu})$ f[or w](#page-25-0)hich the corresponding solution to (22) is positive and satisfies (23).

Lemma 3.11. There exists $\bar{\kappa}, \bar{\nu} \in \mathbb{R}$ such that the solution $(u, w)_{\bar{\kappa}, \bar{\nu}}$ to (22) satisfies (23). Moreover this solution is positive and $0 < \bar{\nu} < \bar{\kappa}$.

Proof. We shall use super- and subsolutions and Lemma A.4 to find a positive solution to

(27)
$$
\begin{cases}\n-u'' &= f(u) - \beta u + \beta w & \text{in } \mathbb{R}^+, \\
-u'' &= f(u) + Mu - \alpha w & \text{in } \mathbb{R}^+, \\
u(0) &= w(0) = 0,\n\end{cases}
$$

satisfying (23). As a supersolution we take $(\rho^+_{\delta/\gamma}, \vartheta \rho^+_{\delta/\gamma})$. We have to construct a nonzero subsolution. From a phaseplane analysis one sees that the initial [va](#page-3-3)lue problem

$$
\begin{cases}\n-u'' &= f (u) - \beta u & \text{in } \mathbb{R}^+, \\
u (0) &= 0, \\
u' (0) &= (2J_\beta (0))^{1/2},\n\end{cases}
$$

with $J_\beta(0) > 0$ $J_\beta(0) > 0$ $J_\beta(0) > 0$ defined in (2), has a solution \tilde{u} with $\lim_{r \to \infty} \tilde{u}(r) = \rho_{\beta}^+$ $^+_{\beta}$ and $\tilde{u}'(r) > 0$ for all $r \geq 0$. Then $(\tilde{u}, 0)$ is a subsolution. By Lemma A.4 there exists a solution (u, w) to (27) such that $(0, \tilde{u}) < (u, w) < (\rho_{\delta/\gamma}^+, \vartheta \rho_{\delta/\gamma}^+).$ At this stage we may choose either the maximal or minimal solution. In the next lemma we shall prove that they are equal. Let $(\bar{\kappa}, \bar{\nu}) := (u'(0), w'(0)).$ Then (u, w) is the solution to (22) with $(\kappa, \nu) = (\bar{\kappa}, \bar{\nu})$.

It holds that $u(r)$, $w(r) > 0$ for all $r > 0$. Indeed, $u(r) \geq \tilde{u}(r) > 0$ and since w is bounded with $-w'' + \alpha w = f(u) + Mu \geq 0$ and $w(0) = 0$ we have by Lemma 3.7 that $w(r) > 0$ for $r > 0$ and that $w'(0) = \nu > 0$. By Lemma 3.9, $\bar{\kappa} > \bar{\nu} > 0$.

Lemma 3.8 shows that $u'(r)$, $w'(r) > 0$ for all $r > 0$. In particular $\lim_{r\to\infty} u(r) = \rho$ and $\lim_{r\to\infty} w(r) = \tilde{\rho}$ exist. From the equations we find that

$$
-f(\rho) + \beta \rho - \beta \tilde{\rho} = -f(\rho) - M\rho + \alpha \tilde{\rho} = 0.
$$

From this one gets that $\tilde{\rho} = \vartheta \rho$ [and](#page-13-1) that $f(\rho) = (\delta/\gamma)\rho$. Since $\rho > \rho_{\beta}^{+}$ we have that $(\rho, \tilde{\rho}) = (\rho_{\delta/\gamma}^+, \vartheta \rho_{\delta}^+)$ $\frac{1}{\delta/\gamma}$).

Our last lemma concerns [th](#page-13-2)e uniqueness part of Proposition 3.6.

Lemma 3.12. Let $(u, w)_{\kappa,\nu}$ be a positive solution to (22) such that (23) holds. Then $(\kappa, \nu) = (\bar{\kappa}, \bar{\nu})$ with $(\bar{\kappa}, \bar{\nu})$ as in Lemma 3.11.

Proof. Let $(\tilde{u}, 0)$ be the subsolution of the previous lemma. First we show that the minimum and maximum solutions to (27) in the order interval

$$
[(\tilde{u},0),(\rho_{\delta/\gamma}^+,\vartheta\rho_{\delta/\gamma}^+)]
$$

are equal.

Let $(u, w)_{\kappa,\nu}$ be the minimal solution and $(u, w)_{\bar{\kappa},\bar{\nu}}$ the maximal solution. It must hold that $\kappa \leq \bar{\kappa}$ and $\nu \leq \bar{\nu}$. If the solutions are not equal at least one of these inequalities must be strict. Suppose $\nu < \bar{\nu}$. By Lemma 3.9 we also have that $\kappa > \nu$ and $\bar{\kappa} > \bar{\nu}$ and by (26) that

(28)
$$
\frac{\delta - \beta^2}{\delta} \kappa^2 + \frac{2\beta^2}{\delta} \kappa \nu - \frac{\beta^2}{\delta} \nu^2 = \frac{\delta - \beta^2}{\delta} \bar{\kappa}^2 + \frac{2\beta^2}{\delta} \bar{\kappa} \bar{\nu} - \frac{\beta^2}{\delta} \bar{\nu}^2.
$$

The function $x \mapsto (1 - (\beta^2/\delta))x^2 + 2(\beta^2/\delta)x\nu - (\beta^2/\delta)\nu^2$ is strictly increasing on $[\kappa, \bar{\kappa}]$ because it has derivative $2(\delta - \beta^2)x/\delta + 2\beta^2\nu/\delta$ which is strictly positive for $x \in [\kappa, \bar{\kappa}]$ since $\delta > \beta^2$. Hence

$$
\frac{\delta-\beta^2}{\delta}\kappa^2+\frac{2\beta^2}{\delta}\kappa\nu-\frac{\beta^2}{\delta}\nu^2\leq \frac{\delta-\beta^2}{\delta}\bar{\kappa}^2+\frac{2\beta^2}{\delta}\bar{\kappa}\nu-\frac{\beta^2}{\delta}\nu^2.
$$

The function $x \mapsto (1 - (\beta^2/\delta))\bar{\kappa} + 2(\beta^2/\delta)\bar{\kappa}x - (\beta^2/\delta)x^2$ has derivative $2\beta^2 \bar{\kappa}\delta - 2\beta^2 x/\delta$. Since the derivative is strictly positive on $[\nu, \bar{\nu}]$ it follows that

$$
\frac{\delta-\beta^2}{\delta}\kappa^2+\frac{2\beta^2}{\delta}\kappa\nu-\frac{\beta^2}{\delta}\nu^2<\frac{\delta-\beta^2}{\delta}\bar\kappa^2+\frac{2\beta^2}{\delta}\bar\kappa\bar\nu-\frac{\beta^2}{\delta}\bar\nu^2,
$$

contradicting (28). If $\kappa < \bar{\kappa}$ we find a contradiction by the same argument. We conclude that $\kappa = \bar{\kappa}$ and $\nu = \bar{\nu}$ and that $(u, w)_{\kappa, \nu} = (u, w)_{\bar{\kappa}, \bar{\nu}}$.

It remains to show that any positive solution $(u, w)_{\kappa,\nu}$ for which (23) holds is in the order interval $[(\tilde{u}, 0),(\rho^+_{\delta/\gamma}, \vartheta \rho^+_{\delta/\gamma})]$. First we show that $u_{\kappa,\nu} > \tilde{u}$.

[Supp](#page-13-1)ose that $u_{\kappa,\nu}(r) > \rho_{\beta}^+$ for all $r \geq R$. We define u_t^* for $0 \leq t \leq R$ on $[0, R]$ by

$$
u_t^*(r) := \begin{cases} \tilde{u}(r-t) & \text{for } t \le r \le R; \\ 0 & \text{for } 0 \le r < t, \end{cases}
$$

with \tilde{u} as in Lemma 3.11. Applying the sweeping principle with the subsolutions $\{(u_t^*,0): 0 \le t \le R\}$ one finds that $(u,w)_{\kappa,\nu}(r) > (\tilde{u}(r),0) = (u_0^*(r),0)$ for $r \in (0, R)$. H[enc](#page-11-2)e $u_{\kappa,\nu}(r) > \tilde{u}(r)$ for $r > 0$ and $(u, w)_{\kappa,\nu} \geq (\tilde{u}, 0)$. On the other hand, since $u_{\kappa,\nu}$, $w_{\kappa,\nu}$ [ar](#page-4-4)e increasing by Lemma 3.8, it holds that $(u, w)_{\kappa,\nu} < (\rho_{\delta/\gamma}^+, \vartheta \rho_{\delta/\gamma}^+)$. Since [the](#page-11-3)re is only one solution in the order interval $[(\tilde{u}, 0), (\rho^+_{\delta/\gamma}, \vartheta \rho^+_{\delta/\gamma})]$ the uniqueness is proved.

Our [main](#page-13-1) result concerning system (20) is the following.

Proposition 3.13. Assume that f satisfies Condition A^* . Then there exists a unique positive solution (U, W) (U, W) (U, W) (U, W) to (20) [sat](#page-11-3)isfying (21) . This solution is given by

(29)
$$
(U, W)(x_1, x') := (u, w)_{\bar{\kappa}, \bar{\nu}}(x_1) \quad \text{for } (x_1, x') \in \mathbb{R}^{N-1},
$$

with $(u, w)_{\bar{\kappa}, \bar{\nu}}$ as in Lemma 3.11.

Proof. Clearly (29) defines a positive solution to ([20\)](#page-13-2) satisfying (21). Suppose that (U, W) is any positive solution satisfying (21) . Define the functions

$$
\begin{array}{rcl}\n(\underline{u}, \underline{w}) (x_1) & := & (\sup_{x' \in \mathbb{R}^{N-1}} U(x_1, x'), \sup_{x' \in \mathbb{R}^{N-1}} W(x_1, x'); \\
(\overline{u}, \overline{w}) (x_1) & := & (\inf_{x' \in \mathbb{R}^{N-1}} U(x_1, x'), \inf_{x' \in \mathbb{R}^{N-1}} W(x_1, x')).\n\end{array}
$$

By Lemma A.5 $(\underline{u}, \underline{w})$ is a subsolution and $(\overline{u}, \overline{w})$ is a supersolution to (27). Moreover $(\underline{u}, \underline{w}) < (\rho^+_{\delta/\gamma}, \vartheta \rho^+_{\delta/\gamma})$. Th[is fol](#page-14-0)lows by sweeping using the family of supersolutions $\{(t, \vartheta t) : t \geq \rho_{\delta/\gamma}^+\}.$

Since $(\underline{u}, \underline{w})$ is a subsolution there exists a positive solution $(u, w)_{*}$ $(u, w)_{*}$ $(u, w)_{*}$ to (27) with $(\underline{u}, \underline{w}) \leq (u, w)_* < (\rho^+_{\delta/\gamma}, \vartheta \rho^+_{\delta/\gamma})$. By Lemma 3.12 we have that $(u, w)_* = (u, w)_{\bar{\kappa}, \bar{\nu}}.$

Using a sweeping argument as in the proof of Lemma 3.12 it follows that $(\overline{u}, \overline{w}) > (\tilde{u}, 0)$ with \tilde{u} as in the proof of Lemma 3.11. Hence there exists a positive solution (u, w) to (27) with $(\tilde{u}, 0) < (u, w)$ $\leq (\overline{u}, \overline{w})$ and by Lemma 3.12, $(u, w)_{\circ} = (u, w)_{\bar{\kappa}, \bar{\nu}}$. Hence $(\bar{u}, \bar{w}) = (u, w)$ which proves the uniqueness claim in the proposition.

3.3. The linearized problem on the halfspace. Let $(u, w)_{\bar{\kappa}, \bar{\nu}}$ be as in Proposition 3.6. In this paragraph we consider the following linear system:

(30)
$$
\begin{cases}\n-\bar{r}\Delta\Phi = (f'(u_{\bar{\kappa},\bar{\nu}}) - \beta + \omega)\Phi + \beta\Psi - \bar{r}\omega\Phi & \text{in }\mathbb{R}^N_+, \\
-\bar{r}\Delta\Psi = (f'(u_{\bar{\kappa},\bar{\nu}}) + M)\Phi + (\omega - \alpha)\Psi - \bar{r}\omega\Psi & \text{in }\mathbb{R}^N_+, \\
\Phi = \Psi = 0 & \text{on }\partial\mathbb{R}^N_+.\n\end{cases}
$$

Here α, β, M are as in (4), (3) and B1 respectively, $\omega > \max\{\alpha, M\}$ and $\bar{r} \in \mathbb{R}$. For this problem we have the following result of Liouville type.

Proposition 3.14. Suppose that $\bar{r} \geq 1$ and that (Φ, Ψ) is a bounded positive solution to (30). Then $(\Phi, \Psi) \equiv (0, 0)$.

This proposition will be a consequence of the following lemma.

Lemma 3.15. Suppose $\varphi, \psi \in C[0, +\infty)$ are bounded with $\varphi, \psi \geq 0$, $\varphi(0) =$ $\psi(0) = 0$ and it holds that

(31)
$$
-\varphi'' \leq f'(u_{\bar{\kappa},\bar{\nu}})\varphi - \beta \varphi + \beta \psi,
$$

(32)
$$
-\psi'' \leq f'(u_{\bar{\kappa},\bar{\nu}})\varphi + M\varphi - \alpha\psi,
$$

in $\mathcal{D}'(0,\infty)$ -sense. Then $\varphi(x_1) = \psi(x_1) = 0$ for all $x_1 \geq 0$.

Proof. We set $(p, q) := (u', w')_{\bar{\kappa}, \bar{\nu}}$ and recall that $p, q > 0$ on $[0, \infty)$. Without loss of generality we assume that $\varphi, \psi \leq 1$. We argue by contradiction and suppose that $(\varphi, \psi) \neq (0, 0)$. First we observe that if there exists $K > 0$ such that $\varphi(x_1) = \psi(x_1) = 0$ for all $x_1 \geq K$ then by a sweeping argument on $[0, K]$ with the family $\{(tp, tq) ; t \geq 0\}$ of supersolutions it follows that $\varphi(x_1) = \psi(x_1) = 0$ for all $x_1 \in [0, K]$. This is in contradiction with our assumption.

Now let $K > 0$ and $\varepsilon > 0$ be such that that

$$
f'(u_{\bar{\kappa},\bar{\nu}}(x_1)) < -\varepsilon \quad \text{for all } x_1 \ge K,
$$

and note that also

$$
f'(u_{\bar{\kappa},\bar{\nu}}(x_1)) + M - \alpha < -\varepsilon \quad \text{for all } x_1 \ge K.
$$

By our first observation we may assume that

$$
R(K) := \max \{ \varphi(K)/p(K), \psi(K)/q(K) \} > 0.
$$

We define the following functions on $[K, \infty)$:

$$
S_t(x_1) = \varphi(x_1) - e^{\sqrt{\varepsilon}(x_1 - t)},
$$

\n
$$
T_t(x_1) = \psi(x_1) - e^{\sqrt{\varepsilon}(x_1 - t)},
$$

\n
$$
R_t(x_1) = \max \{ S_t(x_1) / p(x_1), T_t(x_1) / q(x_1) \}
$$

for $t \geq K$. It holds that

$$
-S_t'' \le (f'(u_{\bar{\kappa},\bar{\nu}}) - \beta)S_t + \beta T_t,
$$

and

$$
-T''_t \le (f'(u_{\bar{\kappa},\bar{\nu}}) + M)S_t - \alpha T_t,
$$

in $\mathcal{D}'(K,\infty)$ -sense. For $t > K$ let $m_t = \sup_{x_1 \in [K,t]} R_t(x_1)$. By the maximum principle one has that $m_t = R_t(K)$ for t large enough. Indeed, since for ω large enough, it holds in $\mathcal{D}'(K, t)$ -sense that

$$
-(S_t - m_t p)'' + \omega (S_t - m_t p) \le 0,
$$

and

$$
-(T_t - m_t q)'' + \alpha (T_t - m_t q) \leq 0,
$$

we see that m_t must be attained in K or in t. Since $R_t(t) \leq 0$ and $R_t(K) > 0$, if t is large enough, we conclude that $m_t = R_t(K)$. Now let $x_1 \in [K, \infty)$ be fixed. Then for all $t > x_1$ large we have

$$
R(x_1) = \max \{ \varphi(x_1) / p(x_1), \psi(x_1) / q(x_1) \} \leq R_t(K) + \max \{ e^{\sqrt{\varepsilon}(x_1 - t)} / p(x_1), e^{\sqrt{\varepsilon}(x_1 - t)} / q(x_1) \}.
$$

Le[t](#page-16-0)ting $t \to \infty$ we deduce that $R(x_1) \leq R(K)$ and hence R attains its maximum on $[K, \infty)$ in $x_1 = K$. Consequently $\sup_{x_1 \in [0, \infty)} R(x_1)$ is attained in some point $r_0 \in (0, K]$. But this is in contradiction to the maximum principle. Indeed, in a similar way as above, one sees that $R(x_1)$ must [at](#page-26-0)tain its maximum on $[0, K + 1]$ either in 0 or in $K + 1$ and not in K. \square

To see how Proposition 3.14 follows from this lemma, we define

$$
\varphi(x_1) := \sup \{ \Phi(x_1, x') ; x' \in \mathbb{R}^{N-1} \},
$$

\n $\psi(x_1) := \sup \{ \Psi(x_1, x') ; x' \in \mathbb{R}^{N-1} \}.$

Then by Lemma A.5, $\varphi, \psi \in C[0, +\infty)$ with $\varphi(0) = \psi(0) = 0$ and in $\mathcal{D}'(\mathbb{R}^N_+)$ -sense

$$
\begin{array}{rcl}\n-\varphi'' & \leq & \frac{1}{\bar{r}}(f'(u_{\bar{\kappa},\bar{\nu}})-\beta+\omega)\varphi+\frac{1}{\bar{r}}\beta\psi-\omega\varphi \\
-\psi'' & \leq & \frac{1}{\bar{r}}(f'(u_{\bar{\kappa},\bar{\nu}})+M)\varphi+\frac{1}{\bar{r}}(\omega-\alpha)\psi-\omega\psi.\n\end{array}
$$

Since $\bar{r} \geq 1$ we deduce that

$$
-\varphi'' \leq (f'(u_{\bar{\kappa},\bar{\nu}}) - \beta + \omega)\varphi + \beta\psi - \omega\varphi
$$

=
$$
(f'(u_{\bar{\kappa},\bar{\nu}}) - \beta + \omega)\varphi + \beta\psi
$$

and

$$
-\psi'' \le (f'(u_{\bar{\kappa},\bar{\nu}}) + M)\varphi + (\omega - \alpha)\psi - \omega\psi
$$

= $(f'(u_{\bar{\kappa},\bar{\nu}}) + M)\varphi - \alpha\psi.$

By the lemma $(\varphi, \psi)(x_1) = 0$ for $x_1 \geq 0$ and hence also $(\Phi, \Psi)(x) = (0, 0)$ on \mathbb{R}^N_+ .

4. Proofs of the main results.

4.1. Proof of Theorem 2.1. From now on we assume that Γ is C^3 . We begin by defining some operators. Recall that X denotes the space $C(\bar{\Omega}) \times$ $C\left(\bar{\Omega}\right)$ and let $C_0^1\left(\bar{\Omega}\right) = \{u \in C^1\left(\bar{\Omega}\right) ; u(x) = 0 \text{ for } x \in \Gamma\}$. For $k, \lambda > 0$ define $(-\lambda^{-1}\Delta + k)_0^{-1}$: $C(\bar{\Omega}) \to C_0^1(\bar{\Omega})$ by $u = (-\lambda^{-1}\Delta + k)_0^{-1}g$ with $u \in C_0^1(\overline{\Omega})$ the unique function satisfying

$$
\begin{cases}\n-\lambda^{-1}\Delta u + ku &= g & \text{in } \mathcal{D}'(\Omega)\text{-sense,} \\
u &= 0 & \text{on } \Gamma.\n\end{cases}
$$

Let j be the embedding of $C_0^1(\bar{\Omega}) \times C_0^1(\bar{\Omega})$ in X and define the operator $K_{k,\lambda}: X \to X$ by

$$
K_{k,\lambda}\left(\begin{array}{c} g \\ h \end{array}\right)=j\circ\left(\begin{array}{cc} \left(-\lambda^{-1}\Delta+k\right)_0^{-1} & 0 \\ 0 & \left(-\lambda^{-1}\Delta+k\right)_0^{-1} \end{array}\right)\left(\begin{array}{c} g \\ h \end{array}\right).
$$

Since *j* is compact and $(-\lambda^{-1}\Delta + k)_0^{-1}$ is continuous, $K_{k,\lambda}$ is a compact linear map on X. We shall also use the fact that $||K_{k,\lambda}||_{\mathcal{L}(X)}$ is uniformly bounded in λ . This follows from the fact that

(33)
$$
\left\| \left(-\lambda^{-1} \Delta + k \right)_0^{-1} g \right\|_{\infty} \leq \frac{1}{k} \left\| g \right\|_{\infty}
$$

for every $g \in C(\overline{\Omega})$. We fix $\omega > \max{\{\alpha, M\}}$. For a function $u \in C(\overline{\Omega})$ and $\lambda > 0$ the we define the operators $M_u, T_{u,\lambda} \in \mathcal{L}(X)$ by

(34)
$$
M_u \begin{pmatrix} h \\ g \end{pmatrix} = \begin{pmatrix} f'(u) - \beta & \beta \\ f'(u) + M & -\alpha \end{pmatrix} \begin{pmatrix} h \\ g \end{pmatrix},
$$

and

(35)
$$
T_{u,\lambda} := K_{\omega,\lambda}(M_u + \omega I).
$$

Operators of this kind were studied extensively in [23]. If $u \in [0, \rho^+_{\delta/\gamma}]$ then $T_{u,\lambda}$ is a positive irreducible compact operator on X, see [23, Lemma 1.3]. Moreover, $T_{u,\lambda}$ has a positive spectral radius (see e.g., [18]) which we denote by $r(T_{u,\lambda})$. By the Krein-Rutman Theorem (see e.g., [1, Theorem 3.1]), $r(T_{u,\lambda})$ is an eigenvalue of $T_{u,\lambda}$ to which a positive eigenfunction pertains. In the next lemma we prove that for λ large enough it holds for every solution $(u, w) \in [Z_{\lambda}, Y]$ that $r(T_{u,\lambda}) < 1$.

Lemma 4.1. There exists $\lambda^* > \lambda^*$ such that for all $\lambda > \lambda^*$ and every solution $(u, w) \in [Z_\lambda, Y]$ to (Q_λ) the corresponding operator $T_{u,\lambda}$ has spectral radius $r(T_{u,\lambda}) < 1$.

Proof. We prove the lemma by a contradiction argument. Assume that it does not hold. Then there exist a sequence $\{\lambda_n\}_{n=1}^{\infty}$ with $\lambda^{\times} < \lambda_n \to \infty$ and solutions $(u_n, w_n) := (u_{\lambda_n}, w_{\lambda_n}) \in [Z_{\lambda_n}, Y]$ to (Q_λ) with $\lambda = \lambda_n$ such that $r_n \geq 1$, with r_n denoting the spectral radius of $T_n := T_{u_n,\lambda_n}$. Let $(\varphi_n, \psi_n) \in X$ be the positive eigenfunction pertaining to r_n . We normalize the eigenfunction such that max $\varphi_n = 1$. This can be done since $\varphi_n = 0$

implies that $\psi_n = 0$, a contradiction because (φ_n, ψ_n) is an eigenfunction. It holds that

$$
\begin{cases}\n-r_n \lambda_n^{-1} \Delta \varphi_n &= (f'(u_n) + \omega - \beta)\varphi_n + \beta \psi_n - r_n \omega \varphi_n & \text{in } \Omega, \\
-r_n \lambda_n^{-1} \Delta \psi_n &= (f'(u_n) + M)\varphi_n + (\omega - \alpha)\psi_n - r_n \omega \psi_n & \text{in } \Omega, \\
\varphi_n &= \psi_n = 0 & \text{on } \partial \Omega.\n\end{cases}
$$

Because operator norms $||T_n||_{\mathcal{L}(X)}$ are uniformly bounded it follows from

$$
r_n = \overline{\lim_{k \to \infty}} \left(\left\| T_n^k \right\|_{\mathcal{L}(X)} \right)^{1/k} \leq \| T_n \|_{\mathcal{L}(X)}
$$

that the sequence ${r_n}_{n=1}^{\infty}$ is bounded. By going over to a subsequence, still denoted by ${r_n}_{n=1}^{\infty}$, we can assume that $r_n \to \bar{r} \geq 1$. With $\theta_n := \beta(\varphi_n - \psi_n)$ [one](#page-9-3) has that

$$
\begin{cases}\n-r_n \lambda_n^{-1} \Delta \theta_n &= \delta \varphi_n - \gamma \theta_n + (1 - r_n) \omega \theta_n & \text{in } \Omega, \\
\theta_n &= 0 & \text{on } \partial \Omega.\n\end{cases}
$$

This shows that $\varphi_n \geq \psi_n$ and hence $-r_n\lambda_n^{-1}\Delta\varphi_n \leq f'(u_n)\varphi_n$. Using estimate (15) in Lemma 3.4 we have for all $x \in \Omega$ with dist $(x, \Gamma) > b_0^{-1} \lambda_n^{-1/2} \rho_{\sigma_0}^+$ that $f'(u_n(x)) \leq 0$ and consequently

(36)
$$
-\Delta \varphi_n \leq 0 \quad \text{in} \quad \left\{ x \in \Omega \, ; \, \text{dist} \left(x, \Gamma \right) > b_0^{-1} \lambda_n^{-1/2} \rho_{\sigma_0}^+ \right\}.
$$

Hence φ_n attains its maximum in a point \bar{x}_n with $dist(\bar{x}_n, \Gamma) \leq b_0^{-1} \lambda_n^{-1/2} \rho_{\sigma_0}^+$. Let $\bar{x}_{\Gamma,n} \in \Gamma$ be such that $|\bar{x}_n - \bar{x}_{\Gamma,n}| = \text{dist}(\bar{x}_{\Gamma,n}, \Gamma)$. By going over to a subsequence we can assume that $\bar{x}_{\Gamma,n} \to \bar{x} \in \Gamma$.

By a blow-up argument around \bar{x} , similar to the argument in [4], one constructs $U, W, \Phi, \Psi \in C^2 \left(\mathbb{R}^N_+ \right) \cap C \left(\overline{\mathbb{R}^N_+} \right)$ such that (U, W) satisfies

$$
\begin{cases}\n-\Delta U = f(U) - \beta U + \beta W & \text{in } \mathbb{R}^N_+, \\
-\Delta W = f(U) + MU - \alpha W & \text{in } \mathbb{R}^N_+, \\
U = W = 0 & \text{on } \partial \mathbb{R}^N_+, \n\end{cases}
$$

and (Φ, Ψ) satisfies

$$
\begin{cases}\n-\bar{r}\Delta\Phi &= (f'(U) + \omega - \beta)\Phi + \beta\Psi - \bar{r}\omega\Phi & \text{in } \mathbb{R}^N_+, \\
-\bar{r}\Delta\Psi &= (f'(U) + M)\Phi + (\omega - \alpha)\Psi - \bar{r}\omega\Psi & \text{in } \mathbb{R}^N_+, \\
\Phi &= \Psi = 0 & \text{on } \partial\mathbb{R}^N_+.\n\end{cases}
$$

The normalization max $\phi_n = 1$ leads to sup $\Phi = 1$. Furthermore, using the uniform estimate (14) it follows that

(37)
$$
\lim_{x_1 \to \infty} (U, W)(x_1, x') = (\rho_{\delta/\gamma}^+, \vartheta \rho_{\delta/\gamma}^+) \text{ uniformly in } x' \in \mathbb{R}^{N-1}.
$$

Hence, by Proposition 3.13, $(U, W)(x_1, x') = (u, w)_{\bar{\kappa}, \bar{\nu}}(x_1)$. Then (Φ, Ψ) is a bounded positive solution to (30) with $\bar{r} \geq 1$. By Proposition 3.14, $(\Phi, \Psi) \equiv (0, 0)$, in contradiction with sup $\Phi = 1$.

We shall use this lemma to prove that there can be at most one solution to (Q_{λ}) in the order interval $[Z_{\lambda}, Y]$. First we define the operator $H_{\lambda}: X \to X$

$$
H_{\lambda} := K_{\omega,\lambda}(F + \omega I),
$$

where $F: X \to X$ is defined by

$$
F\left(\begin{array}{c}u\\w\end{array}\right)=\left(\begin{array}{c}f\left(u\right)-\beta u+\beta w\\f\left(u\right)+Mu-\alpha w\end{array}\right).
$$

We shall show that H_{λ} has at most one fixed point in $[Z_{\lambda}, Y]$. In order to use the Leray-Schauder degree we have to consider the fixed point problem

$$
H_{\lambda}(u, w) = (u, w)
$$

in an appropriate space.

Let μ be the principal eigenvalue and $e \in C^1(\overline{\Omega}) \cap C^2(\Omega)$ the corresponding eigenfunction to the problem

$$
\begin{cases}\n-\Delta e &= \mu e & \text{in } \Omega, \\
e &= 0 & \text{on } \Gamma.\n\end{cases}
$$

We normalize e such that $\max e = 1$. Following Amann [1] we define

(38)
$$
C_e\left(\bar{\Omega}\right) := \left\{u \in C\left(\bar{\Omega}\right) ; \exists t > 0 \text{ such that } |u| \le te\right\},\
$$

equipped with the norm $||u||_e = inf\{t > 0; -te \le u \le te\}$. It holds that $C_e(\overline{\Omega})$ is a Banach space, in fact a Banach lattice, with closed unit ball $\{u \in C(\overline{\Omega}) \,;\, -e \leq u \leq e\}.$ Let $X_e = C_e(\overline{\Omega}) \times C_e(\overline{\Omega})$. Order intervals in X_e will be denoted by $[\cdot, \cdot]_e$. Let j_1, j_2 be the embeddings of X_e in X and $C_0^1(\bar{\Omega}) \times C_0^1(\bar{\Omega})$ in X_e respectively and define $H^e_{\lambda}: X_e \to X_e$ by

$$
H_{\lambda}^{e} := j_{2} \circ \begin{pmatrix} \left(-\lambda^{-1} \Delta + \omega \right)_{0}^{-1} & 0 \\ 0 & \left(-\lambda^{-1} \Delta + \omega \right)_{0}^{-1} \end{pmatrix} \circ (F + \omega I) \circ j_{1}.
$$

We recall that $(-\lambda^{-1}\Delta + \omega)_0^{-1}$ was defined as an operator from $C(\overline{\Omega})$ into $C_0^1(\overline{\Omega})$. We note that (u, w) is a fixed point of H^e_{λ} if and only if $j_1(u, w)$ is a fixed point of H_{λ} . Hence it suffices to show that H_{λ}^e has a unique fixed point in $[Z_{\lambda}, Y] \cap X_e$.

It also holds for $(u_i, w_i) \in X$ with $(u_1, w_1) < (u_2, w_2)$ that

(39)
$$
H_{\lambda}(u_1, w_1) < H_{\lambda}(u_2, w_2).
$$

In fact $H_{\lambda}(u_2, w_2) - H_{\lambda}(u_1, w_1)$ is an element of the interior of the positive cone of X_e , or equivalently, there exists $t > 0$ such that

(40)
$$
H_{\lambda}(u_2, w_2) - H_{\lambda}(u_1, w_1) \geq (te, te).
$$

Since neither Z_{λ} nor Y are fixed points of H_{λ} we find, using (39), that any fixed point $(u, w) \in [Z_{\lambda}, Y]$ satisfies

$$
Z_{\lambda}^* := H_{\lambda} Z_{\lambda} < (u, w) < H_{\lambda} Y =: Y^*.
$$

From (40) we even have the stronger result that $(u, w) \in \text{int} [Z_{\lambda}^{*}, Y^{*}]_{e}$, the interior of $[Z^*_{\lambda}, Y^*]_e$ with respect to the $\|\cdot\|_e$ -topology. The uniqueness of a fixed point of H_{λ} in $[Z_{\lambda}, Y]$ for $\lambda \geq \lambda^*$ then follows from the next lemma.

Lemma 4.2. For every $\lambda > \lambda^*$ there exists a unique fixed point of H^e_{λ} in int $[Z_{\lambda}^*,Y^*]_e$.

Proof. We have for every $\lambda > \lambda^*$ that there exists at least one solution to (Q_{λ}) in the order interval $[Z_{\lambda}, Y]$ which, as we observed, is a fixed point of H_{λ}^e and $(u, w) \in \text{int} [Z_{\lambda}^*, Y^*]_e$. To show that this is the only solution, we shall use a degree argument.

S[upp](#page-18-0)ose $(u, w) \in \text{int} [Z^*_{\lambda}, Y^*]_e$ $(u, w) \in \text{int} [Z^*_{\lambda}, Y^*]_e$ $(u, w) \in \text{int} [Z^*_{\lambda}, Y^*]_e$, with $\lambda > \lambda^*$, is a fixed point of H^e_{λ} . The operator H_{λ}^e is differentiable and $T_{u,\lambda}^e := dH_{\lambda}^e(u,w) \in \mathcal{L}(X_e)$ given by

$$
T_{u,\lambda}^e = j_2 \circ \left(\begin{array}{cc} \left(-\lambda^{-1} \Delta + \omega \right)_0^{-1} & 0 \\ 0 & \left(-\lambda^{-1} \Delta + \omega \right)_0^{-1} \end{array} \right) \circ \left(M_u + \omega I \right) \circ j_1,
$$

with M_u as defined in (34). From Lemma 4.1 we have that the spectral radius $r(T_{u,\lambda}^e) < 1$. Indeed μ is an eigenvalue of $T_{u,\lambda}^e$ if and only if μ is an eigenvalue of $T_{u,\lambda}$. Since $r(T_{u,\lambda}) > 0$ it holds that $r(T_{u,\lambda}^e) > 0$. But $T_{u,\lambda}^e$ is a positive compact operator and hence $r(T_{u,\lambda}^e)$ is an eigenvalue of $T_{u,\lambda}^e$ to which a positive eigenfunction pertains. This implies that $r(T_{u,\lambda}^e) = r(T_{u,\lambda}) < 1$.

In particular 1 is not an eigenvalue of $T_{u,\lambda}^e$ and consequently the index of the fixed point (u, w) is well defined with

$$
index(u, w) = 1,
$$

see [17, p. 66]. Using the homotopy invariance of the degree and the fact that $\mathrm{int} [Z_{\lambda}^*, Y^*]_e$ is convex, it follows that

degree
$$
(I - H_{u,\lambda}^e, \text{int }[Z_\lambda^*, Y^*]_e, 0) = 1.
$$

Indeed, let $\overline{z} \in \text{int} \left[Z_{\lambda}^*, Y^* \right]_e$ be arbitrary and define the homotopy

$$
G_t = (1 - t) (I - \overline{z}) + t (I - H_{u,\lambda}^e).
$$

It holds that $G_t z = 0$ if and only if $z = (1 - t) \overline{z} + t H_{u,\lambda}^e z$ and hence $z \in \overline{z}$ int $[Z^*_\lambda, Y^*]_e$. Since G_t has no zeros on the boundary int $[Z^*_\lambda, Y^*]_e$ we have that

degree $(G_1, \text{int }[Z_\lambda^*, Y^*]_e, 0) = \text{degree}(G_0, \text{int }[Z_\lambda^*, Y^*]_e, 0) = 1.$

By the additivity property of the degree we see that H_{λ}^{e} can have at most one fixed point in $\mathrm{int}\left[Z_{\lambda}^{\ast},Y^{\ast}\right] _{e}$.

The proof of Theorem 2.1 can now be completed. For all $\lambda > \lambda^*$ we have a unique solution $\tilde{\Lambda}(\lambda) = (u_{\lambda}, w_{\lambda}) \in \text{int} [Z_{\lambda}^*, Y^*]_e \subset [Z_{\lambda}, Y]$ to (Q_{λ}) .

Using the Implicit Function Theorem we have that $\tilde{\Lambda} \in C^1((\lambda^*, +\infty), X_e)$. Indeed the operator $(\lambda, (u, w)) \rightarrow (u, w) - H^e(\lambda, (u, w))$ is C^1 and the derivative with respect to (u, w) is given by $I - T_{u,\lambda}^e$. For fixed $\lambda_0 > \lambda^*$ it holds that $I - T_{u,\lambda_0}^e \in \text{Isom}(X_e)$. By the Implicit Function Theorem the solution set of $H^e(\lambda, (u, w)) = 0$ consists in a neighbourhood of λ_0 of a C^1 -curve, parameterized by λ . By uniqueness of solutions in int $[Z^*_{\lambda}, Y^*_{\mu}]_e$ we have that this cur[ve i](#page-5-2)s in a [neig](#page-5-1)hbourhood of $(\lambda_0, u_{\lambda_0}, w_{\lambda_0})$ given by $\tilde{\Lambda}$. Since this can be [don](#page-5-0)e for every $\lambda > \lambda^*$ we have that $\tilde{\Lambda}$ in $C^1((\lambda^*, +\infty), X_e)$. Using a bootstrap argument one proves that $\tilde{\Lambda} \in C^1((\lambda^*, +\infty), C^2(\overline{\Omega}) \times C^2(\overline{\Omega})).$

Finally we define $\Lambda(\lambda) := (u_{\lambda}, \beta(u_{\lambda} - w_{\lambda}))$. Then $\Lambda(\lambda)$ is a solution to (P_{λ}) for all $\lambda > \lambda^*$ and $\Lambda \in C^1((\lambda^*, \infty), C^2(\overline{\Omega}) \times C^2(\overline{\Omega})).$

4.2. Proof of Theorems 2.2 and 2.3. In this section we assume that the conditions of Theorem 2.1 hold. We define the operator $B_\lambda : D(B_\lambda) \to X$ by

$$
D(B_{\lambda}) := \{ (u, w) \in X \, ; \, (\Delta u, \Delta w) \in X \},
$$

with Δu and Δw in distributional sense,

$$
B_{\lambda} := L_{\lambda} - M_{u_{\lambda}},
$$

with

$$
L_{\lambda} := \left(\begin{array}{cc} -\lambda^{-1} \Delta & 0 \\ 0 & -\lambda^{-1} \Delta \end{array} \right)
$$

and $M_{u_{\lambda}}$ as defined in (34).

Lemma 4.3. For all $\lambda > \lambda^*$, with λ^* as in Lemma 4.1, the operator B_λ is invertible and $B_{\lambda}^{-1} \in \mathcal{L}(X)$ is a positive compact operator with a positive spectral radius $r_{\lambda} = r(B_{\lambda}^{-1})$ λ^{-1}). Moreover r_{λ} is an eigenvalue of B_{λ}^{-1} with a corresponding positive eigenfunction.

Proof. Denote by T_{λ} and M_{λ} the operators $T_{u_{\lambda}}$ and $M_{u_{\lambda}}$ respectively. Since $\lambda > \lambda^*$ the spectral radius $r(T_\lambda)$ of T_λ satisfies

$$
(41) \t\t\t 0 < r(T_{\lambda}) < 1.
$$

Hence $B_{\lambda} = L_{\lambda} + \omega I - (M_{\lambda} + \omega I) = (\lambda^{-1}L_1 + \omega I) (I - T_{\lambda})$ is invertible with $B_{\lambda}^{-1} = (I - T_{\lambda})^{-1} K_{\omega,\lambda}$. It holds that B_{λ}^{-1} λ ¹ is positive and compact since $(I - T_{\lambda})^{-1}$ is a positive bounded operator and $K_{\omega,\lambda}$ is a positive compact operator. Moreover, since $r(T_\lambda) < 1$ it follows from [23, Lemma 1.4] that B_{λ}^{-1} λ^{-1} is irreducible, and hence the spectral radius $r_{\lambda} = r(B_{\lambda}^{-1})$ $(\overline{\lambda}^{-1})$ is positive. By the Krein-Rutman Theorem r_{λ} corresponds to a positive eigenfunction. \Box

Lemma 4.4. For all $\nu > 0$ the operator $B_{\lambda} + \nu I$ is invertible. The inverse $(B_{\lambda} + \nu I)^{-1} \in \mathcal{L}(X)$ is positive and compact and its spectral radius is given by $r((B_{\lambda} + \nu I)^{-1}) = (r_{\lambda}^{-1} + \nu)^{-1}.$

Proof. Let $k = \omega + \nu$. Then

$$
B_{\lambda} + \nu I = L_{\lambda} + kI - (M_{\lambda} + \omega I)
$$

= $(L_{\lambda} + kI) (I - K_{k,\lambda}(M_{\lambda} + \omega I)).$

The operator $K_{k,\lambda}(M_{\lambda} + \omega I)$ is also positive, compact and irreducible. Again using the Krein-Rutman Theorem we find that $r(K_{k,\lambda}(M_{\lambda} + \omega I))$ is an eigenvalue of the adjoint operator $(K_{k,\lambda}(M_{\lambda}+\omega I))^*$ pertaining to a positive functional, say $\Upsilon_{k,\lambda}$. Let h_{λ} be the positive eigenfunction of B_{λ}^{-1} λ corresponding to the eigenvalue r_{λ} as in Lemma 4.3. It holds that

(42)
$$
h_{\lambda} = (r_{\lambda}^{-1} + k - \omega) K_{k,\lambda} h_{\lambda} + K_{k,\lambda} (M_{\lambda} + \omega I) h_{\lambda}.
$$

Using (42) it follows that

$$
\langle h_{\lambda}, \Upsilon_{k,\lambda} \rangle = (r_{\lambda}^{-1} + k - \omega) \langle K_{k,\lambda} h_{\lambda}, \Upsilon_{k,\lambda} \rangle + \langle K_{k,\lambda} (M_{\lambda} + \omega I) h_{\lambda}, \Upsilon_{k,\lambda} \rangle
$$

\n
$$
\geq \langle K_{k,\lambda} (M_{\lambda} + \omega I) h_{\lambda}, \Upsilon_{k,\lambda} \rangle
$$

\n
$$
= r(K_{k,\lambda} (M_{\lambda} + \omega I)) \langle h_{\lambda}, \Upsilon_{k,\lambda} \rangle.
$$

Hence $r(K_{k,\lambda}(M_{\lambda}+\omega I))$ < 1 and the operator $B_{\lambda}+\nu I$ is invertible with

$$
(B_{\lambda} + \nu I)^{-1} = (I - K_{k,\lambda}(M_{\lambda} + \omega I))^{-1} (L_{\lambda} + kI)^{-1}
$$

Moreover $(B_{\lambda} + \nu I)^{-1}$ is compact and positive and irreducible. Since

$$
(B_\lambda + \nu I)^{-1} h_\lambda = (r_\lambda^{-1} + \nu)^{-1} h_\lambda
$$

we see that $(r_{\lambda}^{-1} + \nu)^{-1}$ is an eigenvalue to which a positive eigenfunction pertains. It then follows from the irreducibility of $(B_\lambda + \nu I)^{-1}$ that the spectral radius of this operator must be $(r_{\lambda}^{-1} + \nu)^{-1}$.

Lemma 4.5. If $\mu \in \mathbb{C}$ is such that $\text{Re } \mu < r_{\lambda}^{-1}$ then μ is in the resolvent set of B_λ .

Proof. Let $h \in X$ be arbitrary and consider the equation

$$
(43) \t\t B_{\lambda}g - \mu g = h,
$$

where $\text{Re}\,\mu < r_{\lambda}^{-1}$. Choose $\nu \in \mathbb{R}$ large enough such that

$$
(\text{Re}\,\mu)^2 + 2\nu\left(\text{Re}\,\mu - r_{\lambda}^{-1}\right) + (\text{Im}\,\mu)^2 < r_{\lambda}^{-2}
$$

and $\mu + \nu \neq 0$. Then

$$
|\mu + \nu|^2 = (\text{Re}\,\mu)^2 + 2\nu \,\text{Re}\,\mu + \nu^2 + (\text{Im}\,\mu)^2
$$

$$
< r_{\lambda}^{-2} + 2\nu r_{\lambda}^{-1} + \nu^2,
$$

.

and hence $0 < |\mu + \nu| < r_{\lambda}^{-1} + \nu$. Equation (43) is equivalent with

$$
(B_{\lambda} + \nu I)g - (\mu + \nu)g = h.
$$

Using Lemma 4.4 we can rewrite this as

(44)
$$
((B_{\lambda} + \nu I)^{-1} - (\mu + \nu)^{-1}I) g = -(\mu + \nu)^{-1}(B_{\lambda} + \nu I)^{-1}h.
$$

[Si](#page-5-2)nce $|(\mu + \nu)^{-1}| > (r_{\lambda}^{-1} + \nu)^{-1} = r((B_{\lambda} + \nu I)^{-1})$ $|(\mu + \nu)^{-1}| > (r_{\lambda}^{-1} + \nu)^{-1} = r((B_{\lambda} + \nu I)^{-1})$ $|(\mu + \nu)^{-1}| > (r_{\lambda}^{-1} + \nu)^{-1} = r((B_{\lambda} + \nu I)^{-1})$ we have that $(\mu + \nu)^{-1}$ is in the resolvent set $(B_{\lambda} + \nu I)^{-1}$ and hence (44) has a unique solution. It follows from the closed graph theorem that μ is in the resolvent set of B_{λ} .

Proof of Theorem 2.2. Consider the operator A_{λ} defined in (7). It holds that μ is in the resolvent set of A_{λ} if and only if μ/λ is in the resolvent set of B_λ . Indeed if μ/λ is in the resolvent set of B_λ the operator defined by

$$
(u, v) \mapsto (\varphi, \beta\varphi - \beta\psi)
$$

where $(\varphi, \psi) := \lambda^{-1} (B_{\lambda} - \mu/\lambda)^{-1} (u, u - \frac{1}{\beta})$ $\frac{1}{\beta}v$) is directly seen to be $(A_{\lambda}-\mu)^{-1}$. Conversely, for μ in the resolvent set of A_{λ} the operator defined by

$$
(u, w) \mapsto (\varphi, \varphi - (1/\beta)\theta)
$$

where $(\varphi, \theta) := \lambda (A_{\lambda} - \mu I)^{-1} (u, \beta u - \beta w)$ is $(B_{\lambda} - \mu/\lambda)^{-1}$. Hence, using the last lemma we have that all $\mu \in \mathbb{C}$ with $\text{Re } \mu \leq \nu_{\lambda} := \lambda r_{\lambda}^{-1}$ that μ is in the resolvent set of A_{λ} .

Proof of Theorem 2.3. The theorem follows directly from Lemma 3.5 and the fact that $\Lambda(\lambda)$ is the unique solution in $[Z_{\lambda}, Y]$.

A. Appendix.

We recall some facts about quasimonotone systems. We remark that in this section Ω may be an unbounded domain.

Definition A.1. A system of elliptic equations

(45)
$$
\begin{cases}\n-\Delta u = F_1(x, u, w) & \text{in } \Omega, \\
-\Delta w = F_2(x, u, w) & \text{in } \Omega,\n\end{cases}
$$

with $F_i \in C^1$ $(\bar{\Omega} \times \mathbb{R} \times \mathbb{R})$ is called *quasimonotone* if

$$
\frac{\partial F_1}{\partial u}(x, u, w) \ge 0 \quad \text{and} \quad \frac{\partial F_2}{\partial w}(x, u, w) \ge 0 \text{ for all } (x, u, w) \in \overline{\Omega} \times \mathbb{R} \times \mathbb{R}.
$$

This definition suffices for our purposes. For a more general definition we refer to $[16]$.

Definition A.2. A pair $(u, w) \in C(\overline{\Omega}) \times C(\overline{\Omega})$ is called a *subsolution* to the problem

(46)
$$
\begin{cases}\n-\Delta u = F_1(x, u, w) & \text{in } \Omega, \\
-\Delta w = F_2(x, u, w) & \text{in } \Omega, \\
(u, w) = (\varphi, \psi) & \text{on } \Gamma = \partial \Omega,\n\end{cases}
$$

with $\varphi, \psi \in C(\Gamma)$ if

(1) it holds in $\mathcal{D}'(\Omega)$ -sense that

$$
-\Delta u \leq F_1(x, u, w),
$$

$$
-\Delta w \leq F_2(x, u, w);
$$

(2) $(u, w) \leq (\varphi, \psi)$ on Γ .

Supersolutions are defined by reversing the ineq[uali](#page-25-1)ty signs. If (u, w) is both a subsolution and a supersolution then it is called a C-solution.

We note that if Ω is a bounded smooth domain and F_1, F_2 are C^1 then a C-solution (u, w) is in $C^2(\overline{\Omega}) \times C^2(\overline{\Omega})$. We often use the following results from $[16,$ Theorem 1.3].

Proposition A.3. Let Ω be a bounded smooth domain and assume that (46) is quasimo[noto](#page-25-1)ne.

(1) If (u_i, w_i) , $i = 1, 2$, are subsolutions [to](#page-25-1) this system then (u, w) defined by

$$
(u(x), w(x)) := \left(\max_{1,2} \{u_i(x)\}, \max_{1,2} \{w_i(x)\}\right)
$$

is again a subsolution to (46).

(2) If (u, w) is a subsolution and $(\overline{u}, \overline{w})$ a supersolution to (46) then there exists a C-solution (u, w) to (46) with

$$
(\underline{u}, \underline{w}) \le (u, w) \le (\overline{u}, \overline{w}).
$$

We give some results for $\Omega = \mathbb{R}^N_+ := \{(x_1, x') : x_1 \in \mathbb{R}, x' \in \mathbb{R}^{N-1}\}.$ The first is that one has also for quasimonotone systems the existence of a minimal and maximal solutions between an ordered pair of sub- and supersolutions.

Lemma A.4. Consider the following halfspace problem:

(47)
$$
\begin{cases}\n-\Delta u = F_1(u, w) & \text{in } \mathbb{R}^N_+, \\
-\Delta w = F_2(u, w) & \text{in } \mathbb{R}^N_+, \\
u = w = 0 & \text{on } \partial \mathbb{R}^N_+, \n\end{cases}
$$

with $F_i \in C^{1,\alpha}(\mathbb{R} \times \mathbb{R}), 0 < \alpha < 1$, and suppose this system is quasimonotone. If there exists a bounded subsolution (u, w) and bounded supersolution $(\overline{u}, \overline{w})$ to this system with $(u, w) \leq (\overline{u}, \overline{w})$, then there exist a maximal and a minimal $C^{2,\alpha}$ -solution in the order interval $[(\underline{u}, \underline{w}), (\overline{u}, \overline{w})]$ to this problem.

The proof of this lemma is almost the same as for bounded domains. We only observe that if $\omega > 0$ is such that $\frac{\partial}{\partial u} F_1(u, w) + \omega \ge 0$ and $\frac{\partial}{\partial w} F_2(u, w) +$ $\omega \geq 0$ for $(\underline{u}, \underline{w}) \leq (u, w) \leq (\overline{u}, \overline{w})$ then one can define inductively

 $(u_0, w_0) = (\underline{u}, \underline{w}),$ $(u_{n+1}, w_{n+1}) = T(u_n, w_n),$ $n = 0, 1, 2, ...$

with $(u, w) = T(u_n, w_n)$ the unique solution to the linear problem

$$
\begin{cases}\n(-\Delta + \omega_1) u = F_1(u_n, w_n) + \omega u_n & \text{in } \mathbb{R}^N_+, \\
(-\Delta + \omega_2) w = F_2(u_n, w_n) + \omega w_n & \text{in } \mathbb{R}^N_+, \\
u = w = 0 & \text{on } \partial \mathbb{R}^N_+.\n\end{cases}
$$

That this system has a unique solution follows from the fact that if $k > 0$ and $g \in L^{\infty}(\mathbb{R}^N_+)$ then there exists a unique $u \in L^{\infty}(\mathbb{R}^N_+) \cap C(\mathbb{R}^N_+)$ such that $-\Delta u + k u = f$ in $\mathcal{D}'(\mathbb{R}^N_+)$ -sense and $u = 0$ on $\partial \mathbb{R}^N_+$, see see e.g., [6, Proposition 27, p. 635]. Since the system is quasimonotone we have, see also $\vert 16\vert$, that

 $(u, \underline{w}) \le (u_n, w_n) \le (u_{n+1}, w_{n+1}) \le (\overline{u}, \overline{w})$ for $n = 0, 1, 2, \dots$.

Letting $n \to \infty$ one obtains a solution.

The next lemma is used to reduce the study of equations on \mathbb{R}^N_+ to the study of inequalities on \mathbb{R}^+ .

Lemma A.5. Suppose that $(U, W) \in C^2(\mathbb{R}^N_+) \cap C\left(\overline{\mathbb{R}^N_+}\right)$ is a bounded solution of

(48)
$$
\begin{cases}\n-\Delta U = F_1(x_1, U, W) & \text{in } \mathbb{R}^N_+, \\
-\Delta W = F_2(x_1, U, W) & \text{in } \mathbb{R}^N_+, \\
U = W = 0 & \text{on } \partial \mathbb{R}^N_+, \n\end{cases}
$$

with $F_i(x_1, s, t) \in C^{1,\alpha}\left(\overline{\mathbb{R}^3_+}\right)$ and $0 < \alpha < 1$. Assume (48) is quasimonotone and that $|F_i(x_1, s, t)| \leq h(s, t)$ with h a continuous function on \mathbb{R}^2 . Define (u, w) by

$$
(u, w) (x_1) := (\sup_{x' \in \mathbb{R}^{N-1}} U(x_1, x), \sup_{x' \in \mathbb{R}^{N-1}} W(x_1, x)).
$$

It holds that $u, w \in C[0, \infty)$ with $u(0) = w(0) = 0$ and in $\mathcal{D}'(\mathbb{R}^+)$ -sense that

(49) $-u'' \leq F_1(x_1, u, w)$

(50)
$$
-w'' \leq F_2(x_1, u, w).
$$

Proof. Since U and W are bounded, ΔU and ΔW are also bounded. From this and the fact that $U = W = 0$ on $\partial \mathbb{R}^N_+$ one obtains by standard regularity results that $U, W \in C^{2,\alpha}(\overline{\mathbb{R}^N_+})$. In particular we have uniform bounds on the first order derivatives of U and W .

Let $\{q_j; j = 1, 2, \dots\}$ be a numbering of \mathbb{Q}^{N-1} and define the functions U_j and W_j on \mathbb{R}^N_+ by

$$
(U_j, W_j)(x) = (U, W)(x + (0, q_j)).
$$

For $k = 1, 2, \ldots$, we define (S_k, T_k) on \mathbb{R}^N_+ by

$$
(S_k, T_k)(x) = (\sup_{1 \le j \le k} U_j(x), \sup_{1 \le j \le k} W_j(x)),
$$

and let $(S, T)(x) := \lim_{k\to\infty} (S_k, T_k)(x)$. It follows from the uniform continuity of U and W that $(S(x), T(x)) = (u(x_1), w(x_1)).$

Since the system is quasimonotone it follows from Proposition A.3 and induction that in $\mathcal{D}'(\mathbb{R}^N_+)$ -sense $-\Delta S_k \leq F_1(x_1, S_k, T_k)z$ for every $k = 1, 2, \ldots$. By dominated convergence it then follows that $-\Delta u \leq F_1(x_1, u, w)$ in $\mathcal{D}'(\mathbb{R}^N_+)$ -sense In particular if $z_1 \in \mathcal{D}^+(\mathbb{R}_+)$ we set $z := z_1z_2$ with $z_2 \in \mathbb{R}^N$ $\mathcal{D}^+\left(\mathbb{R}^{N-1}\right)$, $z_2 \neq 0$ one sees that this implies (49).

Since $F_1(x_1, u, w)$ is bounded there exists $M > 0$ such that $F_1(x_1, u, w)$ – $2M \leq 0$ on \mathbb{R}^+ . Then $-(u+Mx_1^2)'' \leq 0$ in $\mathcal{D}'(\mathbb{R}_+)$ -sense. Hence $x_1 \mapsto$ $u(x_1) + Mx_1^2$ is convex [an](#page-29-6)d consequently continuous on $(0, \infty)$. Since $\frac{\partial}{\partial x_1}U$ is uniformly bounded and $U(0, x') = 0$ for all $x' \in \mathbb{R}^{N-1}$, it follows that u is continuous in 0 with $u(0) = 0$. The result for w is obtained mutatis mutandis.

Finally we [pro](#page-25-1)ve a direct analogue for a quasimonotone system of the sweeping principle for scalar equations in [15]. Suppose that $\Gamma = \Gamma_1 \cup \Gamma_2$ with $\Gamma_1, \Gamma_2 \in C^2$ and $\Gamma_1 \cap \Gamma_2 = \emptyset$. Here Γ_i may be empty. Let $e \in C^1(\overline{\Omega})$ be such that $e(x) > 0$ for $x \in \Omega \cup \Gamma_1$ and $e(x) = 0$, $\frac{\partial e}{\partial n}(x) < 0$ for $x \in \Gamma_2$ where *n* is the outward normal and let $C_e(\bar{\Omega})$ be as in (38), see also [1].

Proposition A.6. Suppose that (46) is quasimonotone. If (u, w) is a supersolution, and $\{(u_t, w_t) : t \in [0, 1]\}$ is a family of subsolutions such that

- (1) $(u_t, w_t) < (g_1, g_2)$ on Γ_1 and $(u_t, w_t) = (g_1, g_2)$ on Γ_2 for all $t \in [0, 1]$;
- (2) $t \mapsto u_t u_0$ and $t \mapsto w_t w_0$ is continuous from [0, 1] into $C_e(\Omega)$;
- (3) $(u_0, w_0) \le (u, w) \text{ in } \overline{\Omega};$
- (4) $u_t \neq u$ and $w_t \neq w$ for all $t \in [0, 1]$;

then there exists $r > 0$ such that $(u, w) - (u_t, w_t) > (re, re)$ for all $t \in [0, 1]$.

Proof. Let $S = \{t \in [0,1] ; (u_t, w_t) \leq (u, w) \text{ in } \Omega\}$. By assumption $0 \in S$. Since convergence in $C_e(\Omega)$ implies pointwise convergence it follows that S is closed. Let $t_0 \in S$. It holds with ω large enough in $\mathcal{D}'(\Omega)$ -sense that

$$
-\Delta(u - u_{t_0}) + \omega(u - u_{t_0}) \geq F_1(u, w) + \omega u - F_1(u_{t_0}, w_{t_0}) + \omega u_{t_0}
$$

= $F_1(u, w) + \omega u - F_1(u_{t_0}, w) + \omega u_{t_0}$
+ $F_1(u_{t_0}, w) - F_1(u_{t_0}, w_{t_0}) \geq 0.$

Since $u \neq u_{t_0}$ there exists $s' > 0$ such that $u - u_{t_0} > s'e_0$ with e_0 a $C^1(\overline{\Omega})$ function with $e(x) > 0$ for $x \in \Omega$, $e_0(x) = 0$ and $\frac{\partial e_0}{\partial n}(x) < 0$ for $x \in \Gamma$,

see [3, Corollary p. 581]. Since $u(x) - u_{t_0}(x) > 0$ for $x \in \Gamma_1$ and Γ_1 is compact, there exists $s_1 > 0$ such $u - u_{t_0} \geq s_1 e$. In the same way there exists s_2 such that $w - w_{t_0} \geq s_2e$. By hypothesis 2 there exists $\delta > 0$ such that $||u_t - u_{t_0}||_e$, $||w_t - w_{t_0}||_e < s/2$ for all $t \in [0, 1]$ for which $|t - t_0| < \delta$. This implies that for all such t we have that $u_t - u_{t_0} \leq \frac{s}{2}$ $\frac{s}{2}e$ and hence $u - u_t = u - u_{t_0} - (u_{t_0} - u_t) \geq \frac{s}{2}$ $\frac{s}{2}e$ and in the same way $w - w_t \geq \frac{s}{2}$ $\frac{s}{2}e$. Hence S is open and we have that $S = [0, 1]$. By the compactness of $[0, 1]$ and by hypotheses (2) it follows that there exists $r > 0$ such that $u - u_t \geq re$ and $w - w_t \geq re.$

Acknowledgment. We thank a referee for a number of very useful comments.

References

- [1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., **18** (1976), 620-709.
- [2] S.B. Angenent, Uniqueness of the solution of a semilinear boundary value problem, Math. Ann., 272 (1985), 129-138.
- [3] Ph. Clément and L.A. Peletier, *Positive superharmonic solutions to semilinear elliptic* eigenvalue problems, J. Math. Anal. Appl., 100 (1984), 561-582.
- [4] Ph. Clément and G. Sweers, Existence and multiplicity results for a semilinear elliptic eigenvalue problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14(4) (1987), 97-121.
- [5] E.N. Dancer and J. Wei, On the profile of solutions with two sharp layers to a singularly perturbed semilinear Dirichlet problem, Proc. Roy. Soc. Edinburgh, Sect. A, 127 (1997), 691-701.
- [6] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 1, Berlin-Heidelberg-New York, Springer, 1990.
- [7] D.G. de Figueiredo and E. Mitidieri, A maximum principle for an elliptic system and applications to semilinear problems, SIAM J. Math. Anal., 17 (1986), 881-895.
- [8] B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., **68** (1979), 209-243.
- [9] G.A. Klaasen and E. Mitidieri, Standing wave solutions of a system derived from the FitzHugh-Nagumo equations for nerve conduction, SIAM J. Math. Anal., 17 (1986), 74-83.
- [10] G.A. Klaasen and W.C. Troy, Standing wave solutions of a system of reaction diffusion equations derived from the FitzHugh-Nagumo equations for nerve conduction, SIAM J. Appl. Math., 44 (1984), 96-110.
- [11] N.V. Krylov, Lectures on elliptic and parabolic equations in Hölder spaces, AMS Graduate studies in mathematics, Providence, 1996.
- [12] A.C. Lazer and P.C. McKenna, On steady state solutions of a system of reactiondiffusion equations from biology, Nonlinear Anal., 6 (1982), 523-530.
- [13] P.-L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Review, 24 (1982), 441-467.
- [14] G. Mancini and E. Mitidieri, Positive solutions of some coercive-anticoercive elliptic systems, Ann. Fac. Sci. Toulouse. VII, 3 (1986), 257-292.
- [15] A. McNabb, Strong comparison theorems for elliptic equations of second order, J. Math. Mech., 10 (1961), 431-440.
- [16] E. Mitidieri and G. Sweers, Existence of a maximum solution for quasimonotone elliptic systems, Diff. and Int. Eqns., 7 (1994), 1495-1510.
- [17] L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Inst. Math. Sci. Notes, New York, 1974.
- [18] B. de Pagter, Irreducible compact operators, Math. Z., 129 (1986), 149-153.
- [19] C.J. Reinecke and G. Sweers, A positive solution on \mathbb{R}^N to a system of elliptic equations of FitzHugh-Nagumo type, J. Diff. Eqns., 153 (1999), 292-312.
- [20] , A boundary layer solution to a semilinear elliptic system of of FitzHugh-Nagumo type, C. R. Acad. Sci. Paris Sér. I, 329 (1999), 27-32.
- [21] F. Rothe, Global existence of branches of stationary solutions for a system of reactiondiffusion equations from biology, Nonlinear Anal. Theory, Meth. Appl., 5 (1981), 487-498.
- [22] J. Serrin, Nonlinear equations of second order, A.M.S. Symp. in Partial Diff. Eq., Berkeley, August 1971.
- [23] G. Sweers, Strong positivity in C $(\bar{\Omega})$ for elliptic systems, Math. Z., 209 (1992), 251-271.
- [24] W.C. Troy, Symmetry properties of elliptic equations, J. Diff. Eqns., 42 (1981), 400-413.

Received February 15, 1999 and revised August 3, 1999.

Department of Mathematics DELFT UNIVERSITY OF TECHNOLOGY 2600 GA DELFT THE NETHERLANDS E-mail address: WSKCJR@puknet.puk.ac.za

Department of Mathematics DELFT UNIVERSITY OF TECHNOLOGY 2600 GA DELFT The Netherlands E-mail address: sweers@twi.tudelft.nl