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In this paper we prove the existence and uniqueness of
the boundary layer solution to a semilinear eigenvalue prob-
lem consisting of a coupled system of two elliptic partial dif-
ferential equations. Although the system is not quasimono-
tone, there exists a transformation to a quasimonotone sys-
tem. For the transformed system we may and will use max-
imum (sweeping) principle arguments to derive pointwise es-
timates. A degree argument completes the uniqueness proof.

1. Introduction.

We consider the following nonlinear eigenvalue problem:
−∆u = λ(f (u)− v) in Ω,
−∆v = λ(δu− γv) in Ω,

u = v = 0 on Γ = ∂Ω,
(Pλ)

with λ, δ, γ > 0 and where Ω ⊂ RN is a smooth bounded domain. As usual,
a domain is an open connected set. The nonlinearity f is assumed to be
smooth and like a third order polynomial. We prove the existence of a curve
of positive solutions (uλ, vλ) to (Pλ) for λ large enough. These solutions
are shown to be, except for a boundary layer of width O(λ−1/2), close to
(ρ, (δ/γ)ρ) where ρ a positive zero of f (s) − (δ/γ)s and f ′(ρ) < 0. The
stability of these solutions as equilibria of the parabolic system

ut = ∆u+ λ(f (u)− v) in R+ × Ω,
vt = ∆v + λ(δu− γv) in R+ × Ω,

u = v = 0 on R+ × Γ,
(1)

with appropriate initial conditions is also proven. Finally it is shown that
these solutions are unique in an appropriate order interval.

The question of existence of solutions to (Pλ) with λ = 1 and with differ-
ent kinds of nonlinearities was studied by Klaasen and Mitidieri [9] and De
Figueiredo and Mitidieri [7], see also Rothe [21] and Lazer and McKenna
[12]. The fact that the second equation can be inverted to solve v in terms
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of u and that the problem can then be written as a single equation in u
was used extensively. In particular this single equation can be treated by
variational techniques. Using this approach it was shown for example in [9]
with f (u) = u (u− 1) (a− u), 0 < a < 1/2 and in [7] for more general f of
the same type, that there exist at least two nontrivial solutions, under the
assumptions that δ/γ is small enough and Ω contains a large enough ball.
By rescaling, this implies that there exist nontrivial solutions to (Pλ) if λ is
large and δ/γ small.

Our treatment of the problem differs from the variational approach men-
tioned above. By imposing some natural restrictions on the parameters,
which are satisfied if δ/γ is small, it is possible to make a transformation of
(Pλ) and a modification of f to obtain a quasimonotone system. Solutions
to the quasimonotone system in a certain range correspond to solutions to
the original problem. This approach was also used in [19] as well as in [14]
for other systems of equations. The advantage of working with a quasimono-
tone system is that for such systems a comparison principle holds. From this
follows the existence of solutions between an ordered pair of sub- and super-
solutions. For such systems one also has an analogue of McNabb’s sweeping
principle, see [15], [2], [4] and [22]. This will be a main tool in many of the
proofs.

Using this quasimonotone approach we are able to give a complete quali-
tative description of a specific solution to (Pλ). This qualitative description
allows us to prove uniqueness and stability results. Results in this direction
were obtained by Lazer and McKenna [12] for a system with δ = γ and f
such that f (s) /s is decreasing on R+. Existence and positivity of solutions
were considered in [9] and [7].

If we set δ = 0 in (Pλ) then the problem reduces to the well studied scalar
problem {

−∆u = λf (u) in Ω,
u = 0 on Γ.(Sλ)

There is an extensive literature on such kind of problems. We just mention
[2], [4], [13] and more recently [5]. We note that our treatment of the
quasimonotone system is similar to the treatment of problem (Sλ) as was
done in [2] and [4]. The results of the present paper were announced in [20].

The structure of the paper is as follows. In the next section the precise
assumptions on the nonlinearity f are stated, as well as the conditions which
we impose on the parameters γ and δ. It is then shown how (Pλ) can be
transformed to a quasimonotone system. The main results are also stated
in this section. In Section 3 we prove several auxiliary results. The proofs
of the main theorems are given in Section 4. In Appendix A we define our
notion of sub- and supersolutions for quasimonotone systems and give some
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related results. In particular we state a version of the sweeping principle for
quasimonotone systems. This principle is used repeatedly in the proofs.

2. Assumptions and main results.

The assumptions on f are the following.

Condition A. The function f ∈ C1,1 (R), f (0) ≥ 0 and there exists σ0 > 0
such that for every 0 ≤ σ < σ0 there exist ρ−σ < ρ+

σ with ρ+
σ > 0 such that

(1) f(ρ±σ ) = σρ±σ and f (s) > σs for ρ−σ < s < ρ+
σ ;

(2) f ′ (s) < 0 for all s ∈ (ρ+
σ0
, ρ+

0 );

(3) Jσ(ρ) > 0 on (0, ρ+
σ ) for all 0 ≤ σ < σ0 where

Jσ(ρ) :=
∫ ρ+

σ

ρ
(f (s)− σs) ds.(2)

See Figure 1.
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Figure 1.

Example 1. The function f (u) = au − u3 with a > 0, see [12] and [7],
satisfies Condition A above with σ0 = 2a/3.

Example 2. Consider the function f (u) = u (a− u) (u− 1) with a > 0.
Condition A holds if a < 1/2. In this case σ0 =

(
2a2 − 5a+ 2

)
/9. With

this nonlinearity problem (Pλ) is an extension of the FitzHugh-Nagumo
equations, see [9] and [10].

As was said in the introduction, an important step in our analysis is to
transform (Pλ) and to modify f in order to obtain a quasimonotone system.
For the definition of a quasimonotone system and some results for such
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systems we refer to Appendix A. In order to transform system (Pλ) we need
the following assumption on the parameters δ and γ:

Condition B1. Let M := max
{
−f ′ (s) ; 0 ≤ s ≤ ρ+

0

}
and suppose that

γ − 2
√
δ > M.

We define β and α by

β := 1
2(γ −M)− 1

2

√
(γ −M)2 − 4δ,(3)

α = γ − β.(4)

If Condition B1 holds then β ∈ R and α, β > 0. Note that −β(β + M) =
δ − γβ and that

ϑ := 1− δ

γβ
> 0.(5)

One may verify that (u,w) is a solution to
−∆u = λ(f (u)− βu+ βw) in Ω,
−∆w = λ(f (u) +Mu− αw) in Ω,

u = w = 0 on Γ,
(Qλ)

if and only if (u, βu− βw) is a solution to (Pλ).
Let f̃ ∈ C1,1 (R) be a function satisfying f̃ (s) = f (s) for all s ∈ [0, ρ+

0 ]
with f̃ , f̃ ′ bounded on R and with f̃ ′ (s)+M ≥ 0 for all s ∈ R. If we replace
f in (Qλ) by f̃ the system becomes quasimonotone. Since we are interested
in solutions (u, v) to (Pλ) with u positive and maxu < ρ+

δ/γ ≤ ρ+
0 we can

assume without loss of generality the following:

Condition A*. The function f satisfies Condition A with f and f ′ bounded
and f ′ (s) +M ≥ 0 for all s ∈ R and f(s) ≤ 0 for s ≥ ρ+

0 .

Another condition which we impose is:

Condition B2. The constant β defined in (3) satisfies β < σ0.

Under this condition one has for λ large enough a positive nontrivial
solution to the scalar problem{

−∆u = λ(f (u)− βu) in Ω,
u = 0 on Γ,

which has its maximum in the interval (ρ−β , ρ
+
β ), see [4]. This solution will

be used to obtain a nontrivial subsolution to (Qλ) for λ large enough. The
definition of sub- and supersolutions is given in Appendix A.



ON A FITZHUGH-NAGUMO TYPE ELLIPTIC SYSTEM 187

We make some remarks on Conditions B1 and B2. Both conditions are
satisfied if δ/γ is small enough. More precisely, for fixed δ > 0, B1 and B2
are satisfied if

γ >

{
M + 2

√
δ if 0 ≤ δ < σ2

0;
M + σ0 + δ/σ0 if δ ≥ σ2

0.

In the first theorem we prove the existence of a curve of positive solutions
to (Pλ).

Theorem 2.1 (Existence of a curve of solutions). Let f satisfy Condition
A, let γ, δ be such that Conditions B1 and B2 hold and assume that Γ is C3.
Then there exist λ? > 0 and a function Λ ∈ C1([λ?,+∞), C2(Ω̄) × C2(Ω̄))
such that (uλ, vλ) := Λ (λ) is a positive solution, i.e., uλ, vλ ≥ 0, to (Pλ) for
all λ ≥ λ?. Furthermore

(1) maxuλ ∈ (ρ−δ/γ , ρ
+
δ/γ) and max vλ ∈

δ

γ
(ρ−δ/γ , ρ

+
δ/γ);

(2) limλ→∞ Λ (λ) =
(
ρ+

δ/γ ,
δ

γ
ρ+

δ/γ

)
uniformly on compact subsets of Ω.

The stability of the solutions obtained in the theorem above will be con-
sidered in the space X := C

(
Ω̄
)
× C

(
Ω̄
)
. For λ > λ? we define the linear

operator Aλ : D (Aλ) ⊂ X → X by

D (Aλ) := {(u, v) ∈ X ; (∆u,∆v) ∈ X}(6)

and

Aλ

(
u
v

)
:=
(
−∆ 0

0 −∆

)(
u
v

)
− λ

(
f ′ (uλ) 1
δ −γ

)(
u
v

)
(7)

for (u, v) ∈ D (Aλ). Here uλ is the first component of Λ (λ). In the definition
of D (Aλ), ∆u and ∆w are to be understood in distributional sense.

Theorem 2.2 (Stability). Assume that the conditions of Theorem 2.1 hold
and let λ? and Λ be as in that theorem. For every λ ≥ λ? the solution
Λ (λ) = (uλ, vλ) to (Pλ) is an exponentially stable equilibrium solution to
the initial value problem (1) i.e., for every λ ≥ λ? there exists νλ > 0 such
that the spectrum σ (Aλ) is contained in {ν ∈ C ; Re ν > νλ}.

Our last theorem is a result on the uniqueness, in a restricted sense, of
solutions to (Pλ).

Theorem 2.3 (Uniqueness in order interval). Assume that the conditions
of Theorem 2.1 hold and let λ? and Λ be as in that theorem. For every
function z ∈ C0 (Ω) with z ≥ 0 and max z ∈ (ρ−β , ρ

+
δ/γ) there exists λz > λ?

such that if (u, v) is a solution to (Pλ) with λ > λz and u ∈ [z, ρ+
δ/γ ] then

(u, v) = Λ (λ).
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In general one cannot expect uniqueness of solutions. Indeed it may for
example be the case that the trivial solution is a stable solution to the
problem. Then there will exist a third, unstable solution in [0,Λ (λ)]. This
is the case when f is as in Example 2 and Conditions B1 and B2 hold, see
[19].

We end this section with a summary of the notation that will be used.

Notation:.
• Let u1, u2 ∈ C(Ω̄). We write

u1 ≥ u2 if u1 (x) ≥ u2 (x) for all x ∈ Ω;
u1 	 u2 if u1 ≥ u2 and u1 6= u2;
u1 > u2 if u1 (x) > u2 (x) for all x ∈ Ω.

• For (u,w) ∈ C(Ω̄)× C(Ω̄) we shall use (u,w) (x) = (u(x), w(x)).
• Let (ui, wi) ∈ C(Ω̄)× C(Ω̄), i = 1, 2. We write

(u1, w1) ≥ (u2, w2) if u1 ≥ u2 and w1 ≥ w2;
(u1, w1) 	 (u2, w2) if (u1, w1) ≥ (u2, w2) and (u1, w1) 6= (u2, w2) ;
(u1, w1) > (u2, w2) if u1 > u2 and w1 > w2.

• If (u1, w1) ≥ (u2, w2) we denote by [(u1, w1) , (u2, w2)] the order inter-
val {

(u,w) ∈ C(Ω̄)× C(Ω̄) ; (u1, w1) ≤ (u,w) ≤ (u2, w2)
}
.

• By D+(Ω) we denote the set of z ∈ C∞0 (Ω) with z ≥ 0 and D′(Ω)
denotes the usual space of distributions.

• For u1, u2 ∈ C(Ω̄) we say −∆u1 ≤ u2 in D′(Ω)-sense if∫
Ω
u1(−∆z) dx ≤

∫
Ω
u2z dx

for all z ∈ D+(Ω).
• For a Banach space X we denote the bounded linear operators from
X into X by L (X).

3. Preliminary results.

3.1. Estimates for positive solutions.

Proposition 3.1. Let B be the unit ball in RN . Suppose that f satisfies
Condition A*. Then there exists λB > 0 such that the problem

−∆u = λB(f (u)− βu+ βw) in B,

−∆w = λB(f (u) +Mu− αw) in B,

u = w = 0 on ∂B,

(8)

has a solution (UB,WB) with the following properties:
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(1) 0 ≤ (UB,WB) < (ρ+
δ/γ , ϑρ

+
δ/γ), with ϑ = 1− δ/(γβ).

(2) UB and WB are radially symmetric with

U ′B (0) = W ′
B (0) = 0 and U ′B (r) ,W ′

B (r) < 0 on (0, 1].

(3) (UB (0) ,WB (0)) > (ρ−δ/γ , ϑρ
−
δ/γ) and WB (0) ≥ ϑτ where τ := UB (0).

Proof. Since Condition B2 holds, Jβ(ρ) > 0 for all 0 ≤ ρ < ρ+
β . This implies

that for λ large enough, say λ = λB, there exists a positive solution u to{
−∆u = λ(f (u)− βu) in B,

u = 0 on ∂B,

with maxu ∈ (ρ−β , ρ
+
β ), see [4]. Then (u, 0) is a subsolution to (8). Since

(ρ+
δ/γ , ϑρ

+
δ/γ) is a supersolution with (u, 0) < (ρ+

δ/γ , ϑρ
+
δ/γ) there exists a

solution (UB,WB) with u < UB < ρ+
δ/γ and 0 < WB < ϑρ+

δ/γ to (8), see
Proposition A.3. Using an extension due to Troy, [24], of results of Gidas,
Ni and Nirenberg, [8], to quasimonotone systems, we have that UB and WB

are radially symmetric with U ′B (0) = W ′
B (0) = 0 and U ′B (r) ,WB

′ (r) < 0
on the interval (0, 1). Also (−∆ + λBα)WB = λB(f (UB) + MUB) ≥ 0
and by the strong maximum principle W ′

B (1) < 0. Let τ := UB (0). With
VB = β (UB −WB) it also follows from the maximum principle that

maxVB < (δ/γ)τ.(9)

Indeed, (−∆ + λBγ) (VB − δτ/γ) = λB (UB − τ) ≤ 0 in B, with VB = 0
on ∂B and (9) follows. Since VB is also radially symmetric and decreasing,
VB (0) = β (τ −WB (0)) < (δ/γ)τ and hence

WB (0) > (1− δ/(γβ))τ = ϑτ > ϑρ−δ/γ .

Also V ′B (1) = β (U ′B (1)−W ′
B (1)) < 0 and hence U ′B (1) < WB

′ (1) < 0. �

Next we construct a family of subsolutions to (Qλ) using the functions
UB and WB. These subsolutions will be used to determine by sweeping the
shape of the solutions to (Qλ) in a certain order interval. We fix z∗ ∈ Ω and
let

λ∗ := λB dist (z∗,Γ)−2 .(10)

Lemma 3.2. For all λ ≥ λ∗ we set

Zλ (x) :=

{
(UB,WB)

(
(λ/λB)1/2 (x− z∗)

)
for |x− z∗| ≤ (λB/λ)1/2 ;

0 for |x− z∗| > (λB/λ)1/2 ,

with (UB,WB) as in Proposition 3.1. Then Zλ is a subsolution to (Qλ) and

Y := (ρ+
δ/γ , ϑρ

+
δ/γ)(11)

is a supersolution to (Qλ) with Zλ < Y.
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Proof. It follows directly that Y is a supersolution. The function Zλ is
continuous and Zλ (x) = 0 for x ∈ Γ. Denote by Zλ,i, i = 1, 2, the two
components of Zλ. Let z ∈ D+(Ω). Then, with Bλ = B(z∗, (λB/λ)1/2) and
n denoting the outward normal, we obtain by the Green identity:∫

Ω
Zλ,1(−∆z) dx =

∫
Bλ

Zλ,1(−∆z) dx

= −
∫

Bλ

(∆Zλ,1)z dx−
∫

∂Bλ

(
Zλ,1

∂z

∂n
− z

∂Zλ,1

∂n

)
dS

≤ λ

∫
Ω

(f(Zλ,1)− βZλ,1 + βZλ,2) z dx.

A similar result holds for Zλ,2. Finally maxZλ,1 = Zλ,1 (z∗) = τ < ρ+
δ/γ and

maxZλ,2 = Zλ,2 (z∗) = WB (0) < ϑρ+
δ/γ . �

Since Zλ is a subsolution to (Qλ) and Y is a supersolution to (Qλ) with
Zλ < Y there exists at least one solution in the order interval [Zλ, Y ]. For
every fixed λ ≥ λ∗ we define for all y ∈ Ω satisfying dist(y,Γ) > (λB/λ)−1/2

the functions

Zy
λ (x) := Zλ (x+ z∗ − y) .(12)

Repeating the proof of Lemma 3.2 one sees that for λ ≥ λ∗,

Sλ :=
{
Zy

λ ; y ∈ Ω such that dist(y,Γ) > (λB/λ)1/2
}

is a family of subsolutions. We shall use the sweeping principle with func-
tions in Sλ to obtain, at least for λ large enough, estimates of solutions to
(Qλ) in the order interval [Zλ, Y ]. In order to estimate a solution in [Zλ, Y ]
in all of Ω as well as on the boundary we make the following assumption on
Γ which holds if Γ ∈ C3:

• Ω satisfies a uniform interior sphere condition, that is, there exists
εΩ > 0 such that Ω = ∪{B(y, ε) ; y ∈ Ω and dist(y,Γ) > εΩ}.

We may suppose that Ωε := {y ∈ Ω; dist(y,Γ) > ε} is connected for all
ε ≤ εΩ.

Lemma 3.3. There exists λ× > λ∗ and b > 0 such that for all λ > λ× we
have the following estimate for every solution (u,w) ∈ [Zλ, Y ] to (Qλ):

(u (x) , w(x)) > min{bλ1/2 dist(x,Γ), τ} (1, ϑ) ,(13)

with ϑ = 1− δ/(γβ) and τ as in Proposition 3.1.

Proof. Let ελ := (λB/λ)1/2 and λ× := max
{
λ∗, λBε

−2
Ω

}
. Suppose that

(u,w) ∈ [Zλ, Y ] is a solution to (Qλ) with λ > λ×. As in [4] there exists
for every y ∈ Ωελ

a curve in Ωελ
connecting y with z∗. Using the sweeping
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principle, Proposition A.6, it follows that (u,w) > Zy
λ for all y ∈ Ωελ

. Using
(u(x), w(x)) ≥ supy∈Ωελ

Zy
λ(x) one finds (13). �

The next lemma improves the estimate we found in the previous one.

Lemma 3.4. For every ε > 0 and λ > λ× there exists a constant b (ε) > 0,
independent of λ, such that for every solution (u,w) ∈ [Zλ, Y ] to (Qλ) it
holds that

(u (x) , w (x)) > min
{
b (ε)λ1/2 dist (x,Γ) , ρ+

δ/γ − ε
}

(1, ϑ) ,(14)

with ϑ = 1− δ/(γβ). In particular there exists b0 > 0 such that

(u (x) , w (x)) > min
{
b0λ

1/2 dist (x,Γ) , ρ+
σ0

}
(1, ϑ) .(15)

Proof. Let λ > λ× be fixed and suppose (u,w) ∈ [Zλ, Y ] is solution to (Qλ).
If ρ+

δ/γ−ε ≤ τ then (13) holds with b (ε) = b and b as in the previous lemma.
Suppose ρ+

δ/γ − ε > τ . Since f (s) − (δ/γ)s > 0 for all s ∈ (ρ−δ/γ , ρ
+
δ/γ)

there exists `ε > 0 such that

f (s)− (δ/γ)s > `ε (s− τ) for all s ∈ [τ, ρ+
δ/γ − ε].

From Lemma 3.3 it follows that (u (x) , w (x)) > (τ, ϑτ) for all x ∈ Ω such
that dist(x,Γ) > λ−1/2τ/b. For subsolutions we need the function e ≥ 0
satisfying {

−∆e = µe in B1

e = 0 on ∂B1
(16)

where µ is the principal eigenvalue and B1 the unit ball in RN . We normalize
e such that e(0) = 1. Let µε = µ/`ε and

Ω′ :=
{
y ∈ Ω ; dist(y,Γ) > (

√
µε + τ/b)λ−1/2

}
.

We fix y ∈ Ω′ and let B := B(y, (µε/λ)1/2). For every t ∈ [0, 1] we define
the functions (Ut,Wt) on B by

Ut (x) := τ + t(ρ+
δ/γ − ε− τ)e

(
(λ/µε)1/2(y − x)

)
,

Wt (x) := ϑUt (x) .

Then T := {(Ut,Wt) ; t ∈ [0, 1]} is a family of subsolutions to the problem
−∆p = λ(f(p)− βp+ βq) in B,
−∆q = λ(f(p) +Mp− αq) in B,

p = u on ∂B,
q = w on ∂B.

(17)

Using the sweeping principle it follows that

(u(y), w(y)) > (U1(y),W1(y)) = (ρ+
δ/γ − ε, ϑ(ρ+

δ/γ − ε)).
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Since y ∈ Ω′ was arbitrary we have that

(u(x), w(x)) > (ρ+
δ/γ − ε, ϑ(ρ+

δ/γ − ε)) if dist(x,Γ) > (µε + τ/b)λ−1/2.(18)

Define b (ε) := τ
(
τ/b+

√
µε

)−1, and note that min{bλ1/2 dist(x,Γ), τ} ≥
b (ε)λ1/2 dist(x,Γ) if dist (x,Γ) ≤ (

√
µε + τ/b)λ−1/2. Hence by Lemma 3.3

(u (x) , w (x)) > b (ε)λ1/2 dist(x,Γ) (1, ϑ)

for all x with dist (x,Γ) ≤ (
√
µε + τ/b)λ−1/2. This proves (14) while (15)

follows by choosing b0 = b (ε) with ε = ρ+
δ/γ − ρ+

σ0
. �

The next lemma will be used in the proof of Theorem 2.3.

Lemma 3.5. Let z0 ∈ C0 (Ω) be nonnegative with max z0 ∈ (ρ−β , ρ
+
δ/γ).

There exists λz0 > 0 such that if (u,w) is a solution to (Qλ) with u ∈
[z0, ρ+

δ/γ ] and λ > λz0 then (u,w) ∈ [Zλ, Y ].

Proof. First note that if u ∈ [z0, ρ+
δ/γ ] then (u,w) ∈ [(z0, 0), Y ]. Let x0 ∈

Ω be such that z0 (x0) = max z0. Choose ρ ∈ (ρ−β , τ), where τ is as in
Proposition 3.1, and r0 > 0 such that ρ < z0 (x) ≤ u (x) for all x ∈ B(x0, r0).
Since f (s)− βs > 0 for all s ∈ (ρ−β , ρ

+
β ) there exists ` > 0 such that

f (s)− βs > `(s− ρ) for all s ∈ [ρ, τ ].

Let e and µ be as (16) with e(0) = 1. Suppose that

λ > (µ/`)r−2
0 .(19)

Then rλ := r0 −
√
µ/ (λ`) > 0. Let y ∈ B (x0, rλ) be fixed and define on

B = B(y,
√
µ/(`λ)) ⊂ B (x0, r0) ,

Ut (x) = ρ+ t(τ − ρ)e
(√

`λ/µ(y − x)
)
.

It holds that T := {(Ut, 0) ; t ∈ [0, 1]} is a family of subsolutions to (17) with
uλ, wλ, instead of u, w. By a sweeping argument, starting with (U0, 0) one
concludes that (u(y), w(y)) > (U1(y),W1(y)) = (τ, 0). Since y ∈ B (x0, rλ)
was arbitrary we have that (u,w) ≥ (τ, 0) on B (x0, rλ).

Let Zx0
λ,i, i = 1, 2, denote the two components of Zx0

λ defined in (12).
The function Zx0

λ,1 has support B(x0,
√
λB/λ). Hence, if (19) is replaced

by the stronger condition λ > (
√
λB +

√
µ/`)2r−2

0 , then rλ >
√
λB/λ and

(u,w) (x) > (Zx0
λ,1, 0) for all x ∈ Ω.

From this it follows that (u,w) ∈
[
Zx0

λ , Y
]
. Indeed, using the fact that

Zx0
λ is a subsolution one has that −∆(w−Zx0

λ,2)+α(w−Zx0
λ,2) ≥ 0 in D′(Ω)-

sense.
As in the proof of Lemma 3.3 it now follows that (u,w) ∈ [Zλ, Y ]. �
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3.2. The semilinear problem on the half space. In this section we
consider the following problem

−∆U = f(U)− βU + βW in RN
+ ,

−∆W = f(U) +MU − αW in RN
+ ,

U = W = 0 on ∂RN
+ .

(20)

The main result which we prove is that there exists a positive solution (U,W )
to (20) such that

lim
x1→∞

(U,W )
(
x1, x

′) = (ρ+
δ/γ , ϑρ

+
δ/γ) uniformly in x′ ∈ RN−1,(21)

with ϑ = 1 − δ/(γβ). Moreover there exists only one such solution and
(U,W ) (x1, x

′) = (u,w) (x1) where (u,w) a solution to the problem
−u′′ = f(u)− βu+ βw in R+,

−w′′ = f(u) +Mu− αw in R+,
u (0) = 0, w (0) = 0,
u′ (0) = κ, w′ (0) = ν,

(22)

for some appropriate initial data κ and ν. It is standard that we have for
every pair (κ, ν) ∈ R2 at least locally a unique solution to (22) which can
be continued to some maximum interval. We denote such a solution by
(u,w)κ,ν = (uκ,ν , wκ,ν). First we show that there exists a unique pair (κ, ν)
such that the corresponding solution exists for all r ∈ R+, is positive and
tends to (ρ+

δ/γ , ϑρ
+
δ/γ) at infinity. Some properties of this solution that are

needed later, are also proven.

Proposition 3.6. Assume that f satisfies Condition A*. Then there exists
a unique pair (κ̄, ν̄) such that the solution (u,w)κ̄,ν̄ to (22) is positive and
satisfies

lim
r→∞

(u,w)κ̄,ν̄ (r) = (ρ+
δ/γ , ϑρ

+
δ/γ),(23)

with ϑ = 1 − δ/(βγ). Moreover κ̄ > ν̄ > 0 and (u,w)κ̄,ν̄ has the following
properties:

(1) 0 < (u,w)κ̄,ν̄ (r) < (ρ+
δ/γ , ϑρ

+
δ/γ) for all r > 0;

(2) uκ̄,ν̄ (r) > wκ̄,ν̄ (r) for all r > 0;

(3) (u′, w′)κ̄,ν̄ (r) > (0, 0) for all r ∈ R+ and (u′, w′)κ̄,ν̄(r) → (0, 0) as
r →∞.
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The proof of this proposition consists of a number of lemmas. We also
need to consider the following system

−u′′ = f(u)− v in R+,

−v′′ = δu− γv in R+,

u (0) = 0, v (0) = 0,
u′ (0) = κ, v′ (0) = η.

(24)

Again we denote solutions to (24) by (u, v)κ,η with the understanding that
the solutions are defined on a maximum interval. We point out the fact
that for κ, ν ∈ R it holds that the solution (u, v)κ,β(κ−ν) to (24) is given by
(uκ,ν , β (uκ,ν − wκ,ν)) where (u,w)κ,ν is the solution to (22).

For a solution (u, v) = (u, v)κ,η to (24) we have the following identity for
all r ≥ 0:(

(u′)2 − κ2
)
− 1
δ
((v′)2 − η2) = −2

∫ u

0
f(s) ds+ 2uv − γ

δ
v2.(25)

Indeed, differentiating

H (r) := u′ (r)2 − 1
δ
v′ (r)2 + 2

∫ u(r)

0
f (s) ds− 2u (r) v (r) +

γ

δ
v (r)2 ,

(24) implies that H ′ (r) = 0 for all r ≥ 0. Hence H(r) = H(0) for all r ≥ 0,
which gives (25).

We shall often use the following one dimensional maximum principle, see
e.g., [11, Theorem 2.9.2].

Lemma 3.7. If g ∈ C2[0,+∞) is bounded, g (0) ≥ 0 and −g′′+ cg 	 0 with
c > 0, then g (r) > 0 for all r > 0. Moreover, if g (0) = 0 then g′ (0) > 0.

Our first lemma is on the derivatives of solutions to (22).

Lemma 3.8. Suppose that (u,w)κ,ν is a solution to (22) with κ, ν > 0 and
(u,w)κ,ν(r) > (0, 0) for all r > 0. Then (u′, w′)κ,ν(r) > (0, 0) for all r ≥ 0.

Proof. Since the system is quasimonotone this follows from a moving plane
argument, similar to the method used by Gidas, Ni and Nirenberg [8]. See
also [2] where a similar argument is used for a scalar equation. �

Lemma 3.9. For a bounded solution (u,w)κ,ν to (22) with uκ,ν 	 0 it holds
that 0 < ν < κ and 0 < wκ,ν(r) < uκ,ν(r) for all r > 0.

Proof. Denote by (u,w) the solution (u,w)κ,ν . Since w is bounded and
satisfies −w′′ + αw = f(u) + Mu 	 0 with w(0) = 0 we have by Lemma
3.7 that ν > 0 and w(r) > 0 for all r > 0. Let η = β (κ− ν). As observed
earlier, the solution (u, v) = (u, v)κ,η to (24) is given by (u, β(u−w)). Since
v is bounded with v(0) = 0 and −v′′+γv = δu 	 0 it holds again by Lemma
3.7 that η > 0 and v(r) > 0 for r > 0. Hence κ > ν and w(r) < u(r) for
r > 0. �
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Lemma 3.10. If (u,w)κ,ν is a positive solution to (22) such that (23) holds
then

lim
r→∞

(u′, w′)κ,ν (r) = 0.

Proof. Define uK(r) := ρ+
δ/γ−uκ,ν(r+K) and wK(r) := ϑρ+

δ/γ−wκ,ν(r+K).
It holds that uK and wK converge uniformly to zero on [0, 1] as K → ∞.
From (22) we have that they remain bounded in C2[0, 1]. By interpo-
lation uK , wK converge to zero in C1[0, 1]. Therefore (u′, w′)κ,ν(K) =
(u′K , w

′
K)(0) → (0, 0), as K →∞. �

Let (u,w)κ,ν be a solution to (22) for which (23) holds. Then (u, v)κ,η with
η = β (κ− ν) is a solution to (24) and vκ,η = β(uκ,ν − wκ,ν) → (δ/γ)ρ+

δ/γ

as r → ∞. Using Lemma 3.10 and letting r → ∞ in (25) we obtain the
following relationship between κ and ν:

κ2 − β2

δ
(κ− ν)2 = 2

∫ ρ+
δ/γ

0

(
f (s)− δ

γ
s

)
ds.(26)

This will be used to prove the uniqueness of such solutions. Next we show
that there exists initial data (κ̄, ν̄) for which the corresponding solution to
(22) is positive and satisfies (23).

Lemma 3.11. There exists κ̄, ν̄ ∈ R such that the solution (u,w)κ̄,ν̄ to (22)
satisfies (23). Moreover this solution is positive and 0 < ν̄ < κ̄.

Proof. We shall use super- and subsolutions and Lemma A.4 to find a posi-
tive solution to  −u′′ = f(u)− βu+ βw in R+,

−w′′ = f (u) +Mu− αw in R+,
u (0) = w (0) = 0,

(27)

satisfying (23). As a supersolution we take (ρ+
δ/γ , ϑρ

+
δ/γ). We have to con-

struct a nonzero subsolution. From a phaseplane analysis one sees that the
initial value problem

−u′′ = f (u)− βu in R+,
u (0) = 0,
u′ (0) = (2Jβ (0))1/2 ,

with Jβ (0) > 0 defined in (2), has a solution ũ with limr→∞ ũ (r) = ρ+
β and

ũ′ (r) > 0 for all r ≥ 0. Then (ũ, 0) is a subsolution. By Lemma A.4 there
exists a solution (u,w) to (27) such that (0, ũ) < (u,w) < (ρ+

δ/γ , ϑρ
+
δ/γ). At

this stage we may choose either the maximal or minimal solution. In the
next lemma we shall prove that they are equal. Let (κ̄, ν̄) := (u′ (0) , w′ (0)).
Then (u,w) is the solution to (22) with (κ, ν) = (κ̄, ν̄).
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It holds that u (r) , w (r) > 0 for all r > 0. Indeed, u (r) ≥ ũ (r) > 0 and
since w is bounded with −w′′ + αw = f (u) + Mu 	 0 and w (0) = 0 we
have by Lemma 3.7 that w (r) > 0 for r > 0 and that w′ (0) = ν > 0. By
Lemma 3.9, κ̄ > ν̄ > 0.

Lemma 3.8 shows that u′ (r) , w′ (r) > 0 for all r > 0. In particular
limr→∞ u (r) = ρ and limr→∞w (r) = ρ̃ exist. From the equations we find
that

−f(ρ) + βρ− βρ̃ = −f(ρ)−Mρ+ αρ̃ = 0.

From this one gets that ρ̃ = ϑρ and that f(ρ) = (δ/γ)ρ. Since ρ > ρ+
β we

have that (ρ, ρ̃) = (ρ+
δ/γ , ϑρ

+
δ/γ). �

Our last lemma concerns the uniqueness part of Proposition 3.6.

Lemma 3.12. Let (u,w)κ,ν be a positive solution to (22) such that (23)
holds. Then (κ, ν) = (κ̄, ν̄) with (κ̄, ν̄) as in Lemma 3.11.

Proof. Let (ũ, 0) be the subsolution of the previous lemma. First we show
that the minimum and maximum solutions to (27) in the order interval

[(ũ, 0), (ρ+
δ/γ , ϑρ

+
δ/γ)]

are equal.
Let (u,w)κ,ν be the minimal solution and (u,w)κ̄,ν̄ the maximal solution.

It must hold that κ ≤ κ̄ and ν ≤ ν̄. If the solutions are not equal at least
one of these inequalities must be strict. Suppose ν < ν̄. By Lemma 3.9 we
also have that κ > ν and κ̄ > ν̄ and by (26) that

δ − β2

δ
κ2 +

2β2

δ
κν − β2

δ
ν2 =

δ − β2

δ
κ̄2 +

2β2

δ
κ̄ν̄ − β2

δ
ν̄2.(28)

The function x 7→ (1−(β2/δ))x2+2(β2/δ)xν−(β2/δ)ν2 is strictly increasing
on [κ, κ̄] because it has derivative 2

(
δ − β2

)
x/δ + 2β2ν/δ which is strictly

positive for x ∈ [κ, κ̄] since δ > β2. Hence

δ − β2

δ
κ2 +

2β2

δ
κν − β2

δ
ν2 ≤ δ − β2

δ
κ̄2 +

2β2

δ
κ̄ν − β2

δ
ν2.

The function x 7→ (1 − (β2/δ))κ̄ + 2(β2/δ)κ̄x − (β2/δ)x2 has derivative
2β2κ̄δ − 2β2x/δ. Since the derivative is strictly positive on [ν, ν̄] it follows
that

δ − β2

δ
κ2 +

2β2

δ
κν − β2

δ
ν2 <

δ − β2

δ
κ̄2 +

2β2

δ
κ̄ν̄ − β2

δ
ν̄2,

contradicting (28). If κ < κ̄ we find a contradiction by the same argument.
We conclude that κ = κ̄ and ν = ν̄ and that (u,w)κ,ν = (u,w)κ̄,ν̄ .

It remains to show that any positive solution (u,w)κ,ν for which (23) holds
is in the order interval [(ũ, 0), (ρ+

δ/γ , ϑρ
+
δ/γ)]. First we show that uκ,ν > ũ.
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Suppose that uκ,ν(r) > ρ+
β for all r ≥ R. We define u∗t for 0 ≤ t ≤ R on

[0, R] by

u∗t (r) :=
{
ũ(r − t) for t ≤ r ≤ R;
0 for 0 ≤ r < t,

with ũ as in Lemma 3.11. Applying the sweeping principle with the subsolu-
tions {(u∗t , 0) ; 0 ≤ t ≤ R} one finds that (u,w)κ,ν(r) > (ũ(r), 0) = (u∗0(r), 0)
for r ∈ (0, R). Hence uκ,ν(r) > ũ(r) for r > 0 and (u,w)κ,ν ≥ (ũ, 0).
On the other hand, since uκ,ν , wκ,ν are increasing by Lemma 3.8, it holds
that (u,w)κ,ν < (ρ+

δ/γ , ϑρ
+
δ/γ). Since there is only one solution in the order

interval [(ũ, 0), (ρ+
δ/γ , ϑρ

+
δ/γ)] the uniqueness is proved. �

Our main result concerning system (20) is the following.

Proposition 3.13. Assume that f satisfies Condition A*. Then there ex-
ists a unique positive solution (U,W ) to (20) satisfying (21). This solution
is given by

(U,W )(x1, x
′) := (u,w)κ̄,ν̄(x1) for (x1, x

′) ∈ RN−1,(29)

with (u,w)κ̄,ν̄ as in Lemma 3.11.

Proof. Clearly (29) defines a positive solution to (20) satisfying (21). Sup-
pose that (U,W ) is any positive solution satisfying (21). Define the functions

(u,w) (x1) := (supx′∈RN−1 U(x1, x
′), supx′∈RN−1 W (x1, x

′));

(u,w) (x1) := (infx′∈RN−1 U(x1, x
′), infx′∈RN−1 W (x1, x

′)).

By Lemma A.5 (u,w) is a subsolution and (u,w) is a supersolution to (27).
Moreover (u,w) < (ρ+

δ/γ , ϑρ
+
δ/γ). This follows by sweeping using the family

of supersolutions {(t, ϑt) : t ≥ ρ+
δ/γ}.

Since (u,w) is a subsolution there exists a positive solution (u,w)∗ to
(27) with (u,w) ≤ (u,w)∗ < (ρ+

δ/γ , ϑρ
+
δ/γ). By Lemma 3.12 we have that

(u,w)∗ = (u,w)κ̄,ν̄ .
Using a sweeping argument as in the proof of Lemma 3.12 it follows that

(u,w) > (ũ, 0) with ũ as in the proof of Lemma 3.11. Hence there exists
a positive solution (u,w)◦ to (27) with (ũ, 0) < (u,w)◦ ≤ (u,w) and by
Lemma 3.12, (u,w)◦ = (u,w)κ̄,ν̄ . Hence (u,w) = (u,w) which proves the
uniqueness claim in the proposition. �

3.3. The linearized problem on the halfspace. Let (u,w)κ̄,ν̄ be as in
Proposition 3.6. In this paragraph we consider the following linear system:

−r̄∆Φ = (f ′(uκ̄,ν̄)− β + ω)Φ + βΨ− r̄ωΦ in RN
+ ,

−r̄∆Ψ = (f ′(uκ̄,ν̄) +M)Φ + (ω − α)Ψ− r̄ωΨ in RN
+ ,

Φ = Ψ = 0 on ∂RN
+ .

(30)
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Here α, β,M are as in (4), (3) and B1 respectively, ω > max{α,M} and
r̄ ∈ R. For this problem we have the following result of Liouville type.

Proposition 3.14. Suppose that r̄ ≥ 1 and that (Φ,Ψ) is a bounded positive
solution to (30). Then (Φ,Ψ) ≡ (0, 0).

This proposition will be a consequence of the following lemma.

Lemma 3.15. Suppose ϕ,ψ ∈ C[0,+∞) are bounded with ϕ,ψ ≥ 0, ϕ (0) =
ψ (0) = 0 and it holds that

− ϕ′′ ≤ f ′(uκ̄,ν̄)ϕ− βϕ+ βψ,(31)
−ψ′′ ≤ f ′(uκ̄,ν̄)ϕ+Mϕ− αψ,(32)

in D′(0,∞)-sense. Then ϕ (x1) = ψ (x1) = 0 for all x1 ≥ 0.

Proof. We set (p, q) := (u′, w′)κ̄,ν̄ and recall that p, q > 0 on [0,∞). Without
loss of generality we assume that ϕ,ψ ≤ 1. We argue by contradiction and
suppose that (ϕ,ψ) 6= (0, 0). First we observe that if there exists K > 0
such that ϕ(x1) = ψ(x1) = 0 for all x1 ≥ K then by a sweeping argument
on [0,K] with the family {(tp, tq) ; t ≥ 0} of supersolutions it follows that
ϕ(x1) = ψ(x1) = 0 for all x1 ∈ [0,K]. This is in contradiction with our
assumption.

Now let K > 0 and ε > 0 be such that that

f ′(uκ̄,ν̄(x1)) < −ε for all x1 ≥ K,

and note that also

f ′ (uκ̄,ν̄(x1)) +M − α < −ε for all x1 ≥ K.

By our first observation we may assume that

R(K) := max {ϕ(K)/p(K), ψ(K)/q(K)} > 0.

We define the following functions on [K,∞):

St(x1) = ϕ(x1)− e
√

ε(x1−t),

Tt(x1) = ψ(x1)− e
√

ε(x1−t),

Rt(x1) = max {St(x1)/p(x1), Tt(x1)/q(x1)}
for t ≥ K. It holds that

−S′′t ≤ (f ′(uκ̄,ν̄)− β)St + βTt,

and
−T ′′t ≤ (f ′(uκ̄,ν̄) +M)St − αTt,

in D′(K,∞)-sense. For t > K let mt = supx1∈[K,t]Rt(x1). By the maximum
principle one has that mt = Rt(K) for t large enough. Indeed, since for ω
large enough, it holds in D′(K, t)-sense that

−(St −mtp)′′ + ω(St −mtp) ≤ 0,
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and
−(Tt −mtq)′′ + α(Tt −mtq) ≤ 0,

we see thatmt must be attained inK or in t. Since Rt(t) ≤ 0 and Rt(K) > 0,
if t is large enough, we conclude that mt = Rt(K). Now let x1 ∈ [K,∞) be
fixed. Then for all t > x1 large we have

R(x1) = max {ϕ(x1)/p(x1), ψ(x1)/q(x1)}

≤ Rt(K) + max
{
e
√

ε(x1−t)/p(x1), e
√

ε(x1−t)/q(x1)
}
.

Letting t → ∞ we deduce that R(x1) ≤ R(K) and hence R attains its
maximum on [K,∞) in x1 = K. Consequently supx1∈[0,∞)R(x1) is attained
in some point r0 ∈ (0,K]. But this is in contradiction to the maximum
principle. Indeed, in a similar way as above, one sees that R(x1) must
attain its maximum on [0,K + 1] either in 0 or in K + 1 and not in K. �

To see how Proposition 3.14 follows from this lemma, we define

ϕ (x1) := sup
{
Φ(x1, x

′) ; x′ ∈ RN−1
}
,

ψ (x1) := sup
{
Ψ(x1, x

′) ; x′ ∈ RN−1
}
.

Then by Lemma A.5, ϕ,ψ ∈ C[0,+∞) with ϕ (0) = ψ (0) = 0 and in
D′(RN

+ )-sense

−ϕ′′ ≤ 1
r̄
(f ′(uκ̄,ν̄)− β + ω)ϕ+

1
r̄
βψ − ωϕ

−ψ′′ ≤ 1
r̄
(f ′(uκ̄,ν̄) +M)ϕ+

1
r̄
(ω − α)ψ − ωψ.

Since r̄ ≥ 1 we deduce that

−ϕ′′ ≤ (f ′(uκ̄,ν̄)− β + ω)ϕ+ βψ − ωϕ

= (f ′(uκ̄,ν̄)− β + ω)ϕ+ βψ

and

−ψ′′ ≤ (f ′(uκ̄,ν̄) +M)ϕ+ (ω − α)ψ − ωψ

= (f ′(uκ̄,ν̄) +M)ϕ− αψ.

By the lemma (ϕ,ψ)(x1) = 0 for x1 ≥ 0 and hence also (Φ,Ψ)(x) = (0, 0)
on RN

+ .

4. Proofs of the main results.

4.1. Proof of Theorem 2.1. From now on we assume that Γ is C3. We
begin by defining some operators. Recall that X denotes the space C

(
Ω̄
)
×

C
(
Ω̄
)

and let C1
0

(
Ω̄
)

=
{
u ∈ C1

(
Ω̄
)

; u (x) = 0 for x ∈ Γ
}
. For k, λ > 0
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define
(
−λ−1∆ + k

)−1

0
: C

(
Ω̄
)
→ C1

0

(
Ω̄
)

by u =
(
−λ−1∆ + k

)−1

0
g with

u ∈ C1
0

(
Ω̄
)

the unique function satisfying{
−λ−1∆u+ ku = g in D′(Ω)-sense,

u = 0 on Γ.

Let j be the embedding of C1
0

(
Ω̄
)
× C1

0

(
Ω̄
)

in X and define the operator
Kk,λ : X → X by

Kk,λ

(
g
h

)
= j ◦

( (
−λ−1∆ + k

)−1

0
0

0
(
−λ−1∆ + k

)−1

0

)(
g
h

)
.

Since j is compact and
(
−λ−1∆ + k

)−1

0
is continuous, Kk,λ is a compact

linear map on X. We shall also use the fact that ‖Kk,λ‖L(X) is uniformly
bounded in λ. This follows from the fact that∥∥∥(−λ−1∆ + k

)−1

0
g
∥∥∥
∞
≤ 1
k
‖g‖∞(33)

for every g ∈ C
(
Ω̄
)
. We fix ω > max {α,M}. For a function u ∈ C

(
Ω̄
)

and
λ > 0 the we define the operators Mu, Tu,λ ∈ L(X) by

Mu

(
h
g

)
=
(

f ′(u)− β β
f ′(u) +M −α

)(
h
g

)
,(34)

and

Tu,λ := Kω,λ(Mu + ωI).(35)

Operators of this kind were studied extensively in [23]. If u ∈ [0, ρ+
δ/γ ] then

Tu,λ is a positive irreducible compact operator on X, see [23, Lemma 1.3].
Moreover, Tu,λ has a positive spectral radius (see e.g., [18]) which we denote
by r(Tu,λ). By the Krein-Rutman Theorem (see e.g., [1, Theorem 3.1]),
r(Tu,λ) is an eigenvalue of Tu,λ to which a positive eigenfunction pertains.
In the next lemma we prove that for λ large enough it holds for every solution
(u,w) ∈ [Zλ, Y ] that r(Tu,λ) < 1.

Lemma 4.1. There exists λ? > λ× such that for all λ > λ? and every
solution (u,w) ∈ [Zλ, Y ] to (Qλ) the corresponding operator Tu,λ has spectral
radius r(Tu,λ) < 1.

Proof. We prove the lemma by a contradiction argument. Assume that it
does not hold. Then there exist a sequence {λn}∞n=1 with λ× < λn → ∞
and solutions (un, wn) := (uλn , wλn) ∈ [Zλn , Y ] to (Qλ) with λ = λn such
that rn ≥ 1, with rn denoting the spectral radius of Tn := Tun,λn . Let
(ϕn, ψn) ∈ X be the positive eigenfunction pertaining to rn. We normalize
the eigenfunction such that maxϕn = 1. This can be done since ϕn = 0
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implies that ψn = 0, a contradiction because (ϕn, ψn) is an eigenfunction.
It holds that

−rnλ−1
n ∆ϕn = (f ′ (un) + ω − β)ϕn + βψn − rnωϕn in Ω,

−rnλ−1
n ∆ψn = (f ′ (un) +M)ϕn + (ω − α)ψn − rnωψn in Ω,

ϕn = ψn = 0 on ∂Ω.

Because operator norms ‖Tn‖L(X) are uniformly bounded it follows from

rn = lim
k→∞

(∥∥∥T k
n

∥∥∥
L(X)

)1/k

≤ ‖Tn‖L(X)

that the sequence {rn}∞n=1 is bounded. By going over to a subsequence, still
denoted by {rn}∞n=1, we can assume that rn → r̄ ≥ 1. With θn := β(ϕn−ψn)
one has that{

−rnλ−1
n ∆θn = δϕn − γθn + (1− rn)ωθn in Ω,

θn = 0 on ∂Ω.

This shows that ϕn ≥ ψn and hence −rnλ−1
n ∆ϕn ≤ f ′ (un)ϕn. Using esti-

mate (15) in Lemma 3.4 we have for all x ∈ Ω with dist (x,Γ) > b−1
0 λ

−1/2
n ρ+

σ0

that f ′ (un (x)) ≤ 0 and consequently

−∆ϕn ≤ 0 in
{
x ∈ Ω ; dist (x,Γ) > b−1

0 λ−1/2
n ρ+

σ0

}
.(36)

Hence ϕn attains its maximum in a point x̄n with dist(x̄n,Γ) ≤ b−1
0 λ

−1/2
n ρ+

σ0
.

Let x̄Γ,n ∈ Γ be such that |x̄n − x̄Γ,n| = dist(x̄Γ,n,Γ). By going over to a
subsequence we can assume that x̄Γ,n → x̄ ∈ Γ.

By a blow-up argument around x̄, similar to the argument in [4], one
constructs U,W,Φ,Ψ ∈ C2

(
RN

+

)
∩ C

(
RN

+

)
such that (U,W ) satisfies

−∆U = f(U)− βU + βW in RN
+ ,

−∆W = f(U) +MU − αW in RN
+ ,

U = W = 0 on ∂RN
+ ,

and (Φ,Ψ) satisfies
−r̄∆Φ = (f ′(U) + ω − β)Φ + βΨ− r̄ωΦ in RN

+ ,

−r̄∆Ψ = (f ′(U) +M)Φ + (ω − α)Ψ− r̄ωΨ in RN
+ ,

Φ = Ψ = 0 on ∂RN
+ .

The normalization maxφn = 1 leads to supΦ = 1. Furthermore, using the
uniform estimate (14) it follows that

lim
x1→∞

(U,W )(x1, x
′) = (ρ+

δ/γ , ϑρ
+
δ/γ) uniformly in x′ ∈ RN−1.(37)
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Hence, by Proposition 3.13, (U,W )(x1, x
′) = (u,w)κ̄,ν̄(x1). Then (Φ,Ψ)

is a bounded positive solution to (30) with r̄ ≥ 1. By Proposition 3.14,
(Φ,Ψ) ≡ (0, 0), in contradiction with supΦ = 1. �

We shall use this lemma to prove that there can be at most one solution to
(Qλ) in the order interval [Zλ, Y ]. First we define the operator Hλ : X → X

Hλ := Kω,λ(F + ωI),

where F : X → X is defined by

F

(
u
w

)
=
(

f (u)− βu+ βw
f (u) +Mu− αw

)
.

We shall show that Hλ has at most one fixed point in [Zλ, Y ]. In order to
use the Leray-Schauder degree we have to consider the fixed point problem

Hλ (u,w) = (u,w)

in an appropriate space.
Let µ be the principal eigenvalue and e ∈ C1

(
Ω̄
)
∩C2 (Ω) the correspond-

ing eigenfunction to the problem{
−∆e = µe in Ω,

e = 0 on Γ.

We normalize e such that max e = 1. Following Amann [1] we define

Ce

(
Ω̄
)

:=
{
u ∈ C

(
Ω̄
)

; ∃ t > 0 such that |u| ≤ te
}
,(38)

equipped with the norm ‖u‖e = inf{t > 0 ; −te ≤ u ≤ te}. It holds that
Ce

(
Ω̄
)

is a Banach space, in fact a Banach lattice, with closed unit ball{
u ∈ C

(
Ω̄
)

; −e ≤ u ≤ e
}
. Let Xe = Ce

(
Ω̄
)
× Ce

(
Ω̄
)
. Order intervals in

Xe will be denoted by [·, ·]e. Let j1, j2 be the embeddings of Xe in X and
C1

0

(
Ω̄
)
× C1

0

(
Ω̄
)

in Xe respectively and define He
λ : Xe → Xe by

He
λ := j2 ◦

( (
−λ−1∆ + ω

)−1

0
0

0
(
−λ−1∆ + ω

)−1

0

)
◦ (F + ωI) ◦ j1.

We recall that
(
−λ−1∆ + ω

)−1

0
was defined as an operator from C

(
Ω̄
)

into
C1

0

(
Ω̄
)
. We note that (u,w) is a fixed point of He

λ if and only if j1 (u,w) is
a fixed point of Hλ. Hence it suffices to show that He

λ has a unique fixed
point in [Zλ, Y ] ∩Xe.

It also holds for (ui, wi) ∈ X with (u1, w1) < (u2, w2) that

Hλ (u1, w1) < Hλ (u2, w2) .(39)

In fact Hλ (u2, w2)−Hλ (u1, w1) is an element of the interior of the positive
cone of Xe, or equivalently, there exists t > 0 such that

Hλ (u2, w2)−Hλ (u1, w1) ≥ (te, te) .(40)
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Since neither Zλ nor Y are fixed points of Hλ we find, using (39), that
any fixed point (u,w) ∈ [Zλ, Y ] satisfies

Z∗λ := HλZλ < (u,w) < HλY =: Y ∗.

From (40) we even have the stronger result that (u,w) ∈ int [Z∗λ, Y
∗]e, the

interior of [Z∗λ, Y
∗]e with respect to the ‖·‖e-topology. The uniqueness of a

fixed point of Hλ in [Zλ, Y ] for λ ≥ λ? then follows from the next lemma.

Lemma 4.2. For every λ > λ? there exists a unique fixed point of He
λ in

int [Z∗λ, Y
∗]e.

Proof. We have for every λ > λ? that there exists at least one solution to
(Qλ) in the order interval [Zλ, Y ] which, as we observed, is a fixed point of
He

λ and (u,w) ∈ int [Z∗λ, Y
∗]e. To show that this is the only solution, we

shall use a degree argument.
Suppose (u,w) ∈ int [Z∗λ, Y

∗]e, with λ > λ?, is a fixed point of He
λ. The

operator He
λ is differentiable and T e

u,λ := dHe
λ (u,w) ∈ L(Xe) given by

T e
u,λ = j2 ◦

( (
−λ−1∆ + ω

)−1

0
0

0
(
−λ−1∆ + ω

)−1

0

)
◦ (Mu + ωI) ◦ j1,

with Mu as defined in (34). From Lemma 4.1 we have that the spectral
radius r(T e

u,λ) < 1. Indeed µ is an eigenvalue of T e
u,λ if and only if µ is an

eigenvalue of Tu,λ. Since r(Tu,λ) > 0 it holds that r(T e
u,λ) > 0. But T e

u,λ is a
positive compact operator and hence r(T e

u,λ) is an eigenvalue of T e
u,λ to which

a positive eigenfunction pertains. This implies that r(T e
u,λ) = r(Tu,λ) < 1.

In particular 1 is not an eigenvalue of T e
u,λ and consequently the index of

the fixed point (u,w) is well defined with

index (u,w) = 1,

see [17, p. 66]. Using the homotopy invariance of the degree and the fact
that int [Z∗λ, Y

∗]e is convex, it follows that

degree
(
I −He

u,λ, int [Z∗λ, Y
∗]e , 0

)
= 1.

Indeed, let z̄ ∈ int [Z∗λ, Y
∗]e be arbitrary and define the homotopy

Gt = (1− t) (I − z̄) + t(I −He
u,λ).

It holds that Gtz = 0 if and only if z = (1− t) z̄ + tHe
u,λz and hence z ∈

int [Z∗λ, Y
∗]e. Since Gt has no zeros on the boundary int [Z∗λ, Y

∗]e we have
that

degree (G1, int [Z∗λ, Y
∗]e , 0) = degree (G0, int [Z∗λ, Y

∗]e , 0) = 1.

By the additivity property of the degree we see that He
λ can have at most

one fixed point in int [Z∗λ, Y
∗]e. �
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The proof of Theorem 2.1 can now be completed. For all λ > λ? we have
a unique solution Λ̃ (λ) = (uλ, wλ) ∈ int [Z∗λ, Y

∗]e ⊂ [Zλ, Y ] to (Qλ).
Using the Implicit Function Theorem we have that Λ̃ ∈ C1 ((λ?,+∞), Xe).

Indeed the operator (λ, (u,w)) 7−→ (u,w)−He (λ, (u,w)) is C1 and the de-
rivative with respect to (u,w) is given by I−T e

u,λ. For fixed λ0 > λ? it holds
that I − T e

u,λ0
∈ Isom(Xe). By the Implicit Function Theorem the solution

set of He (λ, (u,w)) = 0 consists in a neighbourhood of λ0 of a C1-curve,
parameterized by λ. By uniqueness of solutions in int [Z∗λ, Y

∗]e we have that
this curve is in a neighbourhood of (λ0, uλ0 , wλ0) given by Λ̃. Since this can
be done for every λ > λ? we have that Λ̃ in C1 ((λ?,+∞), Xe). Using a
bootstrap argument one proves that Λ̃ ∈ C1

(
(λ?,+∞), C2

(
Ω̄
)
× C2

(
Ω̄
))

.
Finally we define Λ (λ) := (uλ, β (uλ − wλ)). Then Λ (λ) is a solution to

(Pλ) for all λ > λ? and Λ ∈ C1
(
(λ?,∞), C2

(
Ω̄
)
× C2

(
Ω̄
))

.

4.2. Proof of Theorems 2.2 and 2.3. In this section we assume that the
conditions of Theorem 2.1 hold. We define the operator Bλ : D (Bλ) → X
by

D (Bλ) := {(u,w) ∈ X ; (∆u,∆w) ∈ X} ,

with ∆u and ∆w in distributional sense,

Bλ := Lλ −Muλ
,

with

Lλ :=
(
−λ−1∆ 0

0 −λ−1∆

)
and Muλ

as defined in (34).

Lemma 4.3. For all λ > λ?, with λ? as in Lemma 4.1, the operator Bλ is
invertible and B−1

λ ∈ L (X) is a positive compact operator with a positive
spectral radius rλ = r(B−1

λ ). Moreover rλ is an eigenvalue of B−1
λ with a

corresponding positive eigenfunction.

Proof. Denote by Tλ and M
λ

the operators Tuλ
and Muλ

respectively. Since
λ > λ? the spectral radius r (Tλ) of Tλ satisfies

0 < r (Tλ) < 1.(41)

Hence Bλ = Lλ +ωI− (Mλ +ωI) =
(
λ−1L1 + ωI

)
(I−Tλ) is invertible with

B−1
λ = (I − Tλ)−1Kω,λ. It holds that B−1

λ is positive and compact since
(I − Tλ)−1 is a positive bounded operator and Kω,λ is a positive compact
operator. Moreover, since r (Tλ) < 1 it follows from [23, Lemma 1.4] that
B−1

λ is irreducible, and hence the spectral radius rλ = r(B−1
λ ) is positive. By

the Krein-Rutman Theorem rλ corresponds to a positive eigenfunction. �
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Lemma 4.4. For all ν > 0 the operator Bλ + νI is invertible. The inverse
(Bλ + νI)−1 ∈ L (X) is positive and compact and its spectral radius is given
by r((Bλ + νI)−1) = (r−1

λ + ν)−1.

Proof. Let k = ω + ν. Then

Bλ + νI = Lλ + kI − (Mλ + ωI)
= (Lλ + kI) (I −Kk,λ(Mλ + ωI)).

The operator Kk,λ (Mλ + ωI) is also positive, compact and irreducible.
Again using the Krein-Rutman Theorem we find that r (Kk,λ (Mλ + ωI))
is an eigenvalue of the adjoint operator (Kk,λ (Mλ + ωI))∗ pertaining to a
positive functional, say Υk,λ. Let hλ be the positive eigenfunction of B−1

λ
corresponding to the eigenvalue rλ as in Lemma 4.3. It holds that

hλ =
(
r−1
λ + k − ω

)
Kk,λhλ +Kk,λ (Mλ + ωI)hλ.(42)

Using (42) it follows that

〈hλ,Υk,λ〉 =
(
r−1
λ + k − ω

)
〈Kk,λhλ,Υk,λ〉+ 〈Kk,λ (Mλ + ωI)hλ,Υk,λ〉

≥ 〈Kk,λ (Mλ + ωI)hλ,Υk,λ〉
= r (Kk,λ (Mλ + ωI)) 〈hλ,Υk,λ〉 .

Hence r (Kk,λ (Mλ + ωI)) < 1 and the operator Bλ + νI is invertible with

(Bλ + νI)−1 = (I −Kk,λ(Mλ + ωI))−1 (Lλ + kI)−1 .

Moreover (Bλ + νI)−1 is compact and positive and irreducible. Since

(Bλ + νI)−1 hλ = (r−1
λ + ν)−1hλ

we see that (r−1
λ + ν)−1 is an eigenvalue to which a positive eigenfunction

pertains. It then follows from the irreducibility of (Bλ + νI)−1 that the
spectral radius of this operator must be (r−1

λ + ν)−1. �

Lemma 4.5. If µ ∈ C is such that Reµ < r−1
λ then µ is in the resolvent

set of Bλ.

Proof. Let h ∈ X be arbitrary and consider the equation

Bλg − µg = h,(43)

where Reµ < r−1
λ . Choose ν ∈ R large enough such that

(Reµ)2 + 2ν
(
Reµ− r−1

λ

)
+ (Imµ)2 < r−2

λ

and µ+ ν 6= 0. Then

|µ+ ν|2 = (Reµ)2 + 2ν Reµ+ ν2 + (Imµ)2

< r−2
λ + 2νr−1

λ + ν2,
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and hence 0 < |µ+ ν| < r−1
λ + ν. Equation (43) is equivalent with

(Bλ + νI)g − (µ+ ν)g = h.

Using Lemma 4.4 we can rewrite this as(
(Bλ + νI)−1 − (µ+ ν)−1I

)
g = −(µ+ ν)−1(Bλ + νI)−1h.(44)

Since
∣∣(µ+ ν)−1

∣∣ > (r−1
λ + ν)−1 = r((Bλ + νI)−1) we have that (µ + ν)−1

is in the resolvent set (Bλ + νI)−1 and hence (44) has a unique solution.
It follows from the closed graph theorem that µ is in the resolvent set of
Bλ. �

Proof of Theorem 2.2. Consider the operator Aλ defined in (7). It holds
that µ is in the resolvent set of Aλ if and only if µ/λ is in the resolvent set
of Bλ. Indeed if µ/λ is in the resolvent set of Bλ the operator defined by

(u, v) 7→ (ϕ, βϕ− βψ)

where (ϕ,ψ) := λ−1(Bλ−µ/λ)−1(u, u− 1
β v) is directly seen to be (Aλ−µ)−1.

Conversely, for µ in the resolvent set of Aλ the operator defined by

(u,w) 7→ (ϕ,ϕ− (1/β)θ)

where (ϕ, θ) := λ(Aλ − µI)−1(u, βu − βw) is (Bλ − µ/λ)−1. Hence, using
the last lemma we have that all µ ∈ C with Reµ ≤ νλ := λr−1

λ that µ is in
the resolvent set of Aλ. �

Proof of Theorem 2.3. The theorem follows directly from Lemma 3.5 and
the fact that Λ (λ) is the unique solution in [Zλ, Y ]. �

A. Appendix.

We recall some facts about quasimonotone systems. We remark that in this
section Ω may be an unbounded domain.

Definition A.1. A system of elliptic equations{
−∆u = F1 (x, u, w) in Ω,
−∆w = F2 (x, u, w) in Ω,(45)

with Fi ∈ C1
(
Ω̄× R× R

)
is called quasimonotone if

∂F1

∂u
(x, u, w) ≥ 0 and

∂F2

∂w
(x, u, w) ≥ 0 for all (x, u, w) ∈ Ω̄× R× R.

This definition suffices for our purposes. For a more general definition we
refer to [16].
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Definition A.2. A pair (u,w) ∈ C
(
Ω̄
)
× C

(
Ω̄
)

is called a subsolution to
the problem  −∆u = F1 (x, u, w) in Ω,

−∆w = F2 (x, u, w) in Ω,
(u,w) = (ϕ,ψ) on Γ = ∂Ω,

(46)

with ϕ,ψ ∈ C (Γ) if
(1) it holds in D′(Ω)-sense that

−∆u ≤ F1 (x, u, w) ,
−∆w ≤ F2 (x, u, w) ;

(2) (u,w) ≤ (ϕ,ψ) on Γ.
Supersolutions are defined by reversing the inequality signs. If (u,w) is

both a subsolution and a supersolution then it is called a C-solution.

We note that if Ω is a bounded smooth domain and F1, F2 are C1 then a
C-solution (u,w) is in C2

(
Ω̄
)
× C2

(
Ω̄
)
. We often use the following results

from [16, Theorem 1.3].

Proposition A.3. Let Ω be a bounded smooth domain and assume that (46)
is quasimonotone.

(1) If (ui, wi), i = 1, 2, are subsolutions to this system then (u,w) defined
by

(u (x) , w (x)) :=
(

max
1,2

{ui (x)} ,max
1,2

{wi (x)}
)

is again a subsolution to (46).
(2) If (u,w) is a subsolution and (u,w) a supersolution to (46) then there

exists a C-solution (u,w) to (46) with

(u,w) ≤ (u,w) ≤ (u,w) .

We give some results for Ω = RN
+ :=

{
(x1, x

′) ; x1 ∈ R, x′ ∈ RN−1
}
. The

first is that one has also for quasimonotone systems the existence of a min-
imal and maximal solutions between an ordered pair of sub- and supersolu-
tions.

Lemma A.4. Consider the following halfspace problem:
−∆u = F1 (u,w) in RN

+ ,

−∆w = F2 (u,w) in RN
+ ,

u = w = 0 on ∂RN
+ ,

(47)

with Fi ∈ C1,α (R× R), 0 < α < 1, and suppose this system is quasimono-
tone. If there exists a bounded subsolution (u,w) and bounded supersolution
(u,w) to this system with (u,w) ≤ (u,w), then there exist a maximal and a
minimal C2,α-solution in the order interval [(u,w), (u,w)] to this problem.
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The proof of this lemma is almost the same as for bounded domains. We
only observe that if ω > 0 is such that ∂

∂uF1 (u,w)+ω ≥ 0 and ∂
∂wF2 (u,w)+

ω ≥ 0 for (u,w) ≤ (u,w) ≤ (u,w) then one can define inductively

(u0, w0) = (u,w), (un+1, wn+1) = T (un, wn) , n = 0, 1, 2, . . .

with (u,w) = T (un, wn) the unique solution to the linear problem
(−∆ + ω1)u = F1 (un, wn) + ωun in RN

+ ,

(−∆ + ω2)w = F2 (un, wn) + ωwn in RN
+ ,

u = w = 0 on ∂RN
+ .

That this system has a unique solution follows from the fact that if k > 0
and g ∈ L∞

(
RN

+

)
then there exists a unique u ∈ L∞

(
RN

+

)
∩ C

(
RN

+

)
such

that −∆u + ku = f in D′
(
RN

+

)
-sense and u = 0 on ∂RN

+ , see see e.g., [6,
Proposition 27, p. 635]. Since the system is quasimonotone we have, see
also [16], that

(u,w) ≤ (un, wn) ≤ (un+1, wn+1) ≤ (u,w) for n = 0, 1, 2, . . . .

Letting n→∞ one obtains a solution.
The next lemma is used to reduce the study of equations on RN

+ to the
study of inequalities on R+.

Lemma A.5. Suppose that (U,W ) ∈ C2(RN
+ )∩C

(
RN

+

)
is a bounded solu-

tion of 
−∆U = F1 (x1, U,W ) in RN

+ ,

−∆W = F2 (x1, U,W ) in RN
+ ,

U = W = 0 on ∂RN
+ ,

(48)

with Fi (x1, s, t) ∈ C1,α
(
R3

+

)
and 0 < α < 1. Assume (48) is quasimonotone

and that |Fi (x1, s, t)| ≤ h (s, t) with h a continuous function on R2. Define
(u,w) by

(u,w) (x1) := (supx′∈RN−1 U (x1, x) , supx′∈RN−1 W (x1, x)) .

It holds that u,w ∈ C[0,∞) with u (0) = w (0) = 0 and in D′(R+)-sense
that

− u′′ ≤ F1 (x1, u, w)(49)
−w′′ ≤ F2 (x1, u, w) .(50)

Proof. Since U and W are bounded, ∆U and ∆W are also bounded. From
this and the fact that U = W = 0 on ∂RN

+ one obtains by standard regularity

results that U,W ∈ C2,α
(
RN

+

)
. In particular we have uniform bounds on

the first order derivatives of U and W .
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Let {qj ; j = 1, 2, . . . } be a numbering of QN−1 and define the functions
Uj and Wj on RN

+ by

(Uj ,Wj)(x) = (U,W )(x+ (0, qj)).

For k = 1, 2, . . . , we define (Sk, Tk) on RN
+ by

(Sk, Tk) (x) = (sup1≤j≤k Uj (x) , sup1≤j≤k Wj(x)),

and let (S, T ) (x) := limk→∞ (Sk, Tk) (x). It follows from the uniform conti-
nuity of U and W that (S (x) , T (x)) = (u (x1) , w (x1)).

Since the system is quasimonotone it follows from Proposition A.3 and in-
duction that in D′(RN

+ )-sense −∆Sk ≤ F1(x1, Sk, Tk)z for every k = 1, 2, . . . .
By dominated convergence it then follows that −∆u ≤ F1 (x1, u, w) in
D′(RN

+ )-sense In particular if z1 ∈ D+ (R+) we set z := z1z2 with z2 ∈
D+

(
RN−1

)
, z2 6= 0 one sees that this implies (49).

Since F1 (x1, u, w) is bounded there exists M > 0 such that F1 (x1, u, w)−
2M ≤ 0 on R+. Then −

(
u+Mx2

1

)′′ ≤ 0 in D′(R+)-sense. Hence x1 7→
u (x1) +Mx2

1 is convex and consequently continuous on (0,∞). Since ∂
∂x1

U

is uniformly bounded and U (0, x′) = 0 for all x′ ∈ RN−1, it follows that
u is continuous in 0 with u (0) = 0. The result for w is obtained mutatis
mutandis. �

Finally we prove a direct analogue for a quasimonotone system of the
sweeping principle for scalar equations in [15]. Suppose that Γ = Γ1 ∪ Γ2

with Γ1,Γ2 ∈ C2 and Γ1 ∩ Γ2 = ∅. Here Γi may be empty. Let e ∈ C1(Ω̄)
be such that e (x) > 0 for x ∈ Ω ∪ Γ1 and e (x) = 0, ∂e

∂n (x) < 0 for x ∈ Γ2

where n is the outward normal and let Ce(Ω̄) be as in (38), see also [1].

Proposition A.6. Suppose that (46) is quasimonotone. If (u,w) is a su-
persolution, and {(ut, wt) ; t ∈ [0, 1]} is a family of subsolutions such that

(1) (ut, wt) < (g1, g2) on Γ1 and (ut, wt) = (g1, g2) on Γ2 for all t ∈ [0, 1] ;
(2) t 7→ ut − u0 and t 7→ wt − w0 is continuous from [0, 1] into Ce(Ω̄);
(3) (u0, w0) ≤ (u,w) in Ω̄;
(4) ut 6= u and wt 6= w for all t ∈ [0, 1] ;

then there exists r > 0 such that (u,w)− (ut, wt) > (re, re) for all t ∈ [0, 1].

Proof. Let S = {t ∈ [0, 1] ; (ut, wt) ≤ (u,w) in Ω}. By assumption 0 ∈ S.
Since convergence in Ce(Ω̄) implies pointwise convergence it follows that S
is closed. Let t0 ∈ S. It holds with ω large enough in D′(Ω)-sense that

−∆(u− ut0) + ω(u− ut0) ≥ F1(u,w) + ωu− F1(ut0 , wt0) + ωut0

= F1(u,w) + ωu− F1(ut0 , w) + ωut0

+F1(ut0 , w)− F1(ut0 , wt0) ≥ 0.

Since u 6= ut0 there exists s′ > 0 such that u − ut0 > s′e0 with e0 a C1(Ω̄)
function with e (x) > 0 for x ∈ Ω, e0 (x) = 0 and ∂e0

∂n (x) < 0 for x ∈ Γ,
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see [3, Corollary p. 581]. Since u (x) − ut0 (x) > 0 for x ∈ Γ1 and Γ1 is
compact, there exists s1 > 0 such u − ut0 ≥ s1e. In the same way there
exists s2 such that w − wt0 ≥ s2e. By hypothesis 2 there exists δ > 0 such
that

∥∥ut − ut0

∥∥
e
, ‖wt − wt0‖e < s/2 for all t ∈ [0, 1] for which |t− t0| < δ.

This implies that for all such t we have that ut − ut0 ≤ s
2e and hence

u− ut = u− ut0
− (ut0 − ut) ≥ s

2e and in the same way w−wt ≥ s
2e. Hence

S is open and we have that S = [0, 1]. By the compactness of [0, 1] and by
hypotheses (2) it follows that there exists r > 0 such that u − ut ≥ re and
w − wt ≥ re. �
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