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An embedded surface in R4 is projected into R3 with the
double point set which includes a finite number of triple
points. We consider the minimal number of such triple points
among all projections of embedded surfaces which are ambient
isotopic to a given surface and show that for any non-negative
integer N there exists a 2-component non-orientable surface
in R4 whose minimal triple point number is equal to 2N .

1. Introduction.

In this paper we denote the 4-dimensional Euclidian space by

R4 = {(x, y, z, w)|x, y, z, w ∈ R}.

A surface-link is a 2-dimensional manifold F embedded in R4 locally flatly,
each component of which is homeomorphic to a closed surface. In particular,
it is called a surface-knot when F is connected, and it is called a 2-knot (resp.
a P2-knot) when F is homeomorphic to a 2-sphere (resp. a projective plane).
Two surface-links F and F ′ are equivalent if there exists an orientation
preserving homeomorphism of R4 which maps F onto F ′. If F and F ′ are
equivalent, we use the notation F ∼= F ′. For a surface-link F , the type of F
is the collection of all surface-links each member in which is equivalent to
F .

To describe a surface-link, we use the projection image in R3. For con-
venience, we may assume that the projection π : R4 −→ R3 determined by
the w-axis is a generic projection for a surface-link F ; that is, its double
point set consists of isolated branch points, double point curves, and iso-
lated triple points. The broken surface diagram or simply the diagram of
a surface-link F is the generic projection image π(F ) such that the upper
sheet and the lower sheet along each double point curve are distinguished.
(To distinguish upper and lower, we often depict the diagram by erasing a
small neighborhood of the curve in the lower sheet.)

Let DF be the diagram of a surface-link F . We denote the number of the
triple points on DF by t(DF ). Then the minimal triple point number of a
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surface-link F , denoted by t(F ), is the smallest number of the triple points
among all the diagrams of surface-links with the same type as F ;

t(F ) = min{t(DF ′)|F ′ ∼= F}.

This definition is an analogy to that of the ‘minimal crossing number’ in
classical knot theory. It is shown by Kamada that there exists a 2-knot
K with t(K) > N for any non-negative integer N (cf. [6]). And also we
have t(F ) 6= 1 for any surface-link F (cf. [7]). However, the minimal triple
point number in 2-knot theory differs from the minimal crossing number
in classical knot theory: For instance, t(F ) = 0 does not imply that F is
trivial. For example, a 2-knot K is ribbon if and only if t(K) = 0 (cf. [10]).
The purpose of this paper is to prove:

Theorem 1.1. For any positive integer N , there exists a 2-component sur-
face-link F = F1 ∪ F2 such that

(i) each Fi is a non-orientable surface-knot,
(ii) χ(Fi) = 2−N (i = 1, 2),
(iii) e(F1) = 2N and e(F2) = −2N ,
(iv) π1(R4 − F ) ∼= 〈a, b|aba = b, bab = a〉, and
(v) t(F ) = 2N ,

where χ denotes the Euler characteristic, and e denotes the normal Euler
number.

2. Preliminaries.

We review some definitions and results on diagrams of surface-links. Refer
to [3] for more details.

Let F be a surface-link and DF the (broken surface) diagram of F . A
sign of a branch point on DF is defined as follows: There are two types of
crossing information near a branch point — one is positive (with +1) and
the other is negative (with −1) — depicted in Figure 1.

positive negative

Figure 1.

Proposition 2.1 ([1]). For a surface-knot F , the sum of signs taken over
all the branch points on DF is equal to the normal Euler number e(F ).
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Similarly to the minimal triple point number, we can also consider the
minimal branch point number b(F ) of a surface-link F as follows;

b(F ) = min{b(DF ′)|F ′ ∼= F},

where b(DF ′) is the number of the branch points on the diagram DF ′ . In [2],
Carter and Saito determined the number b(F ) completely as follows (they
proves only the case of surface-knots, but their technique used in their paper
is also applied for any surface-links).

Proposition 2.2 ([2]). For a surface-link F = F1 ∪ · · · ∪ Fn, we have

b(F ) = |e(F1)|+ · · ·+ |e(Fn)|.

Let ΓF be the double point set of the diagram DF , which is regarded as a
union of immersed loops and immersed arcs in R3 such that the endpoints
of the immersed arcs are branch points.

Suppose that ΓF contains a simple arc (that is, an embedded arc with
no triple point on it). Such a simple arc is called an a-arc (resp. an m-
arc) if the two branch points of its ends have the opposite signs (resp. the
same sign). We notice that the neighborhood of an a-arc (resp. an m-arc)
is homeomorphic to an annulus (resp. a Möbius band). By canceling the
branch points on an a-arc as illustrated in Figure 2, we have the following.

Lemma 2.3 ([9]). If ΓF contains an a-arc, then F is equivalent to a sur-
face-link F ′ with t(DF ′) = t(DF ) and b(DF ′) = b(DF )− 2.

Figure 2.

A surface-link F is P2-reducible if F is equivalent to a connected sum of
a standard P2-knot and some surface-link (refer to [5] for a standard P2-
knot). F is P2-irreducible if F is not P2-reducible. Since the neighborhood
of an m-arc is a punctured projective plane properly embedded in a 4-ball
as depicted in Figure 3, we have the following.

Lemma 2.4 ([8]). If ΓF contains an m-arc, then F is P2-reducible.
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Figure 3.

The neighborhood of a triple point on DF consists of three sheets. These
sheets are labeled top, middle and bottom, and these indicate the relative
position of the sheets with respect to the w-coordinate.

A branch point b and a triple point t on DF are connected by a double
point curve c if there exists a simple sub-arc c of ΓF whose endpoints are b
and t. By the deformation of F into F ′ as illustrated in Figure 4, we have
the following.

Lemma 2.5 ([8], [11]). Suppose that a branch point b and a triple point t
on DF are connected by a double point curve c. If the arc c is transverse to
the top sheet or the bottom sheet at t, then F is equivalent to a surface-link
F ′ with t(DF ′) = t(DF )− 1 and b(DF ′) = b(DF ).

Figure 4.

Let {m1, · · · ,mn} be a meridian system of a surface-link F = F1∪· · ·∪Fn,
where mk is a meridian of Fk (k = 1, · · · , n). Each mk is regarded as an
element of the knot group π1(R4−F ). Then the following is clear from the
property of standard P2-knots.

Lemma 2.6. If the order of each mk is not equal to 2 in π1(R4 − F ), then
F is P2-irreducible.
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3. Projections and movie pictures.

For a P2-irreducible surface-link F we give an estimate for a lower bound of
t(F ). However, the following lemma has no sense for an orientable surface-
link; for the normal Euler number of any constituent orientable surface-knot
vanishes.

Lemma 3.1. For a P2-irreducible surface-link F = F1 ∪ · · · ∪ Fn, we have

t(F ) ≥ (|e(F1)|+ · · ·+ |e(Fn)|)/2,

where e(Fi) denotes the normal Euler number of a surface-knot Fi (i =
1, · · · , n).

Proof. By Proposition 2.2, it is sufficient to prove that

t(F ) ≥ b(F )/2

for any P2-irreducible surface-link F . Let M be the set of all diagrams of the
surface-links with the same type as F whose triple point number is realizing
t(F );

M = {DF ′ |F ′ ∼= F, t(DF ′) = t(F )}.
Among the diagrams in M , we take a diagram, say D, whose branch point
number is minimal in M . Let Γ be the double point set of D.

Since F is P2-irreducible, Γ contains no m-arc by Lemma 2.4. Moreover
Γ contains no a-arc by Lemma 2.3; for if Γ contains an a-arc, then there
exists a diagram D′ in M with b(D) > b(D′). Hence any branch point in Γ
is connected with some triple point.

On the other hand, the number of branch points connecting with each
triple point in Γ is at most two; for if at least three branch points connect
with a triple point, then we have a cancelling pair of a branch point and the
triple point which satisfies the condition of Lemma 2.5, and so there exists
a diagram DF ′′ with F ′′ ∼= F and t(DF ′′) < t(F ). Therefore we have

t(F ) = t(D) ≥ b(D)/2 ≥ b(F )/2.

�

Corollary 3.2. For a P2-irreducible surface-link F = F1 ∪ · · · ∪ Fn, if

t(F ) = (|e(F1)|+ · · ·+ |e(Fn)|)/2,

then the minimal triple point number t(F ) is even.

Proof. From the proof of Lemma 3.1, there exists a surface-link F ′ ∼= F
whose diagram DF ′ satisfies t(DF ′) = t(F ) and b(DF ′) = b(F ). Let ΓF ′ be
the double point set of DF ′ . Then the neighborhood of each triple point in
ΓF ′ is as shown in Figure 5(A) or (B). Here the arrows along the double point
curves mean a BW orientation of ΓF ′ (refer to [7] for a BW orientation of a
double point set). Since the number of the triple points depicted in Figure
5(A) is equal to that depicted in Figure 5(B), the sum t(DF ′) is even. �
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(A) (B)

Figure 5.

To describe a surface-link F , we also use a movie picture method [4]; for
any subset S of R, we denote S×R3 ⊂ R×R3 ∼= R4 by R3S. If S = {x0},
we write R3[x0]. Taking the x-coordinate as a height function, we consider
a surface-link F to be a one-parameter family of subsets in R3 that are the
intersections Fx = F ∩R3[x] (−∞ < x < ∞). If Fx is a classical link, it is
called a cross-sectional link.

We consider the relationship between a surface-link described by the pro-
jection method and that described by the movie pictured method. Let π′ be
the projection π′ : R3 −→ R2 with (y, z, w) 7−→ (y, z). Then the projection
π : R4 −→ R3 determined by the w-axis is considered to be

id× π′ : R4 ∼= R×R3 −→ R×R2 ∼= R3.

Hence, the projection image π(F ) of a surface-link F is also considered to
be a family of the projection images π′(Fx) (−∞ < x < ∞).

We notice that a crossing in the (classical link) diagram of each cross-
sectional link Fx corresponds to a double point in the diagram DF of F . If
consecutive cross-sectional links {Fx} (x0 ≤ x ≤ x1) represent a deformation
of a Reidemeister move I (resp. a Reidemeister move III), it produces a
branch point (resp. a triple point) in DF .

Example 3.3. In Figure 6(A), we depict a 2-component surface A properly
embedded in R3[0, 1], each component of which is homeomorphic to a 2-
punctured projective plane. Since the projection image determined by the
w-axis is shown in Figure 6(B), its double point set contains four branch
points and two triple points (see Figure 6(C)).
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Figure 6.

For any positive integer N , we construct a 2-component link F (N) as
follows;

F (N) ∩R3[x] =



B ∪B′ for x = 0,
A ∩R3[x] for 0 < x ≤ 1,
A ∩R3[x− 1] for 1 ≤ x ≤ 2,
· · ·
A ∩R3[x− (N − 2)] for N − 2 ≤ x ≤ N − 1,
A ∩R3[x− (N − 1)] for N − 1 ≤ x < N,
B ∪B′ for x = N,
φ otherwise,
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where B ∪ B′ is a union of two standard 2-disks which bounds the trivial
link A ∩ R3[0] (= A ∩ R3[1]). Then the double point set of the diagram
DF (N) consists of a union of N copies of the set in Figure 6(C). We notice
that the surface-link F (1) is 8−1,−1

1 in the list of [12].

Proof of Theorem 1.1. We prove that F (N) in Example 3.3 satisfies (i) to
(v) in Theorem 1.1. It is easy to verify that each component of F (N) is a
(trivial) non-orientable surface-knot with the Euler characteristic 2−N . The
property (iii) is followed by Proposition 2.1 (we recall that a Reidemeister
move I corresponds to a branch point). For the calculation of π1(R4 − F ),
it is useful to refer to [4].

We will only prove that the property (v); t(F (N)) = 2N . Since the knot
group of F (N),

〈a, b|aba = b, bab = a〉,
is the quaternion group, and since {a, b} is a meridian system of F (N),
the order of each meridian is 4. By Lemma 2.6, F (N) is P2-irreducible.
Hence by the property (iii) and Lemma 3.1, we have t(F (N)) ≥ (|2N |+
| − 2N |)/2 = 2N . On the other hand, F (N) has the diagram whose double
point set contains 2N triple points as shown in Example 3.3. So we have
t(F (N)) ≤ 2N . �
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