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A well known formula of Wolpert expresses the derivative
of length of a geodesic γ on a hyperbolic surface with respect
to the Fenchel Nielsen twist about a fixed simple geodesic C
as a sum of the cosines of the intersection angles between the
two curves. We derive an analogous formula for the derivative
of the length of γ with respect to variation of the length of
the fixed curve C.

1. Introduction.

Let Σ be an oriented hyperbolic surface and let C be a simple closed geodesic
on Σ. The Fenchel Nielsen twist about C is a deformation of Σ in which
the surface is cut along Σ and reglued after twisting one boundary curve
distance t relative to the other. Let γ be a geodesic transverse to C, with
hyperbolic length l(γ); measured relative to a suitable base point, l(γ) is
a function of the twist parameter t. Wolpert [10], see also Kerckhoff [5],
proved the following well known formula for the derivative with respect to
t:

dl(γ)/dt = Σk
j=1 cos θj .(1)

Here the sum is over the intersection points Qj of C and γ, and θj is the
angle, measured anticlockwise, from γ to C at Qj .

The formula has been extended to a 3-dimensional situation by Kourouni-
otis [6]. Starting from a Fuchsian group uniformising the surface Σ, the
Fenchel Nielsen twist along C extends to a quakebend with the now complex
parameter t ∈ C, where <t is the twist as above and =t is the bending an-
gle. This produces a family of deformations ρt : π1(Σ) → PSL(2,C). The
geodesic γ on Σ corresponds to a conjugacy class [γ] in π1(Σ) and hence in
ρt(π1(Σ)). The length l(γ) extends to the complex translation length, also
denoted l(γ), of any element in the conjugacy class ρt([γ]). The derivative
formula becomes

dl(γ)/dt = Σk
j=1 cosh qj ,(2)

where now qj is the complex distance (measured with suitable a convention
on orientations) in H3 between a pair of axes C̃(t) and γ̃(t) of elements in
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the conjugacy classes of ρt([C]) and ρt([γ]), chosen so that the projections
on Σ of the time 0 lifts C̃(0) and γ̃(0) intersect in the point Qj .

It is natural to ask for the analogy of Wolpert’s formula for the derivative
of l(γ) with respect to the hyperbolic length l = l(C) of the geodesic C.
In this article we find such a formula and, more generally, find a similar
expression for the derivative of l(γ) with respect to ζ ∈ C, for any family
of holomorphic deformations ρζ : π1(Σ) → PSL(2,C). The formula is ex-
pressed in terms of the derivatives with respect to ζ of the complex lengths
lC and the complex twist parameters tC of curves C in a fixed pants decom-
position of Σ. The parameters (lC/2, tC) are the complex Fenchel Nielsen
coordinates for quasifuchsian space, as introduced by Kourouniotis [7] and
Tan [9].

To state the formula, we need a more detailed description of the trajectory
of the geodesic γ relative to a fixed pants decomposition of Σ. For simplicity,
we shall describe the case of variation from a base point which is Fuchsian;
the extension to the quasifuchsian setting is explained in 4.1. It is, however,
convenient to state the formula in terms of the complex distance d(L,M)
between oriented lines in H3. The details of our conventions are explained
in Section 2.1 below.

Suppose then that we are given a fixed decomposition of Σ into pairs of
pants by a family of disjoint geodesics C. The trajectory of the oriented
geodesic γ cuts in order a sequence Ci1 , . . . , Cik+1

of pants curves Cij ∈ C
in points Qj , so that each adjacent pair Cij , Cij+1 are boundary curves of a
unique pair of pants Πj , numbered such that Qk+1 = Q1 and such that the
arc from Q1 to Qk+1 is exactly γ. The idea is that there is a unique curve
homotopic to γ with no backtracking, made up of arcs which wrap around a
pants curve, alternating with arcs which cross the pants from one boundary
to the next following the common perpendiculars between the boundaries.

More precisely, let γ̃ be the lift of γ through a fixed lift Q̃1 of Q1. Then γ̃
intersects successively lifts C̃j of Cij in points Q̃j which project to Qj ; in par-
ticular Q̃k+1 is the image of Q̃1 under the covering translation corresponding
to γ̃.

Let D̃j denote the geodesic containing the common perpendicular to C̃j

and C̃j+1, oriented from the point Q−
j where it meets C̃j to the point Q+

j+1

where it meets C̃j+1. Orient C̃j so that the angle from γ̃ to C̃j is anti-
clockwise (relative to a fixed given orientation on Σ). Clearly, γ is freely
homotopic to the projection on Σ of the path made up of geodesic arcs from
Q−

j to Q+
j , Q+

j to Q−
j+1, j = 1, . . . , k.

Define dj = d(C̃j , C̃j+1) and qj = d(γ̃, C̃j). Define sj = ±d(D̃j , D̃j+1),
where we choose the + sign if Q−

j is to the left of Q+
j on C̃j (relative to the

orientation induced by the orientation of Σ), and the minus sign otherwise.
Likewise, define pj = ±d(γ̃, D̃j), where we choose the + sign if γ̃ intersects
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the geodesic extension of D̃j or if it does not intersect and the common
perpendicular from γ̃ to D̃j is oriented in the same sense as C̃j , and the −
sign otherwise. (In fact dj , sj , pj , qj are really signed complex distances, that
is, distances whose real parts are counted positive or negative depending on
position relative to the orientation of the line along which they are measured,
as explained in the next section. The signs of pj , qj do not matter in the
formula 3 below.)

The function dj depends only on the geometry of Πj , see Section 3.1, and
is holomorphic in the half lengths lC/2. The shift function sj is of the form
njlij/2 + ej + tij where nj ∈ Z, lij is the length l(Cij ) of Cij , tij is the asso-
ciated Fenchel Nielsen twist and ej satisfies 0 ≤ <ej < <lij/2. The function
ej depends only on the geometry of Πj and Πj−1 and is again holomorphic
in the parameters lC/2. The choices of nj , dj , ej are independent of the hy-
perbolic structure on Σ, and depend only on the topology of γ relative to
the pants decomposition C. Details are explained in Section 4.2.

Letting ′ denote derivative with respect to ζ, our derivative formula is:

l
′
(γ) = Σk

j=1cosh pjd
′
j + Σk

j=1cosh qjs′j .(3)

In the special case in which the lengths l(Ci), and hence the functions dj

and ej , are real valued and constant, we recover Wolpert’s formula (1).

We give two proofs of Equation (3). The first is very similar to Kerckhoff’s
proof of (1) in [5] and the second is inspired by the proof of (1) in [2],
in which ρt(γ) ∈ SL(2,C) is expressed in terms of a product of twists
associated to the distance tC quakebend along C. In the present case, we
write ρζ(γ) as a product of translations along the axes of the pants curves C̃j

by the shift distances sj , and translations along the common perpendiculars
D̃j by distances dj . None of these translations are elements in ρζ(π1(Σ));
nevertheless once ρζ(γ) is expressed in this way, our formula drops out.

The plan of the paper is as follows. In Section 2 we discuss signed complex
distance and review the trigonometry of right-angled hyperbolic hexagons,
in particular obtaining a formula for the derivatives of the side lengths. In
Section 3 we review hyperbolic pairs of pants and Fenchel Nielsen coordi-
nates in both the two and three dimensional settings. In Section 4 we discuss
how to keep track of geodesic paths and give careful definitions of the terms
entering into (3). Finally in Section 5 we prove Equation (3) following the
Kerckhoff method and in Section 6 give the version inspired by [2].

2. Hyperbolic trigonometry.

In this section, following [3], we express trigonometric formulae in terms of
the signed complex distance between oriented geodesics in hyperbolic 3-space
H3. Since the detailed conventions are important in our formulae, we give
all the definitions here.
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2.1. Complex distance. The signed complex distance between oriented
geodesics in hyperbolic 3-space H3, relative to an oriented common perpen-
dicular, should be thought of as the analogue of signed distance measured
along an oriented axis in H2. It is defined as follows, see [3, V.3.].

Let α be any oriented line in H3, and let P1, P2 ∈ α. Let d(P1, P2) ≥ 0
denote the hyperbolic distance between P1 and P2. We define the signed
real hyperbolic distance δα(P1, P2) as d(P1, P2) if the orientation of the arc
from P1 to P2 coincides with that of α and −d(P1, P2) otherwise.

Now let L1, L2 ⊂ H3 be oriented lines with distinct endpoints on the
Riemann sphere Ĉ, with oriented common perpendicular α meeting L1, L2

in points Q1, Q2 respectively, where if L1, L2 intersect we take Q1 = Q2. Let
vi be tangent vectors to the positive directions of Li at Qi, i = 1, 2. Let Π
be the hyperbolic plane through Q2 orthogonal to α and let w1 denote the
parallel translate of v1 along α to Q2. Let n be a unit vector at Q2 pointing
in the positive direction α. The signed complex distance between L1 and L2

is
δn(L1, L2) = δα(L1, L2) = δα(Q1, Q2) + iθ

where θ, measured modulo 2πZ, is the angle between w1 and v2 measured
anticlockwise in the plane spanned by w1,v2 and oriented by n. Normalising
so that α is the imaginary axis oriented from 0 to ∞ and L1, L2 are the
oriented geodesics from −1 to 1, and −reiθ to reiθ respectively (r > 0), we
have δα(L1, L2) = log r + iθ. Notice that the choice ±θ is independent of
whether or not r > 1. In terms of cross ratio,

exp δα(L1, L2) =
(v2 − a−)(v1 − a+)
(v2 − a+)(v1 − a−)

,

where v1, v2 are the positive endpoints of L1, L2 and a−, a+ are respectively
the negative and positive endpoints of α on Ĉ.

For any line oriented L ⊂ H3, denote by L−1 the line L with opposite ori-
entation. We have δα(L1, L2) = −δα(L2, L1), δα−1(L1, L2) = −δα(L1, L2)
and δα(L−1

1 , L2) = δα(L1, L
−1
2 ) = δα(L1, L2) + iπ.

Finally we define the (unsigned) complex distance d(L1, L2) as d(L1, L2)
= δα(L1, L2) if <δα(L1, L2) > 0, −δα(L1, L2) if <δα(L1, L2) < 0 and
i|δα(L1, L2)| otherwise. The relations for unsigned distance become d(L1,L2)
= d(L2, L1), and d(L−1

1 , L2) = d(L1, L
−1
2 ) = d(L1, L2) + iπ. When L1 and

L2 have a common endpoint Q, we define d(L1, L2) = 0 if the orientations
of L1 and L2 at Q are the same and d(L1, L2) = iπ otherwise.

Suppose that L and M lie in a common plane Π, oriented by a normal
vector n. If L intersects M at an angle θ measured anticlockwise from L
to M , then δn(L,M) = iθ, while if L and M are disjoint then δm(L,M) =
p+ εiπ , where p is the unsigned perpendicular distance between L and M ,
m is a vector oriented from L to M and ε = 0 if L and M have the same
orientation relative to their common perpendicular and ε = 1 otherwise.
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Finally, suppose that M ∈ PSL(2,C) is non-parabolic with axis AxM ,
oriented pointing from the repelling to the attracting fixed point. We define
the complex length l(M) as δAx M (L,M(L)), where L is any oriented line
perpendicular to AxM . Notice that with this definition, <l(M) > 0 so that
in fact l(M) = d(L,M(L)). If M is parabolic, we define l(M) = 0.

2.1.1. Signed versus unsigned complex distance. With the above def-
initions, the signed complex distance between L1 and L2 depends on the
orientation of their common perpendicular, while the (unsigned) complex
distance does not. Both signed and unsigned distance take values in C/2πiZ.
Notice that one cannot express the signed complex distance in terms of the
endpoints of L1, L2 alone, since any possible formula will fail to see the ori-
entation of the common perpendicular α. In fact, as can easily be checked
by normalising as above,

cosh δα(L1, L2) = coshd(L1, L2) =
1 + χ

1− χ

where χ = (u1−u2)(v1−v2)
(u1−v2)(v1−u2) and ui, vi are respectively the repelling and at-

tracting fixed points of Li. In this formula, the distinction between signed
and unsigned complex distance is lost.

The formulae of hyperbolic trigonometry are often given in terms of un-
signed complex distance, see for example in [8] or [7]. However, it will be
important for us to use signed complex distance for the following reason. If
L1 and L2 vary so as to move through an intersection point changing their
positions relative to the orientation of their common perpendicular α, then
there is a discontinuity in d(L1, L2). Since we want to vary the positions
of all our lines and to obtain a formula that is holomorphic in the relevant
parameters, we have to use not the complex distance d(L1, L2), but the holo-
morphic variable δα(L1, L2) associated to some pre-specified orientation of
α. See also [4] for a similar use.

2.2. Right-angled hexagons. An oriented skew right-angled hyperbolic
hexagon is a cyclically ordered set of six oriented geodesics Ln in H3 indexed
by n ∈ Z (mod 6), such that Ln intersects Ln+1 orthogonally. (We do
not require all the lines Ln to be distinct, nor do we require them to be
oriented consistently around the hexagon.) Define σn = δL̂n

(L̂n−1, L̂n+1).
The hyperbolic sine and cosine rules, [3] VI.2, are:

Sine Rule.
sinhσ1

sinhσ4
=

sinhσ3

sinhσ6
=

sinhσ5

sinhσ2
.(4)

Cosine Rule.

coshσn =
coshσn+3 − coshσn+1 coshσn−1

sinhσn+1 sinhσn−1
.(5)
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The definitions also extend to include degenerate hexagons in which the line
Ln has shrunk to a point, or more precisely in which Ln−1 and Ln+1 have a
common end point at infinity which we call Ln. In this case, the real parts
of both σn−1 and σn+1 are infinite and σn = iπ. The cosine formula still
holds for the side length σn+3 in this case. If the hexagon is planar with
sides of real length ln, nmod6, and we orient the sides consistently around
the hexagon, then σi = li + iπ so that coshσi = − cosh li, sinhσi = − sinh li
and we recover the classical cosine formula, see for example [1, p. 148].

We remark that the cosine rule proves the well-known fact [3, VI.4] that
the signed (complex) lengths of three alternate sides of a skew hexagon de-
termine the other three, uniquely up to simultaneous reversal of orientation
of the three other sides. We shall use later a discussion in terms of unsigned
length from [7] Proposition 1.6: given any three σi ∈ C with <σi > 0, there
are two choices of triple (σ̂1, σ̂2, σ̂3), σ̂i ∈ {σi, σi + iπ} for which there is an
skew hexagon with sides oriented consistently around the hexagon whose
alternate sides have complex lengths σ̂i. These two hexagons are unique up
to isometry and agree up to reversing orientations. Other choices of σ̂i give
the same hexagon but with different orientation of sides.

We shall need a formula for the complex distance between opposite sides
of a skew hexagon. With the notation above, let Mn be the common per-
pendicular to Ln, Ln+3 and let pn = d(Ln, Ln+3).

Lemma 2.1. With the above notation,

cosh pn = − sinhσn−2 sinhσn−1.

(Notice that this formula does not depend on the orientation of Mn.)

Proof. This is just the pentagon formula [3, VI.2 (2)]. It may be de-
rived from the cosine formula as follows. Choose an orientation for Mn,
and adjoin an extra oriented side L to the pentagon formed by the lines
Ln,Mn, Ln+3, Ln−2, Ln−1 through the intersection point of Ln−1 and Ln.
We find δL(Ln−1, Ln) = ±iπ/2 and δLn−1(Ln−2, L) = σn−1 ± iπ/2. Substi-
tuting into the cosine formula for cosh δLn−1(Ln−2, L) gives the result. �

We shall also need the following:

Lemma 2.2. In a skew right-angled hexagon with complex side lengths σn:

coshσn−1 sinhσn+1 + sinhσn−1 coshσn+1 coshσn = − coshσn+2 sinhσn+3

sinhσn−1 coshσn+1 + coshσn−1 sinhσn+1 coshσn = − coshσn−2 sinhσn−3.

Proof. To prove the first formula, start from the cosine formula (5) with
coshσn+2 on the left hand side and substitute coshσn sinhσn−1 sinhσn+1 +
coshσn−1 coshσn+1 for coshσn+3. The other equation is similar. �
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Remark. The trigonometrical formulae given for example in [8] and [7]
refer to hexagons in which the sides are oriented consistently around the
hexagon, and the complex distances between sides are measured unsigned
(i.e., <σi > 0). This is correct, since clearly in this case, signed and unsigned
distances coincide. More generally, it is easy to verify that the sine and cosine
formulae are unchanged after changing orientation of one of the sides. Thus
by successively changing orientations one can always arrive a hexagon in
which the sides are consistently oriented, to which the formulae for unsigned
distance with <σi > 0 apply.

2.3. The derivative formula in a hexagon.

Proposition 2.3. Suppose that, with the notation of Section 2.2, we are
given a skew right-angled hexagon with oriented sides and that the signed
complex distances σn depend holomorphically on some variable ζ ∈ C. Let ′

denote derivative with respect to ζ. For nmod6, let pn,n+3 = d(Ln, Ln+3).
Then

cosh pn,n+3σ
′
n = −(σ

′
n+3 + coshσn−2σ

′
n−1 + coshσn+2σ

′
n+1).(6)

Proof. Start with the cosine formula (5) in the form

sinhσn+1 sinhσn−1 coshσn = coshσn+3 − coshσn+1 coshσn−1.

Differentiating with respect to ζ and using Lemma 2.2 one obtains

sinhσn+1 sinhσn−1 sinhσnσ
′
n

= sinhσn+3(σ
′
n+3 + coshσn+2σ

′
n−1 + coshσn−2σ

′
n+1).

Applying the sine rule (4) and Lemma 2.1 gives the result. �

3. Pants and Fenchel Nielsen coordinates.

3.1. Pants and Skew Pants. A (planar) hyperbolic pair of pants Π is a
three holed sphere with geodesic boundary curves Ci of lengths li > 0, i =
1, 2, 3. We also allow the degenerate case in which one or more li vanish and
the corresponding boundary curve is a puncture.

There is a unique common perpendicular, of length ak, between each pair
of distinct boundary curves Ci, Cj . If Ck is a puncture, then ai and aj have
infinite length. Cutting along the three common perpendiculars dissects
Π into two right-angled hexagons. Since the three common perpendiculars
form three alternate sides of each hexagon, the two hexagons are congruent
and the points at which the perpendiculars from Cj and Ci meet Ck bisect
Ck. Thus Π is determined up to isometry by the lengths li of the curves Ci;
conversely, given any li ≥ 0, i = 1, 2, 3, there is a unique pair of pants for
which l(Ci) = li.



230 CAROLINE SERIES

There is also a common perpendicular from Ck to itself. This arc does
not in general bisect Ck, but it divides Ck into two arcs which are bi-
sected by the endpoints on Ck of the common perpendiculars from Ci and
Cj . Let 2bk,i, 2bk,j be the hyperbolic lengths of the arcs on Ck contain-
ing the endpoints of the perpendiculars from Ci, Cj respectively, so that
2(bk,i + bk,j) = lk. All distances ai, bk,i and their derivatives can be com-
puted from the hexagon formulae. For ai we use the hexagons described
above while for bk,i we use a hexagon obtained by cutting Π along the com-
mon perpendiculars from Ck to itself and from Ci to Ck. For example, in the
special case in which lk only varies we find from the derivative formula (6):

a′i =
−l′k

2 tanh aj sinh li/2
, a′k =

−l′k
2 sinh aj sinh li/2

, b′k,i =
− sinh bk,ia

′
i

tanh ak/2
.

(These formulae refer to the real hyperbolic distances: complex distances are
obtained by consistently orienting the sides of the hexagons and replacing
lk by lk + iπ etc.) Notice that the complex versions of the variables ak, bi,k
are actually holomorphic functions of the half lengths li/2.

3.1.1. Example. In the special case of a once punctured torus, we need to
consider a degenerate hexagon H whose three alternate side have lengths
lC/2, lC/2, 0. The only one of the above parameters to consider is the length
aC of the common perpendicular to the two sides of lengths lC/2. This is
given by the formula sinh lC/2 sinh aC/2 = 1, obtained by applying the co-
sine formula in H. Either differentiating this directly (and using the alter-
native form cosh lC/2 tanh aC/2 = 1), or as a limiting case of Equation (6)
as the length of one side goes to zero, we find a′C = −(sinh lC/2)−1l′C .

3.2. Fenchel Nielsen coordinates. Let S be a fixed oriented topological
surface of negative Euler characteristic, possibly with punctures. A pants
decomposition of S is a collection C = {Ci} of disjoint simple closed curves
which cut it into three holed spheres P = {Πj}, where we allow that some
of the holes may be punctures. The curve C either represents a loop round
a puncture, or is a boundary component of two pants Π′,Π′′ ∈ P, where
possibly Π′ = Π′′. In the second case, fix once and for all a free homotopy
class of oriented curves KC on Π′ ∪ Π′′ as follows: If Π′ 6= Π′′ then KC

intersects C twice and separates Π′ ∪ Π′′ ∪ C, while if Π′ = Π′′ then KC

intersects C once and does not separate Π′ ∪ C.
Suppose that ψ : S → Σ is a homeomorphism from S to a hyperbolic

surface Σ. There is a unique smooth geodesic in each free homotopy class of
non-boundary parallel curves on S. The lengths lC of the geodesics C ∈ C
determine hyperbolic structures on the pants Πj up to isometry. The length
lC is zero if and only if C represents a puncture. For each curve C ∈ C with
lC > 0, we define gluing data tC as follows. Suppose first that Π′ 6= Π′′. As
described in the introduction, a lift K̃C of the geodesic representing KC will
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cut three distinct lifts C̃1, C̃2, C̃3 in succession in pointsQ1, Q2, Q3 say, where
Q3 is the image of Q1 under the covering translation of H2 corresponding
to KC . As in the introduction, orient C̃2 so that the angle from K̃C to C̃2 is
anticlockwise, relative to the given orientation on S. With the notation of
the introduction with γ̃ = K̃C , define tC = s2 = δC̃i

(D̃j−1, D̃j), where the
common perpendicular D̃j is oriented from C̃j to C̃j+1. In the case Π′ = Π′′

the definition is the same except that we only need to consider two lifts
C̃1, C̃2 of C.

Notice that if tC = 0, then the geodesic KC is orthogonal to C. In this
case, we note that if Π′ = Π′′ then the common perpendicular from C to
itself is the smooth closed geodesic KC , while if Π′ 6= Π′′ then KC is exactly
the union of the common perpendiculars to C in Π′ and Π′′.

Fixing a base surface Σ0 for which tC = 0, C ∈ C, the parameters
(lC , tC), C ∈ C, lC ∈ R+, tC ∈ R are the classical Fenchel Nielsen coor-
dinates for the Teichmüller space of S relative to C and Σ0. Punctures are
represented by curves C with lC = 0. For these curves, the twist tC is un-
defined. Notice that since tC is defined as a signed distance, it defines a real
analytic function on Teich(S).

3.3. Skew pants, complex Fenchel Nielsen coordinates and quasi-
fuchsian groups. It is shown in [7] and [9] that the above construction for
pairs of pants can be extended to H3. We summarize their construction
here.

As noted in 2.2, any triple σ1, σ2, σ3 ∈ C with <σi > 0 determines a pair
of oriented skew right-angled hexagons which are isometric but with oppo-
site orientations, and whose alternate sides have complex lengths σ̂1, σ̂2, σ̂3

for some choice of σ̂i ∈ {σi, σi + iπ}. Gluing these two oppositely oriented
hexagons gives a skew pair of pants whose boundary curves have lengths
2σi. Conversely, suppose we want to construct skew pants whose boundary
curves have lengths l1, l2, l3 ∈ C with <li > 0. This means that we need
skew hexagons whose sides have complex lengths li/2 or li/2 + iπ. There
is a unique pair of choices which gives a pair of oppositely oriented skew
hexagons. Similar formulae to those of Section 3 are obtained for the com-
plex lengths of the common perpendiculars to the boundaries of the pants.
The construction extends to the case in which some or all of the three lox-
odromics are replaced by parabolics, in which case the axis is replaced by
the fixed point at infinity, and the skew hexagons degenerate to pentagons
with one vertex at infinity and two infinite sides.

A similar choice occurs when we try to represent π1(Π) in SL(2,C). Sup-
pose M ∈ PSL(2,C) has complex translation length l(M). Then TrM
is only defined up to multiplication by ±1 and l(M)/2 is only defined up
to addition of iπ. These ambiguities are reflected in the formula TrM =
2 cosh l(M)/2. If Π is a pair of pants, then the fundamental group π1(Π)
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is generated by the boundary loops c1, c2, c3 which can be chosen such that
c1c2c3 = id. The following proposition shows that in fact, a representation
of π1(Π) into SL(2,C) is determined up to conjugation by a choice of half
lengths li/2.

Proposition 3.1 ([7, Proposition 2.3]). Let σ1, σ2, σ3 ∈ C with <σi > 0.
Then there is a homomorphism π1(Π) → SL(2,C) such that Tr(ρ(ci)) =
−2 coshσi, i = 1, 2, 3. This homomorphism is unique up to conjugation in
SL(2,C), provided that the endpoints of the axes ρ(ci) are pairwise distinct.

We note that the condition that the endpoints of the axes ρ(ci) be distinct
holds if the group ρ is the restriction to π1(Π) of a quasifuchsian represen-
tation of π1(S).

Suppose now that S is a fixed oriented topological surface with pants de-
composition C as above. Suppose that we are given parameters lC/2, tC ∈ C
with <lC ≥ 0 and <lC = 0 if and only if C represents a puncture. Let
Π′,Π′′ ∈ P be two pants which meet along the curve C. Suppose for def-
initeness that Π′ 6= Π′′. We want to glue these pants along the curve C,
using the complex gluing date tC . Use the half lengths and Proposition 3.1
to construct a representation for π1(Π′) → SL(2,C). Following the notation
of Section 3.2, we see that, up to orientation preserving isometry in H3, this
fixes C̃1 and C̃2; it also fixes the sign of the trace of the element correspond-
ing to C. Let D̃1 be the common perpendicular from C̃1 to C̃2, with the
orientation inherited from its orientation on the base surface Σ0. Choose
a representation of π1(Π′′) in which the image of C is the axis C̃2. This
fixes the axis C̃3 and the common perpendicular D̃1 from C̃2 to C̃3 up to a
translation and rotation about C̃2. Moreover, if the parameter lC/2 is given,
then by Proposition 3.1 the signs of the trace of the element corresponding
to C in these two representations agree. Thus a unique representation of
π1(Π′∪Π′′) is specified by requiring tC = δC̃2

(D1, D2). With the notation of
the introduction, tC is exactly the shift parameter s2 so that <tC is the real
twist, while =tC is the bending angle between the skew pants along their
common boundary C. Successively gluing all the pants in this way deter-
mines a representation ρ : π1(S) → SL(2,C), unique up to conjugation in
SL(2,C), in which Tr ρ(C) = − coshLC/2 and ρ(C) is a loxodromic with
complex length lC .

If the image ρ(π1(S)) is discrete in SL(2,C) then H3/ρ(π1(S)) is a hyper-
bolic 3-manifold; if H3/ρ(π1(S)) ≈ S× (0, 1) then ρ(π1(S)) is quasifuchsian:
this is the case in a neighbourhood of Fuchsian groups for which the image
is contained up to conjugation in SL(2,R). Quasifuchsian space QF(S) is
the space of representations ρ(π1(S)) → PSL(2,C) for which ρ(π1(S)) is
quasifuchsian, modulo conjugation in PSL(2,C). The parameters lC/2, tC
are holomorphic parameters for QF(S); they are the the complex Fenchel
Nielsen coordinates introduced in [7] and [9].
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4. Geodesic paths.

4.1. Intersection points. To make sense of formula (3), we need to keep
track of axes and of intersection points between geodesics as we vary the
representation ρ : π1(S) → PSL(2,C) in QF(S). This we do as follows.
Suppose first ρ(π1(S)) is Fuchsian, uniformising a hyperbolic surface Σ, and
let Σ0 be a fixed base surface as above. The natural homeomorphism ρ :
Σ0 → Σ lifts to a homeomorphism of H2 which extends to a homeomorphism
h of the boundary S1. Let α = α(Σ0) be any geodesic, not necessarily closed,
on Σ0. Let α̃ = α̃(Σ0) be a lift of α to H2 with endpoints a, b on S1. These
endpoints map to the endpoints h(a), h(b) of a corresponding geodesic α̃(Σ)
which projects to a geodesic α(Σ) on Σ. Now suppose α(Σ0), β(Σ0) are two
such geodesics which meet at a point Q = Q(Σ0) ∈ Σ0. Lift Q to a point
Q̃ ∈ H2 and choose lifts α̃(Σ0), β̃(Σ0) of α, β through Q̃. We define Q̃(Σ) to
be the intersection of α̃(Σ), β̃(Σ) and Q(Σ) to be its projection on Σ.

As a special case, let γi ∈ π1(S), i = 1, 2 and let Γ0 and Γ be the Fuchsian
groups uniformising Σ0 and Σ respectively. Denoting by γi(Σ) the unique
smooth geodesic on Σ in the class γi, we note that since h conjugates the
actions of Γ0 and Γ on S1, this construction defines a bijection between the
intersection points of γ1(Σ0) and γ2(Σ0) on Σ0, and γ1(Σ) and γ2(Σ) on Σ.

In the case of quasifuchsian groups, we can keep track of intersections
in a similar way. Let Γ = ρ(S) be quasifuchsian so that we are given an
isomorphism Γ0 → Γ. The boundary S1 of H2 is replaced by the limit set
Λ of Γ; there is a natural homeomorphism S1 → Λ which conjugates the
actions of Γ0 and Γ. The endpoints of a lift of α̃(Σ0) map to the endpoints
of a geodesic in α̃(Γ) in Λ. In this case, the geodesics α̃(Γ), β̃(Γ) do not
in general intersect, and we replace Q̃(Γ) with the common perpendicular
between α̃(Γ) and β̃(Γ), oriented with the orientation inherited from Σ0.

4.2. Geodesic paths and the terms in formula (3). We are finally able
to give precise definitions of all terms in our formula (3). As above, suppose
that S is a fixed oriented surface with a pants decomposition C = {Ci}.
We need to describe a free homotopy class γ on S in terms of the topology
of S and the decomposition C. We do this by describing the trajectory of
the oriented geodesic representing γ on the base surface Σ0, relative to the
geodesic representatives C = C(Σ0) of the curves in C and their common
perpendiculars in the pants in P.

As in the introduction, define the sequences of oriented geodesics C̃j(Σ0),
D̃j(Σ0) and of points Q̃j(Σ0), Q−

j (Σ0), Q+
j (Σ0) relative to the surface Σ0.

(Notice we mean by D̃j the complete geodesic in H, not just the arc from
C̃j to C̃j+1.) If we vary Σ0 by changing either the length parameters lC
or the twists tC , we can keep track of lifts of geodesics as in 4.1. Since all
the curves in question are defined by their endpoints on S1, we see that the
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corresponding sequence for the trajectory of a lift γ̃(Σ) is just the sequence
C̃j(Σ), D̃j(Σ) with corresponding intersection points Q̃j(Σ), Q−

j (Σ), Q+
j (Σ).

As explained in Section 4.1, we can still keep track of lifts even in the
quasifuchsian case.

Let Nj be the oriented common perpendicular to γ̃ and C̃j(Σ), oriented
consistently with the orientation on Σ0. We define qj = δNj (γ̃, C̃j). Thus in
the planar case, qj = iθi where θi is the anticlockwise angle from γ̃ to C̃j .

The geodesics γ̃ and D̃j(Σ) may or may not intersect. However, as ex-
plained in Section 4.1, they intersect if and only if they intersect in the case
of the base surface Σ0. Let Fj be the common perpendicular to γ̃ and D̃j(Σ),
oriented consistently with the orientation on Σ0 if γ̃ ∩ D̃j 6= ∅, and consis-
tently with C̃j and C̃j+1 relative to γ̃ otherwise. We define pj = δFj (γ̃, D̃j),
coinciding with the definition of pi given in the introduction in the planar
case.

The arc of D̃j(Σ) between Q−
j (Σ), Q+

j+1(Σ) projects to the common per-
pendicular between the boundary components Cij (Σ) and Cij+1(Σ) of Πj .
We define dj =δD̃j

(C̃j , C̃j+1). We note that in the planar case, δD̃j
(C̃j , C̃j+1)

= d(C̃j , C̃j+1). Hence in this case dj can be computed in terms of the half
lengths lC/2, C ∈ C: it is the complex distance aj + iπ corresponding to
one of the lengths aj discussed in Section 3.1. In general, the function dj is
the analytic continuation to the case in which the parameters lC/2 become
complex.

Now consider the shift functions sj defined as sj = δC̃j
(D̃j−1, D̃j). (No-

tice that in the planar case this definition coincides with the one given in the
introduction.) Clearly from the definitions, sj(lC/2, tC) = sj(lC/2, 0) + tij ,
where sj(lC/2, tC) denotes the parameter in the group with complex Fenchel
Nielsen coordinates (lC/2, tC), C ∈ C. The group with parameters (lC/2, 0)
is chosen so that on each axis C̃j , the endpoints of certain of the com-
mon perpendiculars between two boundary components of Πj−1,Πj coin-
cide. Thus sj(lC/2, 0) = njlij (lC/2, 0)/2 + ej(lC/2, 0) where nj ∈ Z and
0 ≤ <ej < <lij/2.

Finally, we consider the possible values of ej(lC/2, 0). By definition the
pants Πj−1,Πj which meet along Cj are glued (for the group with coordi-
nates (lC/2, 0)) in such a way that KC(Σ(lC/2, 0)) is smooth. The points
Q−

j (Σ), Q+
j (Σ) project to endpoints of the common perpendiculars between

two boundary components of Πj−1,Πj respectively. Thus if D̃j−1, D̃j project
to the common perpendiculars from Cj to itself in Πj−1,Πj respectively, then
ej = 0. Otherwise, D̃j−1, D̃j project to others among the common perpen-
diculars and it is clear that ej can take on one of at most a small number of
values of the form xb+yb′ where x, y ∈ {0,±1} and b = bk,i, b

′ = bk′,i′ are as
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defined in Section 3.1 relative to the pants Πj−1 and Πj and the boundary
curve Cj .

4.2.1. Example. Continuing our example in which S is a once punctured
torus, any simple loop C cuts S into a pair of pants whose boundary com-
ponents consist of two holes and one puncture. Since no loops on S pass
through the puncture, any loop γ is homotopic to a loop made up of arcs
which wrap around C and arcs which follow the common perpendicular from
from C to itself. Formula (3) becomes

l
′
(γ) = a

′
CΣk

j=1 cosh pj + Σk
j=1(mjl

′
C + t

′
C) cosh qj

where mj ∈ Z is the number of times γ wraps around C at the jth intersec-
tion and a

′
C = (sinh lC/2)−1l

′
C .

5. Proof of the derivative formula: Method 1.

In our first proof of the derivative formula (3), we use a method similar to
that of Kerckhoff in [5]. We continue with the notation of Section 4 for the
lift γ̃ of a trajectory of an oriented geodesic γ.

Let Fj be the oriented common perpendicular to γ̃ and D̃j , as defined
in Section 4.2 above. Consider the right-angled hexagon Hj with oriented
sides

γ̃, Fj , D̃j , C̃j , D̃j−1, Fj−1.

(The sides here are not oriented consistently.) Let gj = δγ̃(Fj−1, Fj), uj =
δD̃j−1

(Fj−1, C̃j), vj = δD̃j
(C̃j , Fj). Notice that dj−1 = vj−1 + uj , and that

Σk
j=1gj = l(γ) + 2kπ, k ∈ Z.
Taking careful account of order to determine the signs, we obtain from

the formula (6):

− cosh qjs′j = −(g′j − cosh pj−1u
′
j − cosh pjv

′
j).(7)

Substituting d′j−1 − v′j−1 for u′j and summing over j gives the result.

We remark that in the formula (3), the interpretation of the quantities
pj , qj as signed (as opposed to unsigned) complex distances is unimportant
since the terms cosh pj , cosh qj do not depend on whether the complex dis-
tance is signed or not. In case of dj , in the planar case we automatically
have dj > 0. The only situation in which one would have to consider signed
distance is if the group were deformed through representations ρ(π1(S)) for
which the axes C̃j , C̃j+1 intersect. While this can certainly happen for arbi-
trary representations ρ (for example, choose σ1 ∈ R+ + iπ, σ2, σ3 ∈ R+ in
Proposition 3.1, see the explicit formula for ρ in [7]), we have not been able
to determine whether or not it can occur for ρ(π1(S)) ∈ QF(S).
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6. Proof of the derivative formula: Method 2.

In this version of the proof, we use a method suggested by the computation
of derivative with respect to a quakebend given in [2, Section 3.9]. The
main point is to express the element representing ρζ(γ) ∈ PSL(2,C) as
a product of translations along the axes C̃j , D̃j . There are two reasons
to give this proof, at first sight more complicated than that in method 1.
Firstly, it sheds rather more light on the meaning of individual terms in
the formula, and secondly, it illustrates a point which the author believes
to be important, that it may often be useful to express a group element
as a product of “elementary ” transformations each of which has a simple
geometrical meaning, but which may however not be in the group.

If L is any oriented line in H3 and ξ ∈ C,<ξ > 0, then we denote by
∆(ξ, L) ∈ PSL(2,C) the unique loxodromic with axis L, complex length ξ,
and attracting fixed point the positive endpoint of L. If <ξ < 0, then by
definition ∆(ξ, L) has axis L, complex length −ξ, and attracting fixed point
the negative endpoint of L. In both cases, Tr∆(ξ, L) = 2 cosh(ξ/2), where
the ambiguity in the sign of the trace is the same as the ambiguity of iπ in
the choice of ξ/2.

Proposition 6.1. With the notation of the introduction,

∆(l(γ), γ̃1) = ∆(dk, D̃k)∆(sk, C̃k) . . .∆(d1, D̃1)∆(s1, C̃1)(8)

and

∆(l(γ), γ̃1) = ∆(s1, C̃k+1)∆(dk, D̃k) . . .∆(s2, C̃2)∆(d1, D̃1),(9)

where γ̃1 is the lift of γ which intersects C̃1 in Q̃1.

Proof. Denote the product on the right hand side of the first equation by
T . We have to see that T maps γ̃1 to itself and maps Q̃1 = γ̃1 ∩ C̃1 to
Q̃k+1 = γ̃1 ∩ C̃k+1. It is clearly enough to show that T (C̃1) = C̃k+1 and
T (Q̃1) = Q̃k+1. Now ∆(sr, C̃r) maps C̃r to itself and Q̃−

r to Q̃+
r while

∆(dr, D̃r) maps C̃r to C̃r+1 and Q̃+
r to Q̃−

r+1. Thus T = γ̃1; the proof of the
other expression is similar. �

Now fix once and for all axes I, J which intersect at right angles in a fixed
point P . For a finite set {z1, . . . , zr}, zj ∈ C, write {z1, . . . , ẑi, . . . , zr} for
{z1, . . . , zr} \ {zi}. The following are obvious consequences of the construc-
tion in the above proof.

Corollary 6.2. For i = 1, . . . , k, let γ̃i be the lift of γ which intersects C̃i

at Qi. Then there are elements Ei, Ui ∈ PSL(2,C) such that Ei(Q−
i ) =

P,Ei(C̃i) = I, Ei(D̃i) = J , Eiγ̃iE
−1
i = Ui∆(si; I) and such that Ui de-

pends only on {d1, s1, . . . , ŝi, . . . , sk}. Likewise there are elements Fi, Vi ∈
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PSL(2,C) such that Fi(Q+
i ) = P, Fi(C̃i) = I, Fi(D̃i) = J , Fiγ̃iF

−1
i =

Vi∆(di;J) and such that Vi depends only on {d1, s1, . . . , d̂i, . . . , sk}.

Corollary 6.3. Let L be any oriented line in H3. Then Tr(∆(l(γ), L)) =
f(d1, s1, . . . , dk, sk), where the function f depends only on the variables
{d1, s1, . . . , dk, sk}.

Now suppose that the coordinates lC/2, τC , C ∈ C depend holomorphically
on a complex variable ζ. As in Section 2.2, the di are holomorphic functions
of the half lengths lC/2. Thus the function f is holomorphic in ζ. To
compute dl(γ)/dζ, first note that for any M = M(ζ) ∈ SL(2,C) for which
l(M)/2 varies holomorphically with respect to ζ, we have dTr(M(ζ))/dζ =
sinh(l(M)/2)dl(M)/dζ. From Corollary 6.3 we have

dTr(Γ(ζ))
dζ

=
∑

i

∂f

∂si
s′i +

∑
i

∂f

∂di
d′i.

Thus using Corollary 6.2, we have only to evaluate ∂ Tr(Ui∆(si; I))/∂si

and ∂ Tr(Vi∆(di;J))/∂di. This can be done by essentially the same compu-
tation as that given in [2, Section 3.9]. Here is an alternative coordinate-free
proof using our formula (6). As usual, if M ∈ PSL(2,C) is loxodromic,
AxM denotes the axis of M oriented from the repelling to the attracting
fixed point.

Lemma 6.4. Let L be an oriented line in H3, and let B ∈ PSL(2,C) be
fixed. Let A(η) = ∆(η;L). Then

d(l(BA(η)))
dη

= − coshd(L,Ax(BA(η))ε) ε ∈ {±1},

where the choice of ε is made in such a way that the lines L,Ax(BA(η))ε,

AxBε′ are alternate sides in a consistently oriented skew hexagon for suitable
ε′ ∈ {±1}.

Proof. Given A,B ∈ PSL(2,C) one can as in Section 2.2 define a skew
hexagon whose alternate sides are the axes of A,B and BA with lengths
l(A)/2, l(B)/2, l(BA)/2, where the ambiguities of iπ depend on the choice
of orientation of the axes. (This construction works even in the degen-
erate case in which AxA and AxB coincide; the hexagon degenerates to
a line but the cosine formula is still valid.) Make this construction with
A(η) and B, orienting all sides consistently with the orientation of L =
AxA(η). Let ρ(η) = d(L,Ax(BA(η))ε). We note that from the definitions,
d(AxA(η),AxB) = d(L,AxBε′) is constant. The result is obtained by ap-
plying formula (6) for the derivative of this last expression, and noting that
derivatives are independent of the above ambiguities of iπ. �
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To complete the proof of Equation (3), we note that using the expression
Eiγ̃iE

−1
i = Ui∆(si; I) from Corollary 6.2, since Ui does not depend on si,

∂f

∂si
= − sinh(l(γ)/2) coshd(I,Ax(Eiγ̃iE

−1
i )εi) εi ∈ {±1}

and

d(I,AxEiγ̃iE
−1
i ) = d(E−1

i (I),Ax γεi
i ) = d(C̃i,Ax γεi

i ).

We need to decide on the choice of orientation of εi. One way to do this
is to argue by direct computation as in [2]. Alternatively, it is not hard to
see in the planar case that the attracting and repelling fixed points of the
axes of A,B,BA occur in the anticlockwise order

B−, (BA)−, A−, B+, (BA)+, A+

round the circle at infinity, where M+ and M− denote the attracting and
repelling fixed points of M ∈ PSL(2,C) respectively. Thus to make an
oriented skew hexagon whose alternate sides are these three axes, the ori-
entation of AxBA must be reversed. This shows that in the planar case,
εi = −1 and d(C̃i,Ax γ−1

i ) = qi + iπ. The result now follows using the
similar formula for ∂f

∂di
and cancelling a factor of sinh(l(γ)/2) from both

sides.
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