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A 2-variable matrix B ∈ GLn(Z[u±1, v±1]) is defined for
any n-string link, generalizing the Burau matrix of an n-
braid. The specialization u = 1, v = t−1 recovers the gen-
eralized Burau matrix recently defined by X. S. Lin, F. Tian
and Z. Wang using probabilistic methods. The specialization
u = t−1, v = 1 results in a matrix with a natural algebraic
interpretation, and one that yields homological information
about the complement of the closed string link.

1. Introduction.

An n-string link, for n a positive integer, is a collection of n embedded
strings in R2× [0, 1] such that the ith string joins a point Pi×1 in the plane
R2 × 1 to a point Pπi × 0 directly below in the parallel plane R2 × 0. We
visualize string links by diagrams such as in Figure 1.

Figure 1. A 2-String Link.

Two n-string links are regarded as the same if a diagram for one can be
obtained from a diagram for the other by a finite sequence of Reidemeister
moves (Figure 5). The set of all n-string links has the structure of a monoid
Sn under concatenation. When each string meets every plane R2 × t, 0 ≤
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t ≤ 1, transversely in a single point, the string link is also called an n-
braid. The set of all n-braids is a group Bn with generators σ1, . . . , σn−1

and relations as in Figure 2.

. . . . . . . . .

σ σ σ
1 2 n-1

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2(1.1)

σiσj = σjσi for |i− j| ≥ 2

Figure 2. Generators and Relations for Bn.

The Burau representation B : Bn → GL(n,Z[t±1]) maps σi to the block
diagonal matrix

Bσi(t) =


Ii−1

1− t t
1 0

In−i−1

 ,

where Ik denotes the k × k identity submatrix. The entries of Bα(t) are
Laurent polynomials bi,j(t). (See [Bi], for example.) In [LiTiWa] the au-
thors consider V. Jones’ probabilistic interpretation of Bσ(t) [Jo] in order
to extend the Burau representation to a representation B̄ of the monoid Sn.

In a sense there are two Burau representations. It is a consequence of
the defining relations of Bn that the map sending each σi to the transpose
Bσi(t)

T determines another representation B′ : Bn → GL(n,Z[t±1]). The
two Burau representations are related by the following diagram.

Bn
B−−−→ GL(n,Z[t±1])

inv

y y( )−T

Bn
B′

−−−→ GL(n,Z[t±1])

.

Here inv denotes the automorphism of Bn that maps each generator σi to
its inverse, while ( )−T is the automorphism of GL(n,Z[t±1]) that sends
each matrix to its inverse transpose.

The representations B and B′ have subtle differences, the latter being
more suitable for colorings and computation of Alexander invariants. In
[Ka] Kauffman extracts B′ from the Alexander crystal.

We will show that the representations B and B′ are in fact two special-
izations of a single representation B : Bn → GL(n,Z[u±1, v±1]), described
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in Section 2. Setting u = 1, v = t−1 yields B, while setting u = t−1, v = 1
produces B′. We will show that B extends to a representation B̄ of Sn. Then
the specialization u = 1, v = t−1 results in the extension B̄ of [LiTiWa],
while setting u = t−1, v = 1 produces an extension of B′ that can be used
to gain homological information about the complement of the closed string
link. C. Livingston informs us that he, P. Kirk and Z. Wang discovered a
similar 2-variable Burau representation while writing [KiLiWa].

In the last section we associate a sequence of “algebraic entropies” γα,r

to any string link α, for r ∈ N. In the case of a braid α, these quantites are
lower bounds for the usual braid entropy. Let α be a string link with strings
coherently oriented, and let lm denote the oriented knot or link obtained
as the closure of the product αm, m ≥ 1. We prove that γα,r is equal to
the exponential growth rate of |TH1(Mr(lm);Z)|, where Mr(lm) is the r-fold
cyclic cover of S3 branched over lm, and T ( · ) denotes the torsion subgroup.
This result extends Theorem 3.2 of [SiWi].

We are grateful to J. Scott Carter and the referee for their comments and
suggestions.

2. The Λ-group of a string link.

Let Λ denote the free abelian group of rank 2 generated by u and v. A Λ-
group is a group K with a right action K×Λ → K, denoted by (g, w) 7→ gw.
We define Λ-subgroup, Λ-homomorphism, etc. in the obvious way (see
[Rob]).

Let D be a diagram for an n-string link α. We orient D so that each
string is directed from top to bottom. Place vertices on D so that in a
neighborhood of any crossing two vertices “enter” and two vertices “exit.”
If D has N crossings, we use exactly n + 2N vertices. We label the vertices
a, b, c, . . . , as in Figure 3.

.
. .

.
. .
..

a b

c d
e

f

x y

Figure 3. Labeled String Link.
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To the diagram D we associate a Λ-group K, described by a presentation.
Each vertex label of D determines a Λ-generator; that is, a set of generators
indexed by Λ. Thus the letter a denotes a set {aj,k} of generators aj,k =
aujvk

, where j, k range over Z. Each crossing of D determines a pair of Λ-
relations, described in Figure 4. A Λ-relation is a set of relations indexed
by Λ. For example, aub = cud denotes the set of relations of the form
aj+1,kbj,k = cj+1,kdj,k, where j, k range over the integers. Likewise bv = c
denotes the set of relations of the form bj,k+1 = cj,k.. .

. .
 b    =  c

v v
 d =  a

. .
. .

a ab b

c cd d

a   b  = c   du u a   b  =  c   d
u u

Figure 4. Λ-Relations for K.

We also distinguish two n-tuples of Λ-generators, the vector S corre-
sponding to input vertices (those on the top of the diagram) and the vector
T corresponding to output vertices (those on the bottom).

The abelianized group Kab is a finitely generated Λ-module. The two
relations determined by a crossing as in Figure 4 are equivalent to:

ua + (1− uv)b = d, vb = c, if ε = +1(2.1)

(1− u−1v−1)a + u−1b = c, v−1a = d, if ε = −1

where ε = ±1 is the sign of the crossing.
Relations (2.1) can be written in matrix form (a, b)M ε = (c, d), where

M =
(

0 u
v 1− uv

)
.

In [CaSa] J. Scott Carter and M. Saito observed that a family of invertible
2× 2 matrices X including M satisfies the equation

(X ⊕ 1)(1⊕X)(X ⊕ 1) = (1⊕X)(X ⊕ 1)(1⊕X).

They call X a “twisted Burau matrix.”

Example 2.1. For the diagram in Figure 3,

(2.2) K = 〈a, b, c, d, e, f, x, y |
cua = due, av = d, eub = fuy, yv = e, duf = cux, fv = c〉.
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Here S = (a, b) and T = (x, y). Using the second, fourth and sixth relations
we can eliminate the generators d, e and c, thereby obtaining the simpler
presentation

K = 〈a, b, f, x, y | fuva = auvyv, yuvb = fuy, auvf = fuvx〉.
We can use the first relation to eliminate f , getting

K = 〈a, b, x, y | yuv2
bv = auvyva−1yv, auvyva−1 = yuv2

(a−1)uvxuv〉.(2.3)

Proposition 2.2. If (K;S, T ) and (K ′;S ′, T ′) are associated to diagrams
of the same n-string link, then there exists a Λ-isomorphism f : K → K ′

taking (S, T ) to (S ′, T ′).

Proof. Consider the three basic Reidemeister moves (Figure 1). It suffices
to prove that in each case the expressions for the two Λ-generators at the
bottom in terms of the two at the top, expressions that result from the
crossing relations in the diagram, are unchanged after the move is applied;
the remaining generators in each case can be eliminated. The verification
is trivial for the first and second Reidemeister moves, regardless of how the
strings are oriented.

Invariance under the second Reidemeister move with strings oppositely
oriented is termed “cross-channel unitarity” in [Ka]. It is shown there that
if one has cross-channel unitarity for any quantity, then invariance of that
quantity under the third Reidemeister move with strings oriented in the same
direction implies invariance under that move with any string orientations.
The verification for coherently oriented strings is straightforward. �

I II III

Figure 5. Reidemeister Moves.

In view of Proposition 2.2 the triple (K;S, T ) is an invariant of the n-
string link α. Whenever (K;S, T ) is a triple associated to an n-braid, K is
a free Λ-group. Moreover S and T are ordered bases for K. The classical
Burau representation compares S and T in a certain quotient of K, as we
will see.

Example 2.3. Consider the 3-braid σ−1
1 σ2. A labeled diagram for this

braid appears in Figure 6. Here S = (a, b, c) and T = (x, y, z). The associ-
ated Λ-group K has presentation

K = 〈a, b, c, d, x, y, z | aub = xud, bv = x, duc = yuz, zv = d〉.
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.

. ..
a .b c

d

x y z

Figure 6. Labeled 3-braid σ−1
1 σ2.

Using the fourth relation we eliminate the generator d, obtaining

K = 〈a, b, c, x, y, z | aub = xuzv, bv = x, zuvc = yuz〉.

It is clear from the last presentation that K is a free Λ-group of rank 3
generated by a, b, c and also by x, y, z. We will now consider the abelianized
group Kab, regarded as a Λ-module. Let B denote the change of basis matrix
such that (a, b, c) B = (x, y, z). Then

B =

0 u2 − uv−1 uv−1

v 2u− u2v − v−1 v−1 − u
0 1 0

 .

Setting u = 1 and v = t−1 recovers the Burau matrix B(σ−1
1 σ2),

B(σ−1
1 σ2) =

 0 1− t t
t−1 2− t−1 − t t− 1
0 1 0

 .(2.4)

It is not difficult to see that for any n-braid generator σi the change of
basis matrix, defined as in Example 2.3, yields the Burau matrix B(σi) when
the substitution u = 1, v = t−1 is made. (Hence the result holds for any
n-braid α.) It is also clear that the substitution u = t−1, v = 1 results in
the transpose B(σi)T .

Assume that the triple (K;S, T ) is associated to an n-string link α. We
will regard Kab as a Λ-module. Since Λ is a commutative domain (see, for
example, Theorem 2.1.3 of [Ja], Volume 1), it embeds in the field Q(u, v) of
rational expressions in u, v. The generators of K will be regarded as elements
of the vector space Kab⊗ΛQ(u, v) via the natural map w 7→ w⊗1, w ∈ Kab;
in particular, S and T are regarded as n-tuples of elements of Kab⊗ΛQ(u, v).

Proposition 2.4. Assume that the triple (K;S, T ) is associated to an n-
string link α. The vector space Kab ⊗Λ Q(u, v) has dimension n. Further-
more, S and T are ordered bases.
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Proof. Consider a presentation for Kab obtained from a diagram for α. Or-
der the generators so that the coordinates a, b, . . . of S are first, and the
coordinates x, y, . . . are second. (By applying Reidemeister moves to the
diagram we can assume that the coordinates of S are disjoint from those of
T .) The relation matrix has 2N columns, corresponding to the N crossings
of D; it has 2N +n rows, corresponding to the generators of Kab. Let d(u, v)
be the determinant of the 2N ×2N submatrix obtained by deleting the first
n rows.

If we set u = v = 1, then it is clear from the resulting form of the rela-
tions that every generator can be uniquely expressed in terms of coordinates
a, b, . . . of S. Consequently, d(1, 1) is nonzero. It follows that d(u, v) must
be nonzero, and hence the conclusions of Proposition 2.4 hold. �

Example 2.5. We return to the string link of Example 2.1. Using the
presentation (2.3) we see that the Λ-module Kab has presentation

(2.5) Kab = 〈a, b, x, y | (uv2 − 2v)y = (uv − 1)a− vb,

uvx + (uv2 − v)y = (2uv − 1)a〉.
Consider the vector space Kab ⊗Λ Q(u, v), and let B be the change of basis
matrix such that SB = T , where S = (a, b) and T = (x, y). A routine
calculation reveals that

B =
1

2− uv

(
−1 + 3uv − u2v2 v−1 − u

u−1 − v 1

)
.

Motivated by Example 2.5, we state our main definition.

Definition 2.6. Let α be an n-string link with associated triple (K;S, T ).
The two variable Burau matrix of α is the change of basis matrix B =
B(u, v) such that SB = T in the vector space Kab ⊗Λ Q(u, v).

3. String links and paths.

If we make the substitution u = 1, v = t in Example 2.5 the resulting matrix
B(1, t) is essentially that defined in [LiTiWa]. The difference arises from
string orientation. (We have chosen to flow from top to bottom.) We will
show that this is generally the case by a combinatorial description of B
generalizing the approach of [LiTiWa].

Let D be a diagram of an n-string link with strands oriented from top
to bottom and with vertex labels as in Section 2. If Vi and Vj are vertices,
we will write Vi → Vj if (i) Vi and Vj are on the same arc, with orientation
from Vi to Vj ; (ii) Vi and Vj are on arcs separated by an overcrossing, with
orientation from Vi to Vj ; or (iii) Vj is reached by moving along the arc
containing Vi in the preferred direction and then jumping down after the
crossing to the arc below. These transitions are illustrated in Figure 7. We
assign weights w(Vi, Vj) ∈ Λ as indicated.
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vi.
.vj

1-uv 1-u  v
-1

.

.
vi

vj

v. i

(i) (iii)

Figure 7. Transitions Vi → Vj and Weights.

If V and V ′ are vertices of D, then a path P from V to V ′ is a fi-
nite sequence V = V0 → V1 → · · · → Vk = V ′. We denote the product
w(V0, V1)w(V1, V2) · · ·w(Vk−1, Vk) by w(P ).

The following result is a generalization of the observation preceding Propo-
sition 2.1 in [LiTiWa].

Lemma 3.1. For any vertices V, V ′ of D, the sum∑
P

w(P )

over all paths from V to V ′ converges to a formal power series of the form
∞∑

m,n=1

Am,n(1− u)m(1− v)n.(3.1)

Proof. We adopt some terminology of [LiTiWa]. A loop is a path that
begins and ends at the same vertex; it is simple if no proper segment is a
loop. The multiplicity of a path P is the number of simple loops that it
contains.

The weight of any simple loop contains a factor of 1− uv or 1− u−1v−1.
Note that

1− uv = (1− u) + (1− v)− (1− u)(1− v)

1− u−1v−1 = (1− u−1) + (1− v−1)− (1− u−1)(1− v−1).

The right-hand side of the second expression can be written as

−
∞∑

m=1

(1− u)m −
∞∑

n=1

(1− v)n −

[ ∞∑
m=1

(1− u)m

] [ ∞∑
n=1

(1− v)n

]
which is easily seen to be equal to

−
∞∑

m=1

(1− u)m −
∞∑

n=1

(1− v)n −
∞∑

m,n=1

(1− u)m(1− v)n.
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Consequently, if P is a path of multiplicity k, then the total degree in 1 −
u, 1− v of each term of w(P ) is no less than k. Since there are only finitely
many paths P of multiplicity k, the power series (3.1) converges. �

In order to accomodate the notational demands of this section, we relabel
the generators of Kab by s1, . . . , sn, t1, . . . , tn, . . . t2N with S = (s1, . . . , sn)
and T = (t1, . . . , tn). (See parenthetical remark in proof of Proposition 2.4.)
As before N is the number of crossings of D. Fix indices i, j with 1 ≤ i ≤ n
and 1 ≤ j ≤ 2N , and consider the set of all paths P from the vertex labeled
si to that labeled tj . Let Wi,j be the sum of the weights w(P ) of all such
paths.

A priori, Wi,j is an element of the ring Z[[u−1, v−1]] of formal power series
in u− 1, v− 1. This ring is contained in the field Q((u− 1, v− 1)) of formal
Laurent series over Q, a field that also contains the rational expressions
Q(u, v) (see [Ja]).

Proposition 3.2. For each 1 ≤ i, j ≤ n, the quantity Wi,j is an invariant
of the string link, equal to the i, j entry of the generalized Burau matrix B.

Proof. In the proof of Proposition 2.4 we regarded the generators of Kab as
elements of Kab ⊗Λ Q(u, v). Now we regard them as elements of the larger
vector space Kab ⊗Q((u, v)). For each j = 1, . . . , 2N set

t̄j =
n∑

i=1

Wi,jsi.

We see easily that s1, . . . , sn, t̄1, . . . , t̄2N satisfy the same relations (2.1) as
s1, . . . , sn, t1, . . . , t2N . Since s1, . . . , sn is a basis for Kab ⊗ Q((u, v)), we
must have t̄j = tj , for all j = 1, . . . , 2N . In particular, this is true for
1 ≤ j ≤ n. �

In the case of an n-string link with diagram D having only positive cross-
ings, the i, j entry of B acquires the probabilistic interpretation of [LiTiWa]
if one sets u = 1 and v = 1/p, where 0 ≤ p ≤ 1. Regarding any weight
w(Vi, Vj) as the probability that a particle at vertex Vi goes immediately to
Vj , the entry Wi,j , for 1 ≤ i, j ≤ n, is then the probability that a particle
starting on the top of the ith string will exit at the bottom of the jth string.

4. Algebraic entropy of a string link.

Let (K;S, T ) be a triple associated to an n-string link α, as above. Let
s be a new variable, and consider the Λ[s]-group L obtained from K by
introducing n relations as = x, bs = y, . . . , corresponding to the coordinates
of S. It follows from the Reidemeister-Schreier method that when s = u = 1
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and v = t−1, the group L is isomorphic to the augmentation subgroup
π1(S3 − l), where l is the closure of α together with an unknotted distant
component. (Details can be found in [SiWi].)

The abelianization Lab has a square presentation matrix. We will de-
note the determinant of the matrix by ∆(s, u, v). By the theory of finitely
generated modules over a P.I.D. the polynomial ∆(s, u, v) is well defined
up to multiplication by units in Λ[s] (see [Ja]). When α is an n-braid and
u = 1, v = t−1, the matrix sI − B(α)(t) presents Lab. Hence ∆(s, 1, t−1) is
equal to the characteristic polynomial of B(α)(t).

For any string link, the polynomial ∆(s, u, v) has the form ∆n(u, v)sn +
· · ·+ ∆1(u, v)s + ∆0(u, v).

Definition 4.1 ([Ma] (see also [Sc])). The Mahler measure of a polyno-
mial f(s) = fnsn + · · ·+ f1s + f0 (fn 6= 0) with complex coefficients is

M(f(s)) = |fn| ·
n∏

j=1

max(|zj |, 1),

where z1, . . . , zn are the roots of f(s).

Remark. The Mahler measure of f(s) is equal to

exp
∫
T1

log |f(s)|ds,

where the integration is peformed over the unit circle T1 [Ma]. It can be
regarded as the geometric mean of f over T1.

Definition 4.2. Let α be an n-string link with polynomial ∆(s, u, v), and
let r be a positive integer. The rth algebraic entropy γα,r is

max
0≤i,j<r

logM(∆(s, ζi, ζj)),

where ζ is a primitive rth root of unity.

Example 4.3. Consider α = σ−1
1 σ2 (Figure 6). The Λ[s]-module Lab has

presentation

〈a, b, c, d, x, y, z | au + b = ux + d, vx = b, ud + c = uy + z,

vd = z, x = sa, y = sb, z = sc〉

(compare calculations found in [Ka]). Using the last four relations we can
eliminate the generators d, x, y, z. We see

Lab = 〈a, b, c | (su− u)a− b + sv−1c = 0,

sva− b = 0, sub + (s− suv−1 − 1)c = 0〉.
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A routine calculation shows that

∆(s, u, v) =
1
v
(s− 1)[uvs2 + (u2 − uv + v2)s + uv],

and from this it is easy to compute various algebraic entropies. For example,
γα,2 = log 3+

√
5

2 .

Topological entropy h(f) is defined for any continuous map f of a compact
space [AdKoMc]. It measures the dynamical complexity of the map. The
concept has a natural extension for braids that is well known.

The n-braid group Bn is isomorphic to the mapping class group
MCG(D rel Pn, ∂D), where D is the 2-disk and Pn is constists of n points
in the interior of D. Elements are isotopy classes of homeomorphisms of D
that fix the boundary pointwise and leave the set Pn invariant. Hence an
n-braid can be represented by a homeomorphism of D. The braid entropy
of α ∈ Bn is the infimum of the topological entropy h(φ), taken over all
homeomorphisms φ representing α.

Let ρ[B(α)(t)] denote the spectral radius of the usual Burau matrix of α.
After a short preparation we will prove the following proposition.

Proposition 4.4. If α is an n-braid then for, any positive integer r, the
algebraic entropy γα,r does not exceed supt∈T1 ρ[B(α)(t)].

In [Ko] B. Kolev proved that the entropy hα of any n-braid α is bounded
below by supt∈T1 ρ[B(α)(t)]. (As Kolev makes clear, this result is implicit
in work of D. Fried [Fr].) The next result follows immediately.

Corollary 4.5. If α is an n-braid then, for any positive integer r,

γα,r ≤ hα.

Proposition 4.4 will follow almost immediately from Lemma 4.6, a general
result for any n-string link that provides insight about the of the associated
group K.

Lemma 4.6. The Λ-group K associated to any n-string link has a finite
presentation such that every element of Λ that occurs is a polynomial in uv.

Proof. Consider a diagram D for α, labeled as in Section 3. We apply
Seifert’s algorithm (see [Rol], for example), smoothing the crossings to pro-
duce pairwise disjoint components: n arcs and some number of circles. Num-
ber the components from zero, beginning with the rightmost. Then replace
the generators a, b, . . . of K with â, b̂, . . . such that if a generator c lies on the
kth component, then ĉ = cvk

. It is easy to see that the resulting presentation
for K has the desired property. �
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Example 4.7. We demonstrate the procedure used in the proof of Lemma
4.6 for the 2-string link of Figure 3. The arcs and circles that result from
Seifert’s algorithm appear in Figure 8. The associated Λ-group K now has
presentation

K = 〈â, b̂, ĉ, d̂, ê, f̂ , x̂, ŷ | ĉuvâ = d̂uv ê, â = d̂,

êuv b̂ = f̂uvŷ, ŷ = ê, d̂uvf̂ = ĉuvx̂, f̂ = ĉ〉.

This should be compared with the earlier presentation (2.2).

. .
. .

.

. ..c

b

e

f

d

x y

a

Figure 8. Smoothed Diagram for 2-String Link.

Proof of Proposition 4.4. By Lemma 4.6 we can find a presentation for Kab

such that every element of Λ that occurs is a polynomial in uv. Since α
is a braid, each generator of Kab can be expressed as a linear combination
of the coordinates a, b, . . . of S. In particular, each coordinate x, y, . . .
of T can be written as a linear combination x′, y′, . . . with coefficients in
Z[(uv)±1]. Since ∆(s, u, v) is the characteristic polynomial of the change
of basis matrix, after multiplying by a suitable unit in Λ[s] it has the form
∆n(uv)sn + . . . + ∆1(uv)s + ∆0(uv). Varying u, v over rth roots of unity
produces the same set of polynomials that we would get from ∆(s, 1, t−1) by
varying t over the rth roots of unity. Since ∆(s, 1, t−1) is Det[sI −B(α)(t)],
the result follows. �

Example 4.8. We return to the 2-string link α in Figure 3. Using the
presentation (2.5) we obtain

L = 〈a, b | (suv − 2uv + 1)a + s(uv2 − v)b = 0,

(uv − 1)a + (suv2 − 2sv + v)b = 0〉.
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A routine calculation shows that

∆(s, u, v) =
1
v
(s− 1)[(2uv − u2v2)s + (1− 2uv − 2u2v2)].

We have ∆(s, 1, 1) = (s−1)2, ∆(s, 1,−1) = (s−1)(3s−1) and ∆(s,−1, 1) =
(s− 1)(1− 3s). Hence γα,2 = log 3.

We apply algebraic entropy to obtain information about the algebraic
topology of branched covers. Let α be a string link with arcs coherently
oriented, and lm denote the oriented knot or link obtained as the closure of
the product αm, m ≥ 1. We denote the r-fold cyclic cover of S3 branched
over lm by Mr(lm). The torsion subgroup of H1(Mr(lm);Z) will be written
as TH1(Mr(lm);Z). The following result extends Theorem 3.2 of [SiWi].

Theorem 4.9. Let α be a string link, and lm the closure of αm. Then for
any positive integer r, the limit

lim
m→∞

1
m

log |TH1(Mr(lm);Z)|(4.1)

exists and it is bounded below by the algebraic entropy γα,r.

Proof. Consider the Λ[s]-module L defined at the beginning of the section.
Replace each generator a, b, . . . by an (r − 1)-tuple a = (a0, . . . , ar−2), b =
(b0, . . . , br−2), . . . of generators. Replace u by the operator

Sr =


0 0 . . . 0 −1
1 0 . . . 0 −1
0 1 . . . 0 −1
...

...
. . .

...
...

0 0 . . . 1 −1

 ,

and replace v by the identity (r−1)× (r−1)-matrix. With these changes, L
becomes a Z[s]-module Lr. From the square relation matrix for L we obtain
a square relation matrix Rr for Lr.

We consider the dual group L∧r = Hom(Lr,T1), a compact abelian group.
The action of s on Lr induces an automorphism fr on L∧r . Let Fix(fm

r )
denote the subspace of period m points, and let Fix(fm

r )◦ be the component
of the identity. The arguments of [SiWi] can be used to show that the
quotient group Fix(fm

r )/Fix(fm
r )◦ is isomorphic to TH1(Mr(lm);Z) (see the

proof of Theorem 2.10).
By a result of [LiScWa] (see Theorem 21.1 of [Sc]) the limit

lim
m→∞

1
m

log |Fix(fm
r )/Fix(fm

r )◦|

exists and it is equal to the topological entropy h(fr). Furthermore, Example
18.7 of [Sc] shows that the entropy is equal to logM(detRr). A calculation
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shows that

logM(detRr) = log
r−1∏
i=1

M(∆(s, ζi, 1)).(4.2)

(See Theorem 3.2 of [SiWi] and its proof.) By Lemma 4.6 the right-hand
side of (4.2) is equal to the algebraic entropy γα,r. �

It is natural to ask whether the idea of braid entropy can be generalized
for arbitrary string links. If so, then we might anticipate that the quantities
γα,r would be lower bounds. We therefore conclude with a question.

Question 4.10. Is there a natural notion of entropy hα for an n-string link
α? Can hα be defined as the topological entropy of some homeomorphism?
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