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For a proper continuous map f : M → N between smooth
manifolds M and N with m = dim M < dim N = m + k,
a homology class θ(f) ∈ Hc

m−k(M ; Z2) has been defined and
studied by the first and the third authors, where Hc

∗ denotes
the singular homology with closed support. In this paper, we
define θ(f) for maps between generalized manifolds. Then,
using algebraic topological methods, we show that f̄∗θ(f) ∈
Ȟc

m−k(f(M); Z2) always vanishes, where f̄ = f : M → f(M)
and Ȟc

∗ denotes the Čech homology with closed support. As a
corollary, we show that if f is properly homotopic to a topo-
logical embedding, then θ(f) vanishes: In other words, the
homology class can be regarded as a primary obstruction to
topological embeddings. Furthermore, we give an applica-
tion to the study of maps of the real projective plane into
3-dimensional generalized manifolds.

1. Introduction.

This paper is a continuation of the authors’ studies [1], [2], [3], [4], and [5].
Let M and N be topological manifolds1 of dimensions m and n re-

spectively and suppose k = n − m > 0. For a proper continuous map
f : M → N , a homology class θ(f) ∈ Hc

m−k(M ;Z2) has been defined in
[4, Definition 2.5], where Hc

∗ denotes the singular homology of the com-
patible family with respect to compact subsets (see [21, Chapter 6, §3]),
or equivalently the singular homology based on infinite chains (see [19, §5
and §65]), or equivalently the singular homology with closed support (see
[22, p. 118], [9]). This homology class is a proper homotopy invariant2 of
f and has the property that, when M and N are smooth manifolds, if f
is properly homotopic to a proper smooth embedding, then θ(f) vanishes.
Furthermore, when M is compact and M and N are smooth manifolds, if f

1In this paper, all manifolds have no boundary.
2Two proper continuous maps f and g : M → N are properly homotopic if there exists

a homotopy F : M × [0, 1] → N between f and g such that F is a proper map.
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is homotopic to a topological embedding3 , then θ(f) vanishes (see [4]). For
all these results, the differentiable structures on both M and N have played
an important role, since the technique of generic differentiable maps and the
results due to Ronga [20] about such generic maps have been extensively
used.

In this paper, we consider generalized manifolds and proper continuous
maps between such spaces. Generalized manifolds of dimension m which
we consider in this paper are certain topological spaces M such that for
every x ∈ M , H∗(M,M − {x};Z2) is isomorphic to H∗(Rm,Rm − {0};Z2)
(for details see §2). Note that, for such generalized manifolds, the Poincaré
duality holds (see [6], [7], [8], [9]). Such manifolds have recently been studied
extensively; for example, it has been known that there exist generalized
manifolds which are not homotopy equivalent to topological manifolds (see
[10], [11]).

Let f : M → N be a proper continuous map between generalized man-
ifolds with m = dimM < dimN = m + k. Since the definition of the
homology class θ(f) for maps between topological manifolds depends only
on the Poincaré duality, we can define the same class for maps between
generalized manifolds as well. We then study the homology class θ(f) from
an algebraic topological viewpoint, so that we need no differentiability hy-
pothesis on M or N . Our main result is Corollary 3.2, which states that
f̄∗θ(f) ∈ Ȟc

m−k(f(M);Z2) always vanishes, where f̄ = f : M → f(M) and
Ȟc
∗ denotes the Čech homology with closed support (for example, see [22,

p. 146], [9]). This result implies, as a direct corollary, that if f is a proper
topological embedding, then θ(f) ∈ Ȟc

m−k(M ;Z2) vanishes (Corollary 3.5).
This means that the homology class θ(f) can always be regarded as a pri-
mary obstruction to the existence of a proper homotopy between the given
map f and a proper topological embedding.

Using the above mentioned result, we give various related results as appli-
cations. First, as Corollary 3.9, we show that the top Stiefel-Whitney class of
the stable normal bundle of a proper topological embedding, defined via the
Stiefel-Whitney classes of the generalized manifolds involved, coincides with
the modulo 2 normal Euler class of the embedding (see [12, Chapter VIII,
§11]). Furthermore, we give a new proof of a result of Haefliger [15] (see also
[23]) which states that the i-th Stiefel-Whitney class wi(f) ∈ H i(M ;Z2) of
the stable normal bundle of a codimension-k proper topological embedding
f : M → N vanishes for all i > k (Corollary 3.10). Then we give an
application concerning continuous maps of the real projective plane into 3-
dimensional generalized manifolds (Proposition 4.2), generalizing results of
[3].

3A continuous map is said to be a topological embedding if it is a homeomorphism onto
its image. In particular, the topological embeddings in this paper may not necessarily be
locally flat.
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We also give some new results about the homology class θ(f) itself. For
example, we show that if the source generalized manifold M is compact and
the closure of the self-intersection set of f has topological dimension strictly
less than m− k, then θ(f) ∈ Hm−k(M ;Z2) vanishes (Corollary 3.17).

The paper is organized as follows. In §2, we give a precise definition of
generalized manifolds and define the homology class θ(f). We will see that
this class depends only on the map f : M → V , where V is an arbitrary
open neighborhood of f(M) in N . In §3, we show our key theorem (Theo-
rem 3.1) and give various corollaries. Finally, in §4, we give an application
to continuous maps of the real projective plane into 3-dimensional general-
ized manifolds (Proposition 4.2), which can be regarded as a refinement of
a result obtained in [3].

Throughout the paper, homology and cohomology groups always have
coefficients in Z2. The symbol “∼=” denotes an appropriate isomorphism
between algebraic objects.

2. Preliminaries.

In this section, we give precise definitions of generalized manifolds and the
primary obstruction θ.

Definition 2.1. A locally compact Hausdorff spaceM is a generalized man-
ifold of dimension m if the following conditions are satisfied.

(1) M is hereditarily paracompact (see Remark 2.2 (1) below).
(2) dimZ2M < +∞ in the sense of [9] (see Remark 2.2 (2) below).
(3) M is HLC∞Z2

in the sense of [9, p. 35] (see Remark 2.2 (3) below).
(4) H∗(M,M − {x}) ∼= H∗(Rm,Rm − {0}) for every x ∈M .

Remark 2.2. (1) A topological space is hereditarily paracompact if every
open subset is paracompact (see [9, Chapter 1, §6]). This condition is neces-
sary in order to guarantee that every open subset of a generalized manifold
is again a generalized manifold.

(2) By [9, 16.14 Theorem, p. 115], dimZ2M < +∞ if and only if there
exists an l < +∞ such that H l+1

c (U) = 0 for all open subset U of M , where
H∗c denotes the singular cohomology with compact support.

(3) A topological space X is said to be HLC∞Z2
if for each x ∈ X, each

neighborhood U of x in X, and each p, there exists a neighborhood V ⊂ U
of x such that the homomorphism H̃p(V ) → H̃p(U) induced by the inclusion
is trivial (see [9, p. 35]), where H̃∗ denotes the reduced singular homology.
Note that this condition together with the condition (1) implies, in our
situation, that the sheaf theoretic homologies and cohomologies coincide
with the singular homologies and cohomologies respectively (see [9]).

(4) Recall that a topological space X is said to be an ENR (Euclidean
neighborhood retract) if there exist a subspace Y of some Rn homeomorphic
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to X, a neighborhood V of Y , and a retraction r : V → Y . If M is an
ENR and satisfies the condition (4) of Definition 2.1, then M is a general-
ized manifold of dimension m. We call such a space an ENR Z2-homology
manifold. In particular, second countable topological manifolds are all ENR
Z2-homology manifolds. Note that a separable metric space X is an ENR
if and only if it is a locally compact ANR (absolute neighborhood retract)
and has finite topological dimension (see [16, Chapter V]). Note also that
the homology manifolds constructed in [10], [11] are all ENR Z2-homology
manifolds in the above sense4 .

In [6], [7], it has been shown that the Poincaré duality holds for locally ori-
entable generalized manifolds. Furthermore, in [8], every generalized mani-
fold has been shown to be locally orientable. Thus the Poincaré duality holds
for all generalized manifolds (for details, see [9]). More precisely, if M is a
connected generalized manifold of dimension m, then Hc

m(M) is isomorphic
to Z2 and the homomorphisms

_ [M ] : H i(M) → Hc
m−i(M),

_ [M ] : H i
c(M) → Hm−i(M)

are isomorphisms for all i, where [M ] is the generator of Hc
m(M) and is

called the fundamental class of M (see also Remark 2.3 below). We call the
above isomorphisms the Poincaré duality isomorphisms and denote them by
DM .

Remark 2.3. Note that the universal coefficient theorem works for coho-
mology with compact support and homology with closed support. In fact,
for a topological space X, the cup product5 is a bilinear map

H i(X)×Hj(X) → H i+j(X) or

H i
c(X)×Hj(X) → H i+j

c (X) or

H i
c(X)×Hj

c (X) → H i+j
c (X),

the cap product is a bilinear map

H i(X)×Hj(X) → Hj−i(X) or

H i(X)×Hc
j (X) → Hc

j−i(X) or

H i
c(X)×Hc

j (X) → Hj−i(X),

and the scalar product (or the Kronecker index) 〈 , 〉 is a nonsingular bilinear
map

H i
c(X)×Hc

i (X) → Z2 or

H i(X)×Hi(X) → Z2.

4In [10], [11], they use integral coefficients in a condition corresponding to Definition 2.1
(4). Thus their condition always implies ours.

5For details, see [22, p. 117] or [14, §26].
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Remark 2.4. Let M be a generalized manifold. Then, by using the Poin-
caré duality isomorphisms together with the Steenrod squaring operation,
we can define the Wu classes of M and hence the Stiefel-Whitney classes by
virtue of the Wu formula (for details, see [18, §11]).

LetM andN be generalized manifolds of dimensionsm and n respectively
such that k = n −m > 0 and f : M → N a proper continuous map. Let
us denote by Uf ∈ Hk(N) the Poincaré dual of f∗[M ] ∈ Hc

m(N); in other
words, f∗[M ] = Uf _ [N ]. Note that f∗[M ] ∈ Hc

m(N) is well-defined, since
f is a proper map (see [22, p. 118]).

Let the total Stiefel-Whitney classes of M and N be denoted by w(M) ∈
H∗(M) and w(N) ∈ H∗(N) respectively (see Remark 2.4) and let w̄(M) ∈
H∗(M) denote the dual Stiefel-Whitney class of M ; i.e., w̄(M) = w(M)−1.
Define w(f) = (f∗w(N)) ^ w̄(M), which is called the total Stiefel-Whitney
class of the stable normal bundle of f . We denote by wk(f) ∈ Hk(M) the
degree k term of w(f), which is the k-th Stiefel-Whitney class of the stable
normal bundle of f .

Definition 2.5. We define

θ(f) = (f∗Uf − wk(f)) _ [M ] ∈ Hc
m−k(M).

Note that this is a proper homotopy invariant of f . We also note that when
M is compact, θ(f) is an element of the usual homology group Hm−k(M),
since we have Hm−k(M) ∼= Hc

m−k(M).

The above homology class has been originally defined in [4] and denoted
by θ1(f) for proper continuous maps between topological manifolds. In
this paper, we use the notation θ(f) instead of θ1(f), which will cause no
confusion.

The reason why we use the homology class instead of the corresponding
cohomology class is that when M and N are smooth manifolds, θ(f) coin-
cides with the fundamental class carried by the closure of the self-intersection
set of a generic map properly homotopic to f (see [20], [4]).

Many important observations about f∗Uf and wk(f) ∈ Hk(M) have been
given in [4, §2], although the objects considered there are maps between
topological manifolds. For example, the following lemma has already been
observed in [4] in such situations. Here we give a different proof which works
also for our more general setting. Note that, by Remark 2.2 (1), every open
subset of a generalized manifold is again a generalized manifold.

Lemma 2.6. Let V be an open subset of N which contains f(M) and con-
sider the map fV = f : M → V (⊂ N). Then θ(f) = θ(fV ) in Hc

m−k(M).

Proof. Let i : V → N denote the inclusion map and i] : H∗c (V ) → H∗c (N)
the natural homomorphism induced by i (for example, see [14, §26]). Fur-
thermore, let i∗] : Hc

∗(N) = Hom (H∗c (N),Z2) → Hom (H∗c (V ),Z2) = Hc
∗(V )
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denote the dual homomorphism of i]. Then we have the following commu-
tative diagram:

Hc
m(M)

f∗−−−→ Hc
m(N)

D−1
N−−−→ Hk(N)

f∗−−−→ Hk(M)
||

yi∗] yi∗ ||
Hc
m(M)

(fV )∗−−−→ Hc
m(V )

D−1
V−−−→ Hk(V )

(fV )∗−−−→ Hk(M)
(2.1)

(for example, see [14, §26]). Thus we see that

f∗Uf = (fV )∗UfV
(2.2)

in Hk(M).
Let v denote the total Wu class. Then we have

〈x ^ v(N), [N ]〉 = 〈Sq(x), [N ]〉(2.3)

for all x ∈ H∗c (N). Let y ∈ H∗c (V ) be an arbitrary element. Substituting
x = i]y in (2.3), we have

〈i]y ^ v(N), [N ]〉 = 〈Sq(i]y), [N ]〉.(2.4)

The left-hand side of (2.4) is equal to

〈i](y ^ i∗v(N)), [N ]〉 = 〈y ^ i∗v(N), [V ]〉,(2.5)

and the right-hand side of (2.4) is equal to

〈i]Sq(y), [N ]〉 = 〈Sq(y), [V ]〉.(2.6)

Thus we have

〈y ^ i∗v(N), [V ]〉 = 〈Sq(y), [V ]〉(2.7)

for all y ∈ H∗c (V ), which implies that v(V ) = i∗v(N). Then by Wu’s
formula, we have w(V ) = i∗w(N). This shows that

w(f) = w(fV ).(2.8)

Then Equations (2.2) and (2.8) together with Definition 2.5 show that
θ(f) = θ(fV ) in Hc

m−k(M). This completes the proof. �

It will be shown in the next section that if f is properly homotopic to
a proper topological embedding, then θ(f) ∈ Ȟc

m−k(M) vanishes. In other
words, θ(f) can be regarded as a primary obstruction to the existence of
such a proper homotopy.
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3. Key theorem and corollaries.

In this section, we first prove the following key theorem and give its impor-
tant corollaries.

Theorem 3.1. Let f : M → N be a proper continuous map of an m-
dimensional generalized manifold M into an (m+k)-dimensional generalized
manifold N with k > 0. Then f∗θ(f) ∈ Hc

m−k(N) always vanishes.

Proof. First recall that

f∗θ(f) = f∗((f∗Uf − wk(f)) _ [M ])(3.1)
= f∗((f∗Uf ) _ [M ])− f∗(wk(f) _ [M ]),(3.2)

where wk(f) is equal to the degree k term of (f∗w(N)) ^ w̄(M). As to the
first term of Equation (3.2), we have

f∗((f∗Uf ) _ [M ]) = Uf _ f∗[M ](3.3)
= Uf _ (Uf _ [N ])(3.4)
= (Uf ^ Uf ) _ [N ].(3.5)

On the other hand, as to the second term of Equation (3.2), we have

f∗(((f∗w(N)) ^ w̄(M)) _ [M ]) = f∗((f∗w(N)) _ (w̄(M) _ [M ])).(3.6)

Denoting by D the Steenrod squaring operation on the homology as defined
in [22, p. 152]6 , we have

w̄(M) _ [M ] = D[M ].(3.7)

Thus, with the usual Steenrod squaring operation on the cohomology being
denoted by Sq, the right-hand side of Equation (3.6) is equal to

f∗((f∗w(N)) _ (w̄(M) _ [M ])) = f∗((f∗w(N)) _ D[M ])(3.8)
= w(N) _ f∗D[M ](3.9)
= Sq(v(N)) _ D(f∗[M ])(3.10)
= D(v(N) _ f∗[M ])(3.11)
= D(v(N) _ (Uf _ [N ]))(3.12)
= D((v(N) ^ Uf ) _ [N ]),(3.13)

where Equation (3.10) follows from the Wu formula. Thus, we have only
to show that (Uf ^ Uf ) _ [N ] is equal to the degree m − k term of
D((v(N) ^ Uf ) _ [N ]) in view of Equations (3.2), (3.5), (3.6) and (3.13).

6The operation D here corresponds to
P

iDi in the notation of [22]. Note also that D
is also defined in [18, Problem 11-F, p. 136] and [21, Chapter 6, §10] and is denoted by

Sq and Sq respectively.



282 C. BIASI, J. DACCACH, AND O. SAEKI

Let ξ be an arbitrary element of Hm−k
c (N). By the universal coefficient

theorem, we have only to show that

〈ξ, (Uf ^ Uf ) _ [N ]〉 = 〈ξ,D((v(N) ^ Uf ) _ [N ])〉.(3.14)

As to the left-hand side, we have

〈ξ, (Uf ^ Uf ) _ [N ]〉 = 〈ξ ^ (Uf ^ Uf ), [N ]〉.(3.15)

As to the right-hand side of Equation (3.14), we have

〈ξ,D((v(N) ^ Uf ) _ [N ])〉 = 〈Sq(ξ), (v(N) ^ Uf ) _ [N ]〉(3.16)

= 〈(Sq(ξ) ^ Uf ) ^ v(N), [N ]〉(3.17)

= 〈Sq(Sq(ξ) ^ Uf ), [N ]〉(3.18)

= 〈Sq(Sq(ξ)) ^ Sq(Uf ), [N ]〉(3.19)
= 〈ξ ^ Sq(Uf ), [N ]〉,(3.20)

where Sq denotes the inverse of the automorphism Sq on the cohomology
with compact support (see [18, Problem 11-E, p. 136])7 , Equation (3.16)
follows from [18, Problem 11-F, p. 136] (or [22, (59)]), Equation (3.18)
follows from the property of the Wu class, and Equation (3.20) follows from
the definition of Sq. Since the degree m+ k term of ξ ^ Sq(Uf ) is equal to
the cup product of ξ and the degree 2k term of Sq(Uf ), we see that

〈ξ ^ Sq(Uf ), [N ]〉 = 〈ξ ^ (Uf ^ Uf ), [N ]〉,(3.21)

which is equal to the left-hand side of Equation (3.14) by virtue of Equation
(3.15), since Uf ∈ Hk(N). This completes the proof. �

Corollary 3.2. Let f : M → N be a proper continuous map of an m-
dimensional generalized manifold M into an (m+k)-dimensional generalized
manifold N with k > 0. Then f̄∗θ(f) ∈ Ȟc

m−k(f(M)) always vanishes, where
f̄ = f : M → f(M).

Remark 3.3. Note that there exists a natural homomorphism Hc
∗(M) →

Ȟc
∗(M). By θ(f), we mean either the homology class of Hc

m−k(M) as defined
in Definition 2.5 or its image in Ȟc

m−k(M) by the above homomorphism. It is
known that for ANR’s, the Čech homology groups are naturally isomorphic
to the singular homology groups: More precisely, the above homomorphism
is an isomorphism (for example, see [21]). Furthermore, this is also true
for compact generalized manifolds (see [9, 3.15, p. 298]). Thus, for such
spaces, we always identify the two homology groups, especially for ENR
Z2-homology manifolds and compact generalized manifolds.

7In the notation of [22, p. 161], we have Sq =
P

i Qi.
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Proof of Corollary 3.2. Take an arbitrary open neighborhood V of f(M) in
N . Since V is a generalized manifold, by applying Theorem 3.1 to fV = f :
M → V , we see that (fV )∗θ(fV ) = 0 in Hc

m−k(V ). Since θ(f) = θ(fV ) in
Hc
m−k(M) by Lemma 2.6, we see that (fV )∗θ(f) = 0 in Hc

m−k(V ).
Let iV : f(M) → V denote the inclusion map. Then, by the above

argument, we have (iV )∗(f̄∗θ(f)) = (fV )∗θ(f) = 0 in Hc
m−k(V ) for all V .

Since Ȟc
m−k(f(M)) is identified with the inverse limit

lim
←−

Hc
m−k(V )

with V ranging over all open neighborhoods of f(M), we see that f̄∗θ(f)
vanishes in Ȟc

m−k(f(M)). This completes the proof. �

We have the following immediate corollaries.

Corollary 3.4. Let f : M → N be a proper continuous map of an m-
dimensional generalized manifold M into an (m+k)-dimensional generalized
manifold N with k > 0. If f̄∗ : Ȟc

m−k(M) → Ȟc
m−k(f(M)) is a monomor-

phism, then θ(f) = 0 in Ȟc
m−k(M).

Corollary 3.5. Let f : M → N be a proper topological embedding of an m-
dimensional generalized manifold M into an (m+k)-dimensional generalized
manifold N with k > 0. Then θ(f) ∈ Ȟc

m−k(M) vanishes.

Remark 3.6. In Corollary 3.5, θ(f) vanishes as an element of Hc
m−k(M)

as well, provided that M is compact or is an ANR (see Remark 3.3).

Corollary 3.5 shows that if a proper continuous map f : M → N between
generalized manifolds (dimM < dimN) is properly homotopic to a proper
topological embedding, then θ(f) vanishes. In other words, θ(f) can be re-
garded as a primary obstruction to the existence of such a proper homotopy.
This fact has already been shown in [4] when M and N are differentiable
manifolds and M is compact.

Remark 3.7. A topological embedding f : M → N between generalized
manifolds is proper if and only if f(M) is a closed subset of N .

Remark 3.8. Haefliger [15] has defined another type of an obstruction for
maps between topological manifolds using a different method. In fact, using
his obstruction, he has shown that, when M and N are compact topological
manifolds, if f : M → N is a topological embedding, then wi(f) = 0 for all
i > k and that

(wk(f)× 1) ^ ∆∗M = (f × f)∗∆∗N ∈ Hn(M ×M),(3.22)

where 1 ∈ H0(M) is the identity element, and ∆∗M ∈ Hm(M × M) and
∆∗N ∈ Hn(N × N) are the Poincaré duals of the diagonals of M ×M and
N ×N respectively (see [15, 5.2 Théorème], [23]). It is not difficult to show
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that Equation (3.22) implies that our θ(f) vanishes. Thus our Corollary 3.5
can be regarded as a special case of Haefliger’s result at least when M and
N are compact topological manifolds.

Let f : M → N be a proper topological embedding as in Corollary 3.5
and suppose that M and N are ENR Z2-homology manifolds. Let us denote
by τ(f) ∈ Hk(N,N − f(M)) the Thom class (see [12, Chapter VIII, §11]8 )
and set χ(f) = f∗τ(f) ∈ Hk(M), where f∗ : Hk(N,N − f(M)) → Hk(M)
is the homomorphism induced by the composition of f : M → N and the
inclusion N → (N,N − f(M)). The cohomology class χ(f) is called the
normal Euler class of f (see [12, Chapter VIII, §11]).

Corollary 3.9. Let f : M → N be a proper topological embedding of an
m-dimensional ENR Z2-homology manifold M into an (m+k)-dimensional
ENR Z2-homology manifold N with k > 0. Then we have wk(f) = χ(f) =
f∗Uf ∈ Hk(M).

Proof. By [12, Chapter VIII, 11.25 Proposition], we see that the element
χ(f) _ [M ] ∈ Hc

m−k(M) is Poincaré dual to f∗Uf ∈ Hk(M) (see also
[12, Chapter VIII, §11.27]). Hence χ(f) = f∗Uf . On the other hand,
by Corollary 3.5 and the definition of θ(f) (see Definition 2.5), we have
wk(f) = f∗Uf . This completes the proof. �

The following result has already been proved by Haefliger when M and
N are compact topological manifolds (see Remark 3.8).

Corollary 3.10. Let f : M → N be a proper topological embedding of an
m-dimensional ENR Z2-homology manifold M into an (m+k)-dimensional
ENR Z2-homology manifold N with k > 0. Then the i-th Stiefel-Whitney
class wi(f) ∈ H i(M) of the stable normal bundle of f vanishes for all i > k.

Proof. Consider the composition

f̃ : M
f−→ N = N × {0} η−→ N ×Ri−k,

where η is the inclusion map. It is not difficult to see that Hc
m(N ×Ri−k) is

naturally isomorphic to Hc
m−(i−k)(N)⊗Hc

i−k(R
i−k) ∼= Hc

m−(i−k)(N). Thus

we see that Uf̃ = 0 ∈ H i(N ×Ri−k) and hence that θ(f̃) coincides with the
Poincaré dual of wi(f̃). On the other hand, since f̃ is a proper topological
embedding, θ(f̃) vanishes by Corollary 3.5 (see also Remark 3.6). Thus we
have wi(f̃) = 0 ∈ H i(M). Thus we have only to show the following.

Lemma 3.11. We have w(f̃) = w(f) ∈ H∗(M).

8In [12], M and N are assumed to be topological manifolds; however, similar argument
works for generalized manifolds as well. For example, imitate the argument in [14].
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Proof. We have only to show that w(N) ∈ H∗(N) corresponds to w(N ×
Ri−k) ∈ H∗(N × Ri−k) by the natural isomorphism H∗(N) ∼= H∗(N ×
Ri−k). By the Wu formula, this reduces to showing that v(N) corresponds
to v(N ×Ri−k), where v denotes the total Wu class. For this, it suffices to
show that, for an arbitrary element x ∈ Hn+(i−k)−j

c (N ×Ri−k), we have

〈x ^ v′j(N), [N ×Ri−k]〉 = 〈Sqj(x), [N ×Ri−k]〉,

where v′j(N) ∈ Hj(N ×Ri−k) is the element which corresponds to vj(N) ∈
Hj(N). Since Hn+(i−k)−j

c (N × Ri−k) ∼= Hn−j
c (N) ⊗ H i−k

c (Ri−k), we may
assume that x = x′×ζ for some x′ ∈ Hn−j

c (N), where ζ ∈ H i−k
c (Ri−k) ∼= Z2

is the generator. Then, with the generator of H0(Ri−k) ∼= Z2 being denoted
by 1, we have

〈x ^ v′j(N), [N ×Ri−k]〉 = 〈(x′ × ζ) ^ (vj(N)× 1), [N ]× [Ri−k]〉
= 〈x′ ^ vj(N), [N ]〉
= 〈Sqj(x′), [N ]〉
= 〈Sqj(x′)× ζ, [N ]× [Ri−k]〉
= 〈Sqj(x), [N ×Ri−k]〉.

This completes the proof of Lemma 3.11 and hence Corollary 3.10 as well.
�

Remark 3.12. The above lemma follows also from [22, Théorème III.10].

Remark 3.13. A result similar to Corollary 3.10 holds also for topologi-
cal immersions (i.e., locally injective continuous maps) between topological
manifolds as well. For details, see [15, §5.4].

Corollaries 3.5 and 3.10 imply, for example, that if the dual Stiefel-
Whitney class w̄i(M) of an m-dimensional ENR Z2-homology manifold M
does not vanish, then for all j ≤ i, M cannot be topologically embedded in
Rm+j as a closed subset. This is a very strong result, since we are consider-
ing topological embeddings which are not necessarily locally flat even when
M is a topological manifold.

Now we give some results concerning the properties of the homology class
θ(f) itself.

Corollary 3.14. Let f : M → N be a proper continuous map of a connected
m-dimensional generalized manifold M into a 2m-dimensional generalized
manifold N . Then θ(f) ∈ Hc

0(M) always vanishes.

Proof. Since f̄∗ : Hc
0(M) → Ȟc

0(f(M)) is always a monomorphism, we have
the result by Corollary 3.4. �
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For a continuous map f : M → N between generalized manifolds, we set

M(f) = {x ∈M : f−1(f(x)) 6= {x}},
which is called the self-intersection set of f (see [20], [4]).

In the following results, the source manifold M will be compact, since
we will use the exactness of Čech homology for compact pairs (see [17] and
[13, Chapter IX, §7]). In such cases, the homology class θ(f) will always
be an element of the usual homology group Hm−k(M), which is naturally
isomorphic to Hc

m−k(M). We also note that Ȟc
∗ is isomorphic to Ȟ∗ for

compact spaces, where Ȟ∗ denotes the (usual) Čech homology.
The following is a refinement of [4, Theorem 6.1].

Corollary 3.15. Let f : M → N be a continuous map of an m-dimensional
compact generalized manifold M into an (m + k)-dimensional generalized
manifold N with k > 0. Set A = M(f) and B = f(A). Then there exists
an element µ ∈ Ȟm−k(A) such that

j∗µ = θ(f) ∈ Ȟm−k(M) = Hm−k(M) and (f |A)∗µ = 0 ∈ Ȟm−k(B),

where j : A→M is the inclusion map (when A = ∅, we regard Ȟm−k(A) =
0 = Ȟm−k(B)).

Proof. We may assume that A 6= ∅ by Corollary 3.5. By an argument as in
[5, §3], we have the following exact sequence:

Ȟm−k(A) α−→ Ȟm−k(M)⊕ Ȟm−k(B)
ψ−→ Ȟm−k(f(M)),

where α = (j∗, (f |A)∗) and ψ = f̄∗ + j′∗ with j′ : B → f(M) being the
inclusion map. Since ψ(θ(f), 0) = 0 by Theorem 3.1, there exists an element
µ ∈ Ȟm−k(A) such that α(µ) = (j∗µ, (f |A)∗µ) = (θ(f), 0). This completes
the proof. �

Corollary 3.15 shows that the “support” of the homology class θ(f) ∈
Hm−k(M) is contained in the closure A of the self-intersection set M(f) of
f . We do not know if µ 6= 0 ∈ Ȟm−k(A) when A 6= ∅. Note that, when
M and N are smooth manifolds and f is a generic map in the sense of
Ronga [20], then the homology class µ ∈ Ȟm−k(A) can be chosen as the
fundamental class carried by A and then µ 6= 0 whenever A 6= ∅, as has
been shown in [20].

Remark 3.16. By the same argument, we can show that if v ∈ Ȟm−k(B)
satisfies j′∗v = 0 in Ȟm−k(f(M)), then there exists an element µv ∈ Ȟm−k(A)
such that j∗µv = θ(f) and (f |A)∗µv = v.

Corollary 3.17. Let f : M → N be a continuous map of an m-dimensional
compact generalized manifold M into an (m + k)-dimensional generalized
manifold N with k > 0. Set A = M(f). If the topological dimension of A is
strictly less than m− k, then θ(f) ∈ Hm−k(M) vanishes.
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For the definition and the properties of the topological dimension, see
[16].

Proof of Corollary 3.17. Since the topological dimension of A is strictly less
than m− k, we have Ȟm−k(A) = 0 by [16, Theorem VIII 4 (p. 152)]. Then
the result follows directly from Corollary 3.15. �

4. Maps of the projective plane into 3-dimensional generalized
manifolds.

In this section, we give an application of the results obtained in §3 to maps
of the real projective plane into 3-dimensional generalized manifolds.

Lemma 4.1. Let f : RP 2 → X be a continuous map of the real projective
plane into a topological space X. If f∗[RP 2] = 0 in H2(X), then f∗ :
H1(RP 2) → H1(X) is the zero map.

Proof. Suppose that f∗ : H1(RP 2) → H1(X) is not the zero map. Since
H1(RP 2) is isomorphic to Z2, f∗ : H1(RP 2) → H1(X) must be injec-
tive. Then, by the universal coefficient theorem, f∗ : H1(X) → H1(RP 2)
is surjective. Thus, there exists an element ξ ∈ H1(X) such that f∗ξ ∈
H1(RP 2) ∼= Z2 is the generator. Since (f∗ξ) ^ (f∗ξ) = f∗(ξ ^ ξ) is the
generator of H2(RP 2) ∼= Z2, we see that f∗ : H2(X) → H2(RP 2) is sur-
jective. Thus, again by the universal coefficient theorem, f∗ : H2(RP 2) →
H2(X) is injective. This contradicts our assumption. Thus f∗ : H1(RP 2) →
H1(X) must be the zero map. This completes the proof. �

Proposition 4.2. Let f : RP 2 → N be a continuous map of the real pro-
jective plane into a 3-dimensional generalized manifold N . If f∗[RP 2] = 0
in H2(N), then f̄∗ : H1(RP 2) → Ȟ1(f(RP 2)) is the zero map.

Proof. By Lemma 4.1, f∗ : H1(RP 2) → H1(N) is the zero map. Hence f
is homologous to a constant map g : RP 2 → N ; i.e., f∗ = g∗ : H∗(RP 2) →
H∗(N). As the definition of the primary obstruction (see Definition 2.5)
shows, θ(f) is a homology invariant ; i.e., if f∗ = g∗, then θ(f) = θ(g). Thus
we have

θ(f) = w̄1(RP 2) _ [RP 2],

which is the generator of H1(RP 2) ∼= Z2. Then the result follows from
Corollary 3.2. This completes the proof. �

Remark 4.3. When N is a topological manifold, we can also prove the
above proposition by using the fact that f is bordant to a constant map and
by using a result in [3]. Here we have given a proof which does not depend
on the argument or the result in [3].

As a direct corollary to the above proposition, we obtain the following.
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Corollary 4.4. Let f : RP 2 → N be a continuous map of the real projec-
tive plane into a 3-dimensional generalized manifold N . If f∗[RP 2] = 0 in
H2(N), then f is not a topological embedding.

Compare the above result with [3, Corollary 4.2].

Remark 4.5. A 2-dimensional compact generalized manifold is said to be
a cohomology real projective plane if it has the same cohomology ring over
Z2 as RP 2. The results of this section hold also for maps of cohomology real
projective planes into 3-dimensional generalized manifolds. Note, however,
that if a cohomology real projective plane is second countable9 , then it is
homeomorphic to RP 2 (see [9, 16.32 Theorem, p. 388]).
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[17] G.M. Kelly, The exactness of Čech homology over a vector space, Proc. Camb. Phil.
Soc., 57 (1961), 428-429.

[18] J. Milnor and J. Stasheff, Characteristic Classes, Ann. of Math. Studies, Vol. 76,
Princeton Univ. Press, Princeton, N. J., 1974.

[19] J.R. Munkres, Elements of Algebraic Topology, Addison-Wesley Publ. Company, Cal-
ifornia, Massachusetts, London, Amsterdam, Ontario, Sydney, 1984.

[20] F. Ronga, ‘La classe duale aux points doubles’ d’une application, Compositio Math.,
27 (1973), 223-232.

[21] E.H. Spanier, Algebraic Topology, TATA McGraw-Hill Publ. Company Ltd., Bombay,
New Delhi, 1966.

[22] R. Thom, Espaces fibrés en sphère et carrés de Steenrod, Ann. Sci. Ecole Norm. Sup.,
69 (1952), 109-181.

[23] T. Yasui, On the Stiefel-Whitney classes of maps and Haefliger’s obstructions to
embeddings, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 19 (1998), 73-84.

Received December 21, 1998.

Universidade de São Paulo
13560-970, São Carlos, SP
Brazil
E-mail address: biasi@icmc.sc.usp.br

Universidade Estadual de Maringá
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