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We give a complete description of the generalized Fuss–
Catalan algebras: colored generalizations of the Temperley–
Lieb algebras, introduced by D. Bisch and V. Jones. For these
chains of finite dimensional algebras, we describe a basis in
terms of generators, and give a complete description, includ-
ing the dimensions, of the irreducible representations.

We then consider an arbitrary subfactor containing a chain
of intermediate subfactors. The higher relative commutants
of a subfactor are an important tool for classifying the sub-
factor. We show the Fuss–Catalan algebras to be generically
contained inside the higher relative commutants of the sub-
factor. Thus the Fuss–Catalan algebras provide an underlying
structure for the higher relative commutants of any subfactor
that contains a chain of intermediate subfactors.

1. Introduction.

Given an inclusion of type II1 factors N ⊂ M of finite index, the basic
construction yields a tower of II1 factors [Jo1]:

N ⊂M ⊂M1 ⊂M2 ⊂ . . .

along with a sequence of projections e1, e2, e3, . . . with Mi = {Mi−1, ei}′′
(and M1 = {M, e1}′′). Intersecting this tower with the algebras N ′ and M ′

gives a double sequence of finite-dimensional algebras:
N ′ ∩N ⊂ N ′ ∩M ⊂ N ′ ∩M1 ⊂ . . .

∪ ∪
M ′ ∩M ⊂ M ′ ∩M1 ⊂ . . .

known as the (opposite) standard invariant (see for example [Po1]). Much
of the structure of N ⊂ M (in some cases all of it [Po2]) is captured by
the standard invariant, and therefore a full description of it is very de-
sirable. It was pointed out in [Jo1] that {e1, e2, . . . ei}′′ ⊂ N ′ ∩ Mi and
{e2, e3 . . . ei}′′ ⊂ M ′ ∩ Mi for any subfactor N ⊂ M and thus a descrip-
tion of the algebras {1, e1, e2, . . . ei}′′ provides an underlying structure for
all standard invariants. These algebras, the Temperley-Lieb algebras, were
fully described in this same paper [Jo1], giving the structure of the reduced
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words, the Brattelli diagram for the inclusions, as well as the value of the
trace.

D. Bisch and V. Jones analyzed the corresponding situation when a sub-
factor N ⊂ M is known to have an intermediate subfactor N ⊂ P ⊂ M
[BiJo1]. Here, the presence of P leads to added structure (i.e., additional
projections) in the standard invariant. This added structure was analyzed
and shown to be strongly related (in the generic case isomorphic) to a “col-
ored” string algebra termed the Fuss-Catalan algebra FCk,n. A full analysis
of these algebras was given, with the exception of describing a basis set. In
addition, some of the work in [BiJo1] addressed the more general situation
of a subfactor N ⊂M with a chain of k intermediate subfactors:

N ⊂ P 1 ⊂ P 2 ⊂ . . . P k ⊂M

and it was stated that the main results can be generalized to this situation.
The following is this generalization. We analyze the structure imposed

on the standard invariant by a chain of k intermediate subfactors. Three
algebras are discussed:

1) An abstract algebra AAk,n that is defined by generators and relations,
2) The colored string algebras FCk,n introduced in [BiJo1],
3) The algebras IAk,n that are the concrete algebras generated by pro-

jections corresponding to the intermediate subfactors P 1, P 2, . . . P k.
Sections 2-5 define the algebras AAk,n and analyze their structure. Sec-

tion 3 gives a spanning set of words. Sections 4 and 5 count these words by
giving a correspondence with certain types of labeled planar trees and then
counting these trees. Section 6 defines the algebra FCk,n, giving a gener-
ating set. Section 7 puts this work together to establish the isomorphism
between AAk,n and FCk,n, and in the process establishes that the spanning
set given for AAk,n is actually a basis. Section 8 mimics the elegant struc-
tural analysis for FC1,n done in [BiJo1], giving an inductive description of
the Bratteli diagram for

FCk,0 ⊂ FCk,1 ⊂ FCk,2 . . .

Section 9 develops explicit formulas for the dimensions of the irreducible
representations of FCk,n. Section 10 again mimics work in [BiJo1], giving a
description of the trace on FCk,n. Section 11 establishes the connection with
subfactors: defining IAk,n and establishing the isomorphism with AAk,n

(and thus with FCk,n) generically. In addition Section 11 addresses the
non-generic case, showing IAk,n to be a quotient of AAk,n.

It is worth pointing out the similarities and differences between what is
contained in [BiJo1] and what is contained here. The work in [BiJo1],
though mainly concerned with the k = 1 case, provided a very nice road
map for what appears here. The broad structure of the argument in both
papers is the same: defining AAk,n and FCk,n, proving them isomorphic,
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establishing the isomorphism (homomorphism in the non-generic case) to
IAk,n, and finally analyzing the structure of FCk,n(and hence the struc-
ture of IAk,n). Sections 7, 8, 10, and 11 consist of arguments from [BiJo1]
adapted to the general case. In addition, many details particular to the
analysis of FCk,n(Section 8), and the analysis of the trace (Section 10),
though presented in [BiJo1] only for k = 1, carry through merely by re-
placing statements with 2 variables to statements with k variables. These
restatements are referenced to [BiJo1] and given without proofs.

What is completely new in this work falls into two main categories: the
description of a basis for the algebras AAk,n (Sections 2 - 6) and the compu-
tation of the dimensions of the irreducible representations of FCk,n (Section
9) as well as the description of the Bratteli diagram for the algebras FCk,n

(Theorem 10). The use of the basis for AAk,n establishes AAk,n
∼= FCk,n

which had been conjectured in [BiJo1], and also significantly simplifies and
clarifies the proof of the case AA1,n

∼= FC1,n [BiJo1]. Explicit formulas for
the dimensions of the irreducible representations of FCk,n are given using
combinatorial arguments. (This computation for k = 1 was done by other
means in [BiJo2].)

Finally, because most of the material in Sections 1-10 does not involve
subfactors, it is accessible to non-specialists. Moreover the combinatorial
aspects of Sections 3 - 5 and 9 are of independent interest.

2. The Algebra AAk,n.

We begin by defining an abstract algebra AAk,n(α0, α1, . . . αk) (this same
algebra is considered independently in [DFr]).

Definition 1. Let AAk,n(α0, α1, . . . αk), αi ∈ C be the abstract algebra
generated by:

{1, aEi} 1 ≤ i ≤ n− 1, 0 ≤ a ≤ k,

subject to the relations:
0) 1 aEi = aEi1 = aEi

1) aEi bEi = max(a,b)Ei

2) aEi bEj = bEj aEi for |i− j| ≥ 2 or
|i− j| = 1 and
a+ b < k.

3) aEi bEi±1 aEi = c(a, b) aEi k−a−1Ei±1 for a+ b ≥ k where
we set −1Ei±1 = 1.
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Here c(a, b) = k−a−1ci+1 k−b−1ci

aci bci+1
, with

aci =
{
α0α1 · · ·αa for i even,
αk · · ·αk−a for i odd, and −1ci = 1.

Remarks.

1) Relations 1) and 2) imply that aEkbEk±1aEk = aEkbEk±1 for a+b < k.
2) Relations 1) and 3) imply aEkbEk±1dEk can always be reduced to a

word with two or fewer terms.

Abacus Construction.
Abstractly these relations are slightly daunting, but there is a nice visual-

ization of the words of this algebra. Consider an abacus with n−1 horizontal
bars labeled from bottom to top by the integers 1 through n−1. In addition,
have the bars of the abacus spaced k units apart. Now represent aEj by a
bead of radius a units, hanging on the jth horizontal bar. Thus the word

1E32E21E14E30E2 ∈ AA4,5(α0, . . . α4)

would be depicted by the following picture:

1

4

3

2

With this description, relation 1) has the following visual interpretation:
b

a

Ea

i

i

Eb i

Ea i

Eb Ebi i

(assuming a<b).

Relation 2) is given by:
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b

a

b

a

Eb Eb

Ea Ea

i

i+1

j

j

i

j

i

(for |i-j|      2)

and

Eb Eb

Eb Eb

b b

a a

i+1

i

i

i+1i+1

i

(for |i-j|=1 and a+b<k)

Note. The abacus picture was motivated by interpreting this second re-
lation. We allow two generators to commute (slide by each other) if there
is space between their respective beads. We note that if there is no room
(i.e., a+ b = k), we do not allow them to slide by each other (commute). (If
you like, imagine that the abacus is not that well made so that the beads
are just a little larger than they are supposed to be.) Finally, relation 3) is
visually interpreted as:

E E

Eb i+1

i

i+1

a
b

a

i ia a

c(a,b)

Ea i

E i+1

11
a

k-a-1

k-a-1
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The abacus picture is very helpful for what follows, and the reader is
encouraged to think of manipulating words in AAk,n(α0, · · · ak) via these
pictures.

We now analyze the structure of AAk,n. In the next section, we will show
that a certain subset of AAk,n, defined to be the set of words of reduced
form, linearly spans AAk,n. In Sections 4 and 5 we will count the number
of these reduced words. Later, in Section 7 we will show that the number of
these words is equal to the dimension of AAk,n and that therefore the words
of reduced form are a basis of AAk,n.

3. A Spanning Set for AAk,n.

Define a function s on the formal words in the {aEk} as follows:

for w =
∏l

i=1 a(i)Eb(i), define s(w) =
∑l

i=1(a(i) + 1).

Note that we are defining s on the formal words, (i.e., the words in the
free product of the generators), not on the elements of AAk,n. We will call
s(w) the size of w.

Definition 2. A word w in the free product of the generators will be called
minimal if s(v) ≥ s(w) for any v ∼ w. Here we define v ∼ w to mean that
as elements of AAk,n(α0, · · ·αk), v = cw with c a nonzero scalar.

We introduce the notation rM(i),m(i) to mean a word of the form

rM(i),m(i) =
m(i)∏

j=M(i)

a(i,j)Ej with m(i) ≤M(i), 0 ≤ a(i, j) ≤ k,

where we take the product in decreasing order from j = M(i) to j = m(i).
Pictorially rM(i),m(i) represents a word with its first bead on the M(i)th
level, and each subsequent bead on the next lower level, with the last bead
on the m(i)th level.

Lemma 1. For m(i) ≤ l ≤ M(i), the words rM(i),m(i) aEl and
aEl rM(i),m(i) are not minimal.

Proof. For l 6= m(i),

rM(i),m(i) aEl =

 l+1∏
j=M(i)

a(i,j)Ej


a(i,l)El · a(i,l−1)El−1 · aEl

 m(i)∏
j=l−2

a(i,j)Ej


which is not minimal since a(i,l)Ela(i,l−1)El−1aEl is not minimal by the re-
mark after Definition 1. The abacus picture that corresponds to the above
calculation is as follows:
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l

M

m

aa(l)

a(l-1)

{

This reduces

For k = m(i) we have

rM(i),m(i) · aEm(i) =

m(i)+1∏
j=M(i)

a(i,j)Ej

 · a(i,m(i))Em(i)aEm(i)

which reduces by relation 1. By turning the pictures upside down we have
a proof for aEk · rM(i),m(i). �

Lemma 2. Given v minimal, then v ∼ w with s(v) = s(w) and w of the
form

w =
l∏

i=1

rM(i),m(i), with

M(1) < M(2) < M(3) . . . ,
m(1) < m(2) < m(3) . . . .

Proof. Given v =
∏l

i=1 a(i)Eb(i), consider the related word v̂ in the Temper-
ley-Lieb algebra: v̂ =

∏l
i=1 eb(i) [Jo1]. Now reduce v̂ using the Temperley-

Lieb relations:

1’) ei2 = ei,
2’) eiej = ejei, |i− j| ≥ 2,
3’) eiei±1ei = λei.

Any use of 2’) can be mirrored by the use of relation 2) on v. If the
reduction uses 1’) or 3’) on v̂, the corresponding use of relations 1), 3) or
the remarks immediately following the definition of AAk,n will reduce the
size of v, violating the minimality of v. Thus, using only relation 2’, v̂ can be
put in the reduced form described in [Jo1, p. 14]. Mirroring these moves on
v gives us a word of the form described in the statement of the lemma. �
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We give the following two definitions. For now we are interested in the
definition of a reduced block. The definition of an n-block will facilitate a
later discussion.

In what follows, l is an integer, m and M are maps from {1, 2, . . . , l} to
the integers and a is a map from A = {(i, j) : 1 ≤ i ≤ l, m(i) ≤ j ≤ M(i)}
to {0, 1, . . . , k}.

Definition 3. A word w in the generators of AAk,n is called a block, and
denoted by (m,M, l, a), if it is of the form:

w =
l∏

i=1

rM(i),m(i) with

b1. M(1) < M(2) < M(3) · · · < M(l),
m(1) < m(2) < m(3) · · · < m(l),
m(i+ 1) ≤M(i).

b2. a(i, j) = a(i−1, j−2) whenever a(i, j), a(i, j−1), a(i−1, j−1), a(i−
1, j−2) are all defined (i.e., (i, j),(i, j−1), (i−1, j−1), (i−1, j−1) ∈ A).

A block with m(1) = 1 and M(l) = n is called an n-block.

Definition 4. A word w in the generators of AAk,n is called a reduced
block, and denoted by (m,M, l, a) if it is a block and satisfies the additional
condition:

b3. a(i, j) + a(i, j − 1) ≥ k,
a(i, j) + a(i+ 1, j + 1) ≥ k.

Remark.
We present a brief visual description of the reduced blocks in the abacus

picture. A reduced block is a sequence of descending strings of beads (each
descending string being an rM(i),m(i) with beads starting at the M(i)th level
and ending at the m(i)th level). Condition b1 tells us that the next de-
scending string starts (resp. ends) at a higher level than the previous one
starts (resp. ends). In addition, the ending of the next descending string
cannot be higher than the start of the previous one. Condition b2 requires
that if we ever see a diamond shape of beads as follows:
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j-2

j-1

j

a(i,j)

a(i-1,j-2)

part of rM(i-1),m(i-1) part of rM(i),m(i)

a(i-1,j-1)
a(i,j-2)

the top (a(i, j)) and bottom (a(i−1, j−2)) bead must have the same length.
Condition b3 tells us that any bead at level j will be large enough to touch
the closest beads to it that hang at the j ± 1 level.

We now describe how to write a word in AAk,n as a product of reduced
blocks. Suppose we have w =

∏l
i=1 rM(i),m(i) minimal, of the form of Lemma

2, and with the added requirement that l is maximal. Let L = {i : m(i+1) >
M(i)}. Label the elements of L in increasing order l1, l2, . . . , ld, so that
1 ≤ l1 < l2 . . . ld < l. Define

w1 =
l1∏

i=1

rM(i),m(i),

wi =
li∏

i=li−1+1

rM(i),m(i), for 2 ≤ i ≤ d,

wd+1 =
l∏

i=ld+1

rM(i),m(i).

Thus we have

w =
d+1∏
m=1

wm.

Lemma 3. The wm as defined above are reduced blocks.

Proof. The wm clearly satisfy conditions b1: the first two because w does,
and the last due to the choice of the lm. To show b2 we assume the existence
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of a(i, j), a(i, j−1), a(i−1, j−1), a(i−1, j−2). We can use the commuting
relations to write:

wi = · · · a(i−1,j−1)Ej−1 a(i−1,j−2)Ej−2 a(i,j)Ej a(i,j−1)Ej−1 · · ·

But this word is not of minimal size unless a(i − 1, j − 2) = a(i, j). We
demonstrate this with an example in AA4,n(α0, α1 . . . α4) along with its aba-
cus interpretation.

4E23E11E33E2 → (4E22E2)3E11E3(2E23E2)

→ 4E2(2E23E12E2)1E33E2 → c3(2, 3)4E2(2E21E1)2E33E2

→ c3(2, 3)4E21E11E33E2

3

2

1

The same series of manipulations works on a general word of this form,
though the notation becomes somewhat cumbersome.

Finally, for b3, suppose a(i0, j0) + a(i0, j0 − 1) < k. Thus a(i0,j0)Ej0

commutes with a(i0,j0−1)Ej0−1. Commuting a(i0,j0−1)Ej0−1 to the left will
contradict minimality of w (Lemma 1) unlessM(i0−1) < j0−1. Commuting
a(i0,j0)Ej0 to the right will yield a contradiction by the same lemma unless
m(i0 + 1) > j0. In this case, let

r1 =
j0∏

j=M(i0)

a(i0,j)Ej , r2 =
m(i0)∏

j=j0−1

a(i0,j)Ej ,

so that rM(i0),m(i0) = r1r2. Note r1 and r2 commute because a(i0, j0) +
a(i0, j0 − 1) < k. Then we can rewrite

w = w1w2 . . . wm−1

 i0−1∏
j=lm−1+1

rM(j),m(j)


· r2r1

 lm∏
j=i0+1

rM(j),m(j)

wm+1wm+2 . . . wd

which is of the desired form with one more term, thus contradicting the
maximality of l.
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To clarify, we include the corresponding picture:

. . . . . .

w

. . .

w

. . .

The two beads drawn are a(i0,j0+1)Ej0+1 and a(i0,j0)Ej0 . The two dotted
boxes are meant to surround those beads that represent r1 and r2. Because
M(i0−1) < j0−1 and m(i0 +1) > j0, the two boxes can slide by each other
to give a configuration that contradicts the maximality of l, the number of
r’s in w.

A slightly quicker argument holds for the second part of condition b3.
Suppose a(i, j)+a(i+1, j+1) < k, then a(i,j)Ej and a(i+1,j+1)Ej+1 commute.
Commuting a(i,j)Ej to the right and using Lemma 1 we get a contradiction
on the minimality of w unless m(i+ 1) = j + 1. Commuting a(i+1,j+1)Ej+1

to the left will again contradict minimality of w unless M(i) = j. But this is
impossible since M(i) = j < m(i+1) means that a(i,j)Ej and a(i+1,j+1)Ej+1

would be in different wi. �

We are now ready to describe what will turn out to be a basis for AAk,n.

Definition 5. A word w will be called in reduced form if:
1) w = 1,

or
2) w =

∏d
i=1wi with a) the wi reduced blocks,

b) min(wi+1) > max(wi).
where min(w) = min{j : aEj appears in w},

max(w) = max{j : aEj appears in w}.
Definition 6. Let Sk,n to be the set of words of reduced form inside AAk,n.

So far we have shown that any word can be put in the above reduced form
(Lemma 3). Thus Sk,n is a spanning set for AAk,n and dim(AAk,n) ≤ |Sk,n|.
Our next task is to count these words.

Our plan of attack for counting words of reduced form is as follows:
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1) Show a 1-1 correspondence between reduced blocks and certain pic-
tures we call Kauffman (k,n)-diagrams.

2) Then establish a 1-1 correspondence between the Kauffman (k,n)-
diagrams and planar (k,n)-trees with labeled vertices.

3) Finally, count the number of planar (k,n)-trees using a recursion rela-
tion. Combine this with the relationship between reduced blocks and
elements of Sk,n to count the words of reduced form.

4. Kauffman Diagrams and Planar Trees.

In this section we give the 1-1 correspondences listed as items 1 and 2 in
the above plan. First, we introduce the notion of a Kauffman diagram, an
object defined in [Ka]:

Definition 7. Let Dn be a rectangle with n marked points on the top of
the boundary and n marked points on the bottom. We define a Kauffman
n-diagram to be a picture sitting inside Dn, consisting of n non-intersecting
curves that begin and end at distinct marked boundary points. We will
consider two such diagrams equal if they are isotopically equivalent (keeping
the boundary fixed).

We note that a Kauffman diagram is completely characterized by which
marked boundary points are joined together. For simplicity we label the
marked boundary points 1 through 2n clockwise starting at the top left and
ending at the bottom left. Then the Kauffman n-diagrams are in one-to-one
correspondence with functions J : [1, 2n] → [1, 2n] with the following three
properties:

1) J(i) 6= i,
2) J2 = id,
3) If i ≤ j ≤ J(i) then i ≤ J(j) ≤ J(i).

We note that condition 3 characterizes the fact that the curves in a Kauff-
man diagram do not intersect (that is, the planarity of the Kauffman dia-
gram). We will call a function J with the three properties listed above a
planar n-function.

We note that the curves in a Kauffman n-diagram divide Dn into n + 1
pieces. We will call a labeled Kauffman (k, n)-diagram a Kauffman diagram
equipped with a labeling of each of its n + 1 pieces by an integer in the
interval [0, k].

Lemma 4. With the exception of the identity Kauffman n-diagram:
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1 2 3 n

n+12n 2n-1

. . .

all Kauffman diagrams have at least one curve connecting adjacent points
on the bottom of Dn (i.e., there exists i : n+ 1 ≤ i < 2n with J(i) = i+ 1).

Proof. For a given Kauffman diagram consider the smallest l ≥ n + 1 with
J(l) 6= 2n + 1 − l. (If no such l exists then the diagram is the identity
diagram.) The curve joining l to J(l) divides Dn into two parts. Consider
the part that includes the point l+ 1. By choice of l, unless J(l) = l+ 1 (in
which case we are done), this part contains more points on the bottom row
(i.e., with label > l) than points on the top row (i.e., with labels < 2n+1−l).
Thus two points on the bottom must be joined together. Take a pair of points
on the bottom that are joined together and that are minimal with respect
to the number of points between them. By minimality, the points must be
consecutive (since the planarity of Kauffman diagrams ensures that all the
points between would be connected to each other). �

Consider the following two pictures:

. . .

......

n

p b

1) 2). . .

. . .

. . .

a(1) a(l-1)

a(l)

n
l

,

with a(1), . . . , a(l), b integers in the interval [0, k]. Both can be thought
of as operators on labeled Kauffman (k, n)-diagrams. For a given labeled
Kauffman (k, n)-diagram K, place K inside the dotted rectangle aligning
the marked boundary points with the strands leaving the rectangle. The
resulting bigger rectangle is a labeled Kauffman (k, n + l)-diagram in the
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first case and a labeled Kauffman (k, n+1)-diagram in the second case. We
will call the first operator Il,n(a(1), . . . , a(l)) and the second θp,n(b). We
provide an example for clarification:

Given

K = b
c

d

a
,

we have

θ2,3(e)(K) = b
c

d

a

e

.

We now establish a 1-1 correspondence between Kauffman (k, n)-diagrams
and n+ 1- blocks (recall Definition 3). Let ψ : { Kauffman n-diagrams } →
{ n+ 1- blocks } be inductively defined as follows:

Given a labeled Kauffman (k, n)-diagram K,
1) If K is the Kauffman (k, n)-diagram:

a a a a1 2 3 n+1. . .

1 2 3 n

n+12n 2n-1

then ψ(K) = (m,M, l, a) with l = 1,m(1) = 1,M(1) = n+ 1, a(1, i) =
ai.

2) Otherwise choose j maximal so that K is in the image of Ij,n−j(∗)
(i.e., j is the number of vertical strands at the right of K). Write
K = Ij,n−j(a(1), . . . , a(j))(K ′) with labels a(1), . . . , a(j) and Kauff-
man (k, n− j)-diagram K ′ uniquely determined from K and j.

3) By Lemma 4, K ′ has two consecutive bottom boundary points that
are connected and thus K ′ is in the image of θp,n−j−1(∗) for at least



FUSS–CATALAN ALGEBRAS 339

one p. Choose p maximal and write K ′ = θp,n−j−1(b)(L) with label b
and Kauffman (k,n-j-1)-diagram L uniquely determined from K ′ and
p.

4) Set ψ(L) = (m′,M ′, l′, a′). Define ψ(K) = (m,M, l, a) inductively as:
- l = l′ + 1
- m(i) = m′(i), M(i) = M ′(i) for 1 ≤ i ≤ l′

- m(l) = p, M(l)=n
- a(i′, j′) = a′(i′, j′) for 1 ≤ i′ ≤ l′

- a(l, j′) = a(l − 1, j′ − 2) for p < j′ ≤M ′(l) + 1
- a(l, p) = b
- a(l,M ′(l) + 1 + i) = a(i) for 1 ≤ i ≤ j.

We define what will turn out to be the inverse of ψ. Let the map

T : { n+ 1-blocks } → { Kauffman (k, n)-diagrams }
be inductively defined as follows:

Given an n+ 1-block (m,M, l, a),

1) If l = 1 then set

T (m,M, 1, a) =

. . .a(1,1) a(1,2) a(1,3) a(1,n+1)

2) Otherwise, let

j = M(l)−M(l − 1)− 1,

a = (a(l,M(l − 1) + 2), a(l,M(l − 1) + 3), . . . , a(l,M(l − 1) + j + 1))

and define

T (m,M, l, a) = Ij,M(l−1)(a)(θm(l),n−j−1(T (m′,M ′, l − 1, a′)))

where the functions m′(i) and M ′(i) are the functions m(i) and M(i)
restricted to the domain {i : 1 ≤ i ≤ l − 1} and a′ is just a restricted
to the part of the domain of a with the first coordinate between 1 and
l − 1. We include the visual interpretation of the inductive definition
of T for clarification:
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. . .

......

. . .

M(l-1)

a(k,M(l-1)+2)
a(k,M(l-1) +3)

M(l)

a(l,M(l))

a(l,m(l))m(l)

T(m,M,l,a) = T(m’,M’,l-1,a’)

These maps are clearly well defined and inverses and thus we have:

Theorem 1. The maps ψ and T establish a one-to-one correspondence be-
tween n+1-blocks and Kauffman (k, n)-diagrams. Moreover when this corre-
spondence is restricted to reduced (k, n+1)-blocks, it yields a one-to-one cor-
respondence between reduced (k, n+1)-blocks and Kauffman (k, n)-diagrams
with the added condition that the sum of labels of any two adjacent pieces is
≥ k.

Proof. This follows from the inductive definitions of T and ψ. �

Next we need a correspondence well known to combinatorialists. We
define a planar (k,n)-tree to be a rooted planar tree with n edges and vertices
labeled by integers in the interval [0,k].

Theorem 2. There is a one-to-one correspondence between Kauffman
(k, n)-diagrams and planar (k, n)-trees. Furthermore, in this correspon-
dence, labels of adjacent pieces of the Kauffman diagram label neighboring
vertices on the corresponding planar tree.

Proof. We use the well-known bijection between Kauffman (0, n)-diagrams
and planar (0, n)-trees, [St, Exercise 6.19 e & o, p. 256]. In this bijection,
the vertices of a planar tree are in one-to-one correspondence with the pieces
of the corresponding Kauffman diagram. Thus the bijection extends to a
bijection between Kauffman (k, n)-diagrams and planar (k, n)-trees. The
result follows from the fact that labels of adjacent vertices of a tree get sent
to adjacent pieces of the Kauffman diagram and vice-versa. For clarity, we
include the following picture that illustrates the correspondence between a
Kauffman (2,5)-diagram (dotted lines) and a planar (2,5)-tree (solid lines,
the tree is turned on its side with the root at the right):
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�

Theorem 3. There is a one-to-one correspondence between reduced (k, n+
1)-blocks and (k, n) planar trees for which the sum of labels of any two ad-
jacent vertices is ≥ k.

Proof. This follows from Theorems 1 and 2, and the fact that reduced (k, n)-
blocks are (k, n) blocks with the added condition that
b3. a(i, j) + a(i, j − 1) ≥ k

a(i, j) + a(i+ 1, j + 1) ≥ k.

�

Corollary 3.1. There is a one-to-one correspondence between reduced
(k, n + 1)-blocks and (k, n) planar trees for which the sum of labels of any
two adjacent vertices is ≤ k.

Proof. Replacing every lable of a vertex by k minus that label gives a one-
to-one correspondence between

{ (k, n) planar trees with the sum of labels of any two adjacent vertices
≥ k }
and

{ (k, n) planar trees with the sum of labels of any two adjacent vertices
≤ k }.

The result then follows from Theorem 3. �

We are now ready to complete the plan of counting the number of reduced
words described at the end of Section 3.

5. Counting.

We have established a one-to-one correspondence between the reduced (k, n)
blocks and (k, n)-planar trees for which the sum of labels of any two adja-
cent vertices is ≤ k. Using this correspondence we will now show that the
generating function

T (x) = 1 +
∞∑
i=1

|Sk,i|xi
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satisfies the relation:

xT k+2 = T − 1.(1)

Let An
i be the number of planar (k, n− 1) trees with

1) the root vertex labeled by i,
2) the sum of labels of any two adjacent vertices ≤ k.

Thus n will index the number of vertices on the tree. Let Ai(x)=
∑∞

n=1A
n
i x

n,
and let A(x) =

∑k
i=0Ai(x). Writing A(x) =

∑∞
i=1 aix

i we have from Corol-
lary 3.1 that ai is the number of reduced (k, i)-blocks.

Recall (Definition 5) that a word w ∈ Sk,n has the form:
1) w = 1,

or
2) w =

∏d
i=1wi with a) the wi reduced blocks,

b) min(wi+1) > max(wi).

The elements w =
∏d

i=1wi ∈ Sk,n fall into two disjoint categories:
i) max(wd)< n− 1, in which case w can be any element of Sk,n−1,
ii) max(wd)= n−1, min(wd)= j, in which case w can be described as the

product of an element of Sk,j (i.e.,
∏d−1

i=1 wi) and a reduced block wd

with max(wd)= n− 1 and min(wd)= j.
Thus we have the relation for n > 1,

|Sk,n| = |Sk,n−1|+
n−1∑
j=1

|Sk,j |an−j .

The above and the fact that |S1,k| = 1, translate to the generating function
equation:

∞∑
i=1

|Sk,i|xi = x

∞∑
i=1

|Sk,i|xi +

( ∞∑
i=1

|Sk,i|xi

)
A(x) + x.

Thus

T (x)− 1 = x(T (x)− 1) + (T (x)− 1)A(x) + x

and solving for T (x) and A(x) respectively yields:

T (x) =
1−A(x)

1−A(x)− x
,

A(x) = 1− xT (x)
T (x)− 1

.(2)

Consider a tree counted by An
i . The root is labeled by i and the first

vertex (as the tree is traced clockwise from the root), if one exists, is labeled
by l :
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l
.

.
*i

The tree can be thought of as the joining of two trees (the dotted circles),
one with root labeled i and the other with root labeled l for some l with
i+ l ≤ k. We therefore have the recursion:

An
i =

n−1∑
j=1

Aj
i

(
k−i∑
l=0

An−j
l

)
for n > 0.

In terms of Ai(x), this relation becomes

Ai(x) = x+
k−i∑
l=0

Ai(x)Al(x)(3)

with the initial x to allow for the tree with exactly one vertex. Setting
Li(x) = 1−

∑i
l=0Al(x), (3) becomes

(1− L0(x))Lk(x) = x(4)

(Li−1(x)− Li(x))Lk−i(x) = x 1 ≤ i ≤ k.(5)

For convenience of notation, we will omit the dependence on x whenever
possible (i.e., we will denote L(x) by L). Rewriting (5) we have

LiLk−i = Li−1Lk−i − x.(6)

Evaluating (6) at the two values i = j and i = k − (j − 1) gives

LjLk−j = Lj−1Lk−j − x = (Lk−(j−1)Lj−1 + x)− x = Lk−(j−1)Lj−1,

and thus LjLk−j = L0Lk for 1 ≤ j ≤ k. Using (4) to express L0Lk in terms
of Lk we have

LiLk−i = Lk − x.(7)

It follows from (6) that

Li−1Lk−i = Lk − x+ x = Lk.(8)
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Combining (7) and (8) yields

Li =
(
Lk − x

Lk

)
Li−1

and thus

Li =
(
Lk − x

Lk

)i

L0 =
(
Lk − x

Lk

)i+1

.(9)

For i = k the above becomes

Lk =
(
Lk − x

Lk

)k+1

.(10)

Combining (10),(2) and Lk = 1−A implies that T , the generating function
for |Sk,n|, satisfies the relation:

xT k+2 = T − 1.

6. FCk,n.

We now define the Fuss-Catalan algebras of [BiJo1]. Recall that in a Kauff-
man n-diagram we had labeled the boundary points 1, 2, . . . , 2n as we trav-
eled clockwise around the picture starting at the top left, ending at the
bottom left.

Definition 8 ([BiJo1]). Label the boundary points of the Kauffman (k +
1)n-diagrams clockwise by the labels:

a0, a1, a2 . . . ak, ak, ak−1 . . . a1, a0, a0 . . .

(Thus boundary point 2(k+1)n is labeled by a0.) Define B(k, n, a0, a1, . . . ak)
to be the set of all Kauffman (k + 1)n-diagrams such that for each i, the
boundary points i and J(i) have the same “a” label. (This is equivalent to
i+ J(i) ≡ 1 mod 2(k + 1).)

Definition 9 ([BiJo1]). Let FCk,n(α0, α1 . . . αk), αi ∈ C − 0 be the com-
plex linear span of B(k, n, a0, a1 . . . ak), with the following multiplicative
structure:
Given D1, D2 ∈ B(k, n). Define D3 ∈ B(k, n) as follows: stack D2 on top of
D1 so that the boundary points at the bottom of D2 are aligned with those
at the top of D1. Fuse the curves of D2 and D1 together at these boundary
points. Remove all closed loops and let D3 be the resulting diagram.

We define

D1D2 = (α0)n0(α1)n1 . . . (αk)nkD3

where ni is the number of removed closed loops of curves of type “ai”.
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Note. The notation differs slightly from [BiJo1] in that the labels of the
curves are ai whereas the scalars associated to loops of type “ai” are the αi.
In [BiJo1], ai represented both these quantities. We do this to clarify that
the types “ai” are all distinct whereas the scalars αi need not be. From now
on we will refer to B(k, n, a0, a1 . . . ak) as B(k, n), suppressing the labeling
set of the vertices.

Definition 10 ([BiJo1]). We define a *-operation on FCk,n(α0, α1, . . . αk),
αi ∈ R as follows: if D ∈ FCk,n is a diagram, denote by D∗ the diagram
obtained by the reflection of D over the top boundary. Thus the top (resp.
bottom) boundary of D∗ is the bottom (resp. top) boundary of D. Extend
the *-operation to all of FCk,n by conjugate linearity.

We note that D∗∗ = D and (D1D2)∗ = D∗
2D

∗
1 (since the parameters are

real) and so * is a conjugate linear involution of FCk,n.

Definition 11. Let aei, 1 ≤ i ≤ n− 1, 0 ≤ a ≤ k denote the idempotent in
FCk,n that is 1

aci
times the following picture:

2n(k+1) n(k+1)+1

. . .

1 2

i(k+1)-a i(k+1)+a+1

i(k+1)

n(k+1)

. . .

where

aci =
{
α0α1 . . . αa for i even,
αk−aαk−a+1 . . . αk for i odd.

We want to show that FCk,n is generated by the set {1, aei}. To do so,
we use the following notation and lemma:

Denote by a box labeled i a Kauffman diagram consisting of i vertical
strings:

. . .=i

i
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Lemma 5. Given K ∈ B(k, n) with corresponding planar function J . Sup-
pose that |J(i) − i| < 2(k + 1) for all i ∈ S = {i0, i0 + 1, . . . i0 + k}. Then
up to horizontal and/or vertical symmetry (i.e., reflection in the x and/or
y axes) there exists an integer c, 0 ≤ c ≤ k+ 1 such that K can be drawn in
one of the following two ways:

c

c

k+
1-

c

k+1-c

or

Proof. Choose i so that i ∈ S and |i− J(i)| is maximal (i is not necessarily
unique). Let us assume J(i) < i, an identical argument holds otherwise.
Because there are only two boundary points of each type between J(i) and
i, we must have K of the form:

c

i

or

c

i

with c = (i − J(i) + 1)/2. If |i − J(i)| = 2(k + 1) − 1 we are done (since
c = k + 1). Otherwise either J(i) − 1 or i + 1 is in S. By symmetry let us
assume i+1 ∈ S. We then have J(i+1) > (i+1) (otherwise J(i+1) < J(i)
contradicting the choice of i), and J(i+1)− (i+1) < 2(k+1). Again, since
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there are only two boundary points of each type between i+ 1 and J(i+ 1)
we are left with one of the two pictures we wanted. �

Armed with the above lemma we have the following:

Theorem 4. The set {1, aei}, with 1 ≤ i ≤ n − 1 and 0 ≤ a ≤ k is a
generating set for FCk,n.

Proof. We induct on n. The result is clear for n = 1, 2. We first show that
all elements of B(k, n) ⊂ FCk,n satisfy the conclusion of Lemma 5. Consider
a pair of points (i, J(i)), i < J(i) with |i − J(i)| minimal among all pairs
(j, J(j)) with |j−J(j)| ≥ 2(k+1). If no such i exists then the hypothesis for
Lemma 5 is satisfied for any string of k+ 1 consecutive boundary points. If
an i does exist then all the points i ≤ j ≤ J(i), will have i ≤ J(j) ≤ J(i) (by
planarity of J). This contradicts the choice of i unless |j − J(j)| < 2(k+ 1)
in which case we again have at least k+1 points in a row with |j−J(j)| ≤ 2k
and thus we can apply Lemma 5.

Up to reflection in the x and/or y axis, we then have one of two possibil-
ities for the diagram of an arbitrary element of B(k, n). The first:

c

i(k+1)

k+
1-

c

x

,

can be rewritten as
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c

k+1

i(k+1)

x

k+1-c
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The upper dotted diagram is just a scalar multiple of

(ken−1 · ken−2 · · · kei+1)c−1ei

while the lower dotted diagram is an element of FCk,n−1 sitting inside FCk,n

and thus by the induction hypothesis the whole diagram is a product of
elements in {1, iea}. Similarly the second possible picture for an element in
B(k, n):
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c

k+1-c

k+1-c

c

c

x

can be written as

x

The upper dotted diagram is just a scalar multiple of

c−1en−1

while once again the lower dotted diagram is an element of FCk,n−1 sitting
inside FCk,n. Once again the induction hypothesis allows us to conclude
that the diagram is generated by a product of elements in {1, aei}. Similar
arguments hold for x and/or y axis reflection of the diagrams. �

Theorem 5 ([BiJo1]). dimFCk,n = 1
(k+1)n+1

(
(k+2)n

n

)
= ck+2

n and G(x) =∑∞
n=0 c

k+2
n xn satisfies:

G(x) = x(G(x))k+2 + 1.

For a nice combinatorial proof of the above see [He].

7. AAk,n isomorphic to FCk,n.

Theorem 6. The algebras AAk,n(α0, α1, . . . αk) and FCk,n(α0, α1, . . . αk)
are isomorphic. In addition, Sk,n is a basis for AAk,n(α0, α1, . . . αk).
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Proof. The map φ : AAk,n(α0, α1, . . . αk) → FCk,n(α0, α1, . . . αk) given by

φ(aEi) = aei

is a homomorphism onto FCk,n due to the universality of the abstract al-
gebra and the fact that the generators of FCk,n (Theorem 4) satisfy the
same relations as the abstract ones. Since the generating functions for the
dimension of FCk,n(α0, α1, . . . αk) (Theorem 5) and for |Sk,n| (Section 5) are
the same, we have that the dimension of FCk,n is |Sk,n|. We deduce that
the dimension of AAk,n is equal to |Sk,n| since it is both ≥ |Sk,n| (since φ is
onto) and ≤ |Sk,n| (Section 3). It follows that φ is an isomorphism and that
Sk,n is a basis for Ak,n(α0, α1, . . . αk). �

8. The Structure of FCk,n.

Lemma 6 ([BiJo1]). The algebras FCk,n(α0, α1 . . . αk) are semisimple for
an open dense (even Zariski open) subset of parameters (α0, α1 . . . αk) ∈
Ck+1.

We now describe the structure of FCk,n in the case when FCk,n is semi-
simple (the generic case) giving the Bratteli diagram for the inclusion FCk,0

⊂ FCk,1 ⊂ FCk,2 ⊂ . . . . In essence, this work was done in [BiJo1, Section
3], though only explicitly described for k = 1 (i.e., for 2 parameters α0, α1).
We describe this structure, stating, but not proving, those results that are
straightforward generalizations of arguments given in [BiJo1].

Definition 12 ([BiJo1]). A through string on a diagram D ∈ B(k, n) is a
curve that connects a point on the top of D to one on the bottom. Let t(D)
be the number of through strings of D.

Definition 13 ([BiJo1]). The middle pattern on a diagram D ∈ B(k, n) is
the well defined word, denoted by m(D), obtained by reading from left to
right the labels “ai” of the through strings of D.

We give an example to clarify:

a0

a0 1 a0 a2a1

a0 a1 a2

through strings

a a a a a a a a0 01 1 12 2 2

a a a a a0 12 2

middle pattern:  
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So far, we have dealt with planar diagrams that have the same number
of boundary points on the top as on the bottom. We now define a more
general picture:

Definition 14 ([BiJo1]). LetDpl(p, q) be the set of diagrams with p bound-
ary points on the bottom and q on the top with non-intersecting curves
(strings) connecting distinct boundary points.

(The pl in Dpl refers to the “planarity” or non-intersecting property of
the diagram.)

We note that an element ofD1 ∈ Dpl(p, q) can be multiplied by an element
in D2 ∈ Dpl(q, r) as long as the labeling of the top of D1 coincides with the
labeling of the bottom of D2. Thus an element D ∈ B(k, n) can be written
uniquely as the composition of Din ∈ Dpl((k + 1)n, t(D)), the initial part,
and Dfin ∈ Dpl(t(D), (k+1)n), the final part, where the top of Din and the
bottom of Dfin are labeled by m(D). (Of course the top of Dfin and the
bottom of Din are labeled by a0, a1, a2 . . . ak, ak, ak−1 . . . a1, a0, a0 . . . ).

We include an example to clarify:

a a a012 a a a012

a a a012

a0

a0 1 a0 a2a1

a0 a1 a0

a a a a a01 12 2

a a a a a0 12 2

D

D

in

fin

a1

For two words w, w′ we define w ≤ w′ if w is obtained from w′ by removing
some (or no) letters of w′. Define vn to be the following word with (k+ 1)n
letters:

a0a1a2 . . . akakak−1 . . . a1a0a0 . . . . . . a0(or ak).

The following is a straightforward observation:

Lemma 7. The word w appears as a middle pattern for elements in FCk,n

if and only if w ≤ vn and w ≡ vn when reduced using the relations a2
i =

1, 0 ≤ i ≤ k.

Note that the smallest such middle pattern is φ for n even and a0a1 . . . ak

for n odd.

Definition 15 ([BiJo1]). Let It be the two sided ideal of FCk,n spanned
by diagrams with at most t through strings.
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For obvious parity reasons, for n even we have I2t = I2t+1 and

{0} ⊂ I0 ⊂ I2 ⊂ I4 ⊂ · · · ⊂ In(k+1) = FCk,n(α0, α1 . . . αk).

For n odd we have

{0} = I0 = I1 = I2 = · · · = Ik, Ik+2l+1 = Ik+2l+2

and

{0} ⊂ Ik+1 ⊂ Ik+3 ⊂ Ik+5 ⊂ · · · ⊂ In(k+1) = FCk,n(α0, . . . αk).

Thus, in the semisimple case, to describe the structure of FCk,n it will
suffice to describe the appropriate algebras It+2/It, where t is the same
parity as (k + 1)n.

Given D ∈ B(k, n) define the projection pM = 1
c0
MM∗ where M = Din

and c0MM∗ = MM∗MM∗.

Lemma 8 ([BiJo1]). The projection pM has the following properties:
1) pMFCk,npM ≡ CpM mod It(D)−2.
2) Given M1, M2 initial parts of two diagrams with distinct middle pat-

terns of length t, then pM1EpM2 ≡ 0 mod It−2 for E a diagram in
FCk,n.

3) Given M1 and M2 initial parts of two diagrams with the same middle
pattern, we have M1 = cDM2 for some D ∈ FCk,n, c ∈ C.

Definition 16 ([BiJo1]). Given a word w in the alphabet {a0, a1, . . . ak},
define

[
n
w

]
to be the number of distinct initial parts of the diagrams in B(k, n)

having middle pattern w. (Define
[
n
w

]
=0 if w is not a middle pattern.)

The above work leads us to the following:

Lemma 9 ([BiJo1]). If w is a middle pattern of length t and M is an
initial part of a diagram with middle pattern w, then the dimension of the
left ideal pM (It/It−2) is

[
n
w

]
.

Lemma 10 ([BiJo1]).

It/It−2 =
⊕
w

(It/It−2)pM (It/It−2),

where the sum is over all middle patterns of length t, and M is an initial
part of a diagram with middle pattern w (one M for each w).

Theorem 7 ([BiJo1]). If (α0, α1 . . . αk) are such that FCk,n(α0, α1 . . . αk)
is semisimple, we have

FCk,n(α0, α1 . . . αk) ∼=
⊕

w:
[
n
w

]
>0

M[n
w

](C),

where the sum is over all middle patterns w of diagrams in FCk,n, and the
summands are matrix algebras over C of dimension

[
n
w

]
.
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With this decomposition we can describe the irreducible representations.
We need the following definition:

Definition 17 ([BiJo1]). Given w a word t letters long in the alphabet
{a0, a1 . . . ak}, with

[
n
w

]
> 0. Let Vw be the complex vector space of dimen-

sion
[
n
w

]
having as basis distinct initial parts M of diagrams in B(k, n) with

middle pattern w. For D ∈ B(k, n) define the representation πw of FCk,n

(extended by linearity) on Vw as follows:

πw(D)M =
{
DM, if DM has t through strings,
0, otherwise,

for all M ∈ Vw (where as usual we count a closed loop of type “ai” as a
scaling factor αi).

With the above notation, we have:

Theorem 8 ([BiJo1]). If (α0, α1 . . . αk) are such that FCk,n(α0, α1 . . . αk)
is semisimple, then all the representations πw are irreducible and any irre-
ducible representation of FCk,n is equivalent to a πw.

A description of the Bratteli diagram turns out to be quite simple for the
following more general situation. Given an infinite word w =

∏∞
n=0 tn, ti ∈

{a0, a1 . . . ak}, let wi =
∏i

n=0 tn. Define Awi(α0, α1 . . . αk) to be the complex
algebra with basis the set of Kauffman n diagrams whose top and bottom
row are labeled (both from left to right) by wi, and whose curves connect
boundary points of the same label (again, loops labeled by “ai” are replaced
by a scalar factor “αi”). Define π(i)

v to be the irreducible representation of
Awi whose vector space consists of all initial parts of diagrams with middle
pattern v. Then we have:

Theorem 9 ([BiJo1]). Suppose the algebras Awi defined above are semisim-
ple. Let v be a word in the alphabet {a0, a1, . . . ak}, let t ∈ {a0, a1, . . . ak}
and suppose that vt is a middle pattern for Awi+1. Then

π
(i+1)
vt |Awi

≡

{
π

(i)
v
⊕
π

(i)
vtt if ti+1 = t

π
(i)
vtti+1

otherwise.

This theorem determines the Bratteli diagram for Aw0 ⊂ Aw1 ⊂ Aw2 ⊂
. . . . The following sentence is the rule that describes the above theorem
[BiJo1, p. 113]: “The words on the ith row are certain subwords of wi. To
connect the i-th row to the (i+1)th, add ti+1 to all words and take it away,
if possible”.

If we now return to the special case of FCk,n, where our infinite word is

w = a0a1a2 . . . akakak−1 . . . a1a0a0 . . . ,

we have FCk,n = Aw(k+1)n
, that is, we are looking for the inclusion every

k + 1 steps. Recall that FCk,n is isomorphic to a direct sum of matrix
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algebras indexed by the distinct middle patterns that occur for diagrams
in FCk,n. Thus the vertices of the Bratteli diagrams at the n-th level are
indexed by these middle patterns as well. Let πn

w denote the representa-
tion of πw described in Definition 17 applied to the algebra FCk,n. Let
us denote by Nπn

w,πn+1
w′

, the number of edges in the Brattelli diagram for
FCk,n ⊂ FCk,n+1 between the vertex indexed by w in FCk,n and that of
w′ in FCk,n+1. Alternatively, Nπn

w,πn+1
w′

is the number of times πn
w occurs

in πn+1
w′ |FCk,n

. Using Theorem 9, we can describe the Bratteli diagram for
FCk,n ⊂ FCk,n+1 ⊂ FCk,n+2:

Lemma 11 ([BiJo1]). Assume that FCk,n are semisimple. Let w (resp.
w′) be a middle pattern for FCk,n (resp. FCk,n+1). Then

i) Nπn
w,πn+1

w′
= Nπn+1

w′ ,πn+2
w

.
ii) If p is a minimal projection in FCk,n for πn

w, then p ken+1 =
ken+1p is a minimal projection in FCk,n+2 for πn+2

w .

Thus the vertices at the n-th step (i.e., representing matrix algebras of
FCk,n) are naturally identified with some of the vertices at the (n + 2)-th
step (i.e., some of the matrix algebras of FCk,n+2). We now characterize
the rest of the vertices at the (n+ 2)-th step, that is, those vertices indexed
by w so that dim(πn+2

w ) > 0 but πn
w = 0.

Lemma 12 ([BiJo1]). The following are equivalent when w is a middle
pattern for a diagram in FCk,n. (FCk,n need not be semisimple.)

1) πn−2
w = 0

2) dimπn
w = 1.

3) πn
w(0ej) = 0 for all j, 1 ≤ j ≤ n− 1.

4) πn
w(0ej) = 0 for some j, 1 ≤ j ≤ n− 1.

5) No basis diagram for πn
w has 2(k+ 1) consecutive non-through strings.

Piecing the above two lemmas together we arrive at the following method
for generating the Bratteli diagram for FCk,n+1 ⊂ FCk,n+2, given the dia-
gram for FCk,n ⊂ FCk,n+1:

First reflect the Bratteli diagram for FCk,n ⊂ FCk+1,n to get the “old
stuff” in FCk,n+2 (Lemma 11). Then add additional new vertices indexed
by middle patterns that first occur in diagrams of FCk,n+2. Each of these
“new” vertices will be connected to only one vertex in FCk,n+1 and that
vertex will be one that was “new” in FCk,n+1 (Lemma 12). Analyzing
which middle patterns are “new” and which ones they are connected to is a
straightforward application of Theorem 9.

Thus the first few levels of the Bratteli diagram for FC2,n is given by:
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a21aa0

a0a0

a21aa0 a0a0a0 a21a

a0 1a 1a a0

a2 a01aa0 a21a

a0 a21aa2 a01aa0 a21a

a0 1a 1a a21a
a0 1a 1a a0a0 a21a

a2 1aa0 a21a a21aa2a0 a21a a2

.
.
. . . .

φ

. . . . . . .
φ

The above description actually tells us that writing down the full Bratteli
diagram is redundant since the “old” stuff is just the reflection of a previous
part of the Bratteli diagram. We can fully describe the Bratteli diagram
by just describing the “new” stuff that appears at every level. This smaller
graph is called the principal graph [GHJ], a term familiar to those who
study subfactors. To clarify, the principal graph for the first few levels of
FC2,n is given by:

a0a0

a0a0a0 a21a

a0 1a 1a a0

a2 a01aa0 a21a

a0 a21aa2 a01aa0 a21a

a0 1a 1a a21a
a0 1a 1a a0a0 a21a

a2 1aa0 a21a a21aa2a0 a21a a2

a21aa0

.
.

. . .
φ

. . . . . .
This brings us to a simple description of the Bratteli diagram for FCk,n:

Theorem 10. The principal graph Γk for the inclusion

FCk,0 ⊂ FCk,1 ⊂ FCk,2 ⊂ . . .

is a tree inductively described as follows:

1) The 0-th level has one vertex labeled by 0.
2) Given a vertex on the n-th level labeled by i. Create (i+1) new vertices

on the (n+ 1)-th level with labels k − i, k − i+ 1, . . . k.
3) Connect each of these new vertices to the given one on the n-th level.

To clarify, we give the principal graph Γk for the first few levels:
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.

. . . .

. . . . . . . . . .

0

k

0 1 2 k

k-1 k kk-1
k-2

0 1 2 kk

Proof. We use induction, using the characterization of new words w as those
for which no basis diagram for πn

w has 2(k + 1) consecutive non-through
strings (Lemma 12).

Let P(n) be the statement: A single diagram in FCk,n having the“new”
middle pattern w corresponding to a vertex on Γk labeled by i looks like:

. . .

. . .

i+1k-i

Clearly since dim(FCk,1) = 1, and the vertex corresponding to the word
a0a1 . . . ak is labeled by k, we have P (1) true.

Given P (n) true consider w corresponding to a vertex on the nth level of
Γk labeled by i. By the induction hypothesis the single diagram in FCk,n

with middle pattern w looks like the above figure. Without loss of generality,
let us assume n is even and so the rightmost label on the top of the diagrams
is ak. (The identical argument holds for n odd if we replace ak with a0.)
Following the rule of Theorem 9 we can add or take away ak from w. If
we add ak, we will have to add ak−1 and then ak−2 . . . to get just
the new word wakak−1 . . . a0. If we remove ak we will have the option to
add or remove ak−1. We continue in this way until we consider adding or
removing ak−i. If we remove ak−i then no matter what we do from then on
we will have a middle pattern that has a diagram with 2(k+ 1) consecutive
non-through strings and thus by Lemma 12 it will not correspond to a new
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middle pattern at the (n + 1)-th level. Thus the only possibilities are the
following i+ 1 middle patterns, indexed by j, 0 ≤ j ≤ i, none of which has
2(k + 1) consecutive non-through strings.

. . .

. . .

{{

k-i i-j

k+j-i+1j+1

Labeling the vertex corresponding to the j-th middle pattern with k−j+1
gives us P (n+ 1). �

9. Computation of
[
n
w

]
.

To facilitate the ensuing discussion of paths on Γk we introduce the following
notation:

• Given a vertex v of Γk , let l(v) denote the label of v (an integer
between 0 and k).

• A path P of length n on Γk will be written as P = v0v1 . . . vn where
the vi are the successive vertices on Γk encountered when following the
path P .

• Denote by f(w), the smallest n such that w appears as a middle pattern
in FCk,n.

• Each middle pattern w corresponds to a vertex of the principal graph
described above. There is a unique shortest path Pw = v0v1 . . . vf(w)

along the principal graph Γk (since the principal graph is a tree) from
the root to the vertex indexed by w. Define L(w) be the sequence
0, k, l(v2), l(v3) . . . l(vf(w)).

Corollary 10.1. Write w = as(1)as(2) . . . as(d) where the s(i) ∈ [0, k]. Let
S = {i : s(i) = s(i+1)}. Then f(w) = |S|+1. Let i1 < i2 < · · · < i|S| be the
elements of S. Set Pw = v0v1 . . . vf(w) as above, the shortest path from the
root to the vertex labeled by w corresponding to the summand in FCk,f(w)
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indexed by w. Then we have:

l(vj) =


0 for j = 0,
k for j = 1,
s(ij−1) for j even,
k − s(ij−1) for j odd.

Proof. This follows from the argument given in Theorem 10. �

We have given an inductive description of the Bratteli diagram. In this
section we get an explicit formula for

[
n
w

]
.

Consider all paths of length 2n on Γk with the following two properties:
1) The paths begin and end at the same vertex v.
2) No vertex of the path is closer to the root than v.
We note that the structure of Γk guarantees that the same number of such

paths will exist from two vertices v and w if l(v) = l(w). This allows us to
define cni to be the number of such paths of length 2n starting and ending
at a vertex v with l(v) = i. Let Ci(x) =

∑∞
n=0 c

n
i x

n, with the convention
c0i = 1.

Lemma 13. With the above notation we have

Ci(x) = T i+1(x)

where T is the generating function encountered previously (Section 5) satis-
fying:

T = xT k+2 + 1.

Proof. Let P = v0v1 . . . v2n be an arbitrary path counted by cni . (This
means that v0 = v2n with l(v0) = i and no vi closer to the root than v0.)
Let i0 = min {i : i ≥ 1 and vi = v0}. Write P = P1P2 with P1 = v0v1 . . . vi0

and P2 = vi0+1vi0+2 . . . v2n. The nature of P and Γk ensures that v1 = vi0−1

and thus the various possibilities for P1 are counted by c
i0−2

2

l(v1) . On the other

hand, the various possibilities for P2 are counted by c
n− i0

2
i . Since l(v1) can

be any of k − i, k − i+ 1 . . . k, we have the recursion:

cni =
k∑

j=k−i

n−1∑
m=0

cmj c
n−m−1
i

along with c0i = 1.
This becomes:

Ci = 1 +
k∑

j=k−i

xCjCi.(11)
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Setting Dk−i = xCi, and setting i′ = k − i, (11) becomes

Di′ = x+
k−i′∑
j′=0

Dj′Di′ ,

the same recusion relation as Ai(x) in Equation (3), and thus all the results
of Section 5 apply. Since xCi = Dk−i = Ak−i = Lk−i−1 − Lk−i, it follows
from (9) that

Lk−i−1 − Lk−i = T−(k−i) − T−(k−i+1) = T i−k−1(T − 1) = xT i+1,

where the last equality comes from substituting the known recursion relation
for T given in Equation (1). �

Recall that given a middle pattern w, Corollary 10.1 allows us to calculate
f(w). In addition, it allows us to calculate l(vj) for P = v0v1 . . . vf(w) the
unique shortest path from the root of Γk to the vertex corresponding to the
summand labeled by middle pattern w. With this notation we have:

Theorem 11.[
n
w

]
= the coefficient of xn−f(w) in T

Pf(w)
i=0 (l(vi)+1) .

Setting r =
∑f(w)

i=0 (l(vi) + 1),[
n
w

]
=
(

(k + 2)(n− f(w)) + r

n− f(w)

)
r

(k + 2)(n− f(w)) + r
.

Proof. An arbitrary path of length n from the root of Γk to the vf(w) can
be described as composition of paths as follows:(

a path counted by cn0

l(v0)

) (
a path counted by cn1

l(v1)

)
· · ·(

a path counted by c
nf(w)

l(vf(w))

)
with

n0 + n1 + . . . nf(w) = n− f(w).

Thus we have

[
n
w

]
is the coefficient of xn−f(w) in

f(w)∏
i=0

T l(vi)+1.

Finally [GKP] gives the closed form expression for T to an arbitrary
power. �
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10. The Trace.

The Fuss-Catalan algebras have a natural trace as described in the following
definition:

Definition 18 ([BiJo1]). The Markov trace tr on FCk,n(α0, α1, . . . αk) is
defined on a diagram D ∈ B(k, n) as follows: tie the top of D to the bottom
(the “types” ai will match up) and let ni be the number of loops of “type”
ai. Then set

tr(D) =
k∏

i=1

αni−n
i .

Extend it by linearity to all of FCk,n.

It is worth noting that this trace is consistent with the natural inclusion of
FCk,n ⊂ FCk,n+1 given by adding k+1 vertical lines to the end of diagrams
in FCk,n.

Up to normalization, there is just one trace on a full matrix algebra.
Thus to describe the trace on a direct sum of matrix algebras one need
only give the relative weights on each of the summands. The standard
way to do this is to give the value of the trace on a minimal projection
of each summand. Section 3.3 of [BiJo1] explicitly describes the minimal
projections (and the corresponding trace values) for FC1,n. The general
situation follows virtually the identical argument. For this reason we will
merely state the results for FCk,n without proving most of the details.

We begin by recalling the situation for the Temperley-Lieb algebra (i.e.,
FC0,n) [GHJ]. Here an inductively defined series of polynomials is given by
P0(τ) = 0, P1(τ) = 1 and Pl+1(τ) = Pl(τ)−τPl−1(τ). Then if 1/(α0)2 is not
a root of Pl(τ) for l ≤ n+1 the minimal projection in TLn(α0) corresponding
to the summand with middle pattern (a0)n has trace of Pn(( 1

α0
)2). We

denote this projection by fn(a0) and draw it as

f (a )n 0

We note that fn(a0) is a linear combination of elements of B(0, n).
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Theorem 12. Suppose the FCk,n(a0, a1, . . . αk) are semisimple and none of
the (αi)−2 are zeros of Pl(τ), 1 ≤ l ≤ n. Let w be a middle pattern appearing
for the first time inside FCk,n. Write w = an1

d1
an2

d2
. . . anm

dm
where di 6= di + 1.

If we denote by Din and Dfin the initial and final parts of the only element
of B(k, n) with middle pattern w, then the following diagram

nf  (a  )
1 d1 nf  (a  )d2 2 nf  (a  )dm m

D

Dfin

in

multiplied by the scalar (
αn1

d1
. . . αnm

dm

(α0 . . . αk)n

) 1
2

,

is the minimal idempotent corresponding to the simple summand indexed by
w.

It is thus straightforward to see that the trace of the projection given in
the above theorem is:(

αn0
d0
. . . αnm

dm

(α0 . . . αk)2n

)− 1
2 m∏

i=1

Pn((αi)−2).

Furthermore, by Lemma 11, the trace of a minimal projection correspond-
ing to a summand w inside FCn′,k is the trace of the minimal projection
corresponding to w when it first appeared, say in FCk,n, multiplied by
(α0 . . . αk)2(n−n′).

11. Chains of Subfactors.

We now come to the connection to subfactors that motivates the interest in
the algebras FCk,n. We consider the following situation: a pair of subfactors
N ⊂M , [M : N ] <∞, with a chain of intermediate subfactors

N ⊂ P 1 ⊂ P 2 ⊂ . . . P k ⊂M.

As mentioned in the introduction, much of the information about the
subfactor (and in some cases all of it [Po2]) is contained in what is called
the (opposite) standard invariant [Po1]:
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In general, given a II1 subfactor N ⊂ M , we can perform the basic con-
struction to get a projection e1 and a new subfactor M1 = {M, e1}′′. Iter-
ating this process we get a series of projections e1, e2, e3 . . . and a chain of
subfactors (see [Jo1]):

N ⊂M ⊂M1 ⊂M2 . . .

Intersecting this chain with N ′ and M ′ respectively gives a double se-
quence of finite-dimensional algebras:

N ′ ∩N ⊂ N ′ ∩M ⊂ N ′ ∩M1 ⊂ . . .
∪ ∪

M ′ ∩M ⊂ M ′ ∩M1 ⊂ . . .
known as the standard invariant. Now in any subfactor we have

{e1, e2 . . . en} ⊂ N ′ ∩Mn,

{e2, e3 . . . en} ⊂M ′ ∩Mn.

Thus the description of the algebras {e1, e2 . . . en}′′, the Temperley-Lieb al-
gebras, gives an underlying basic structure for all standard invariants (see
[GHJ]).

In the case of N ⊂ M with a chain of k intermediate subfactors, it is
natural to ask what additional basic structure of the standard invariant is
ensured by the presence of such a chain. It is this question that was answered
for one intermediate subfactor in [BiJo1]. We now answer the question in
the general case using the work that has been developed here.

The presence of P 1 ⊂ P 2 ⊂ . . . ⊂ P k gives rise to the factors

M ⊂ P k
1 ⊂ P k−1

1 . . . P 1
1 ⊂M1,

with P a
1 = J (P a)′ J . Here, all the factors are acting on L2(M) and J is

the completion of the canonical anti-isomorphism given by J(x) = x∗ on M ,
which is dense in L2(M). Alternatively we have P a

1 = {M, eMP a}′′ where eMP a

is the projection from L2(M) to L2(P a), i.e., P a
1 is the result of the basic

construction for the inclusion P a ⊂M .
Thus when we iterate the basic construction we get the tower:

N ⊂ P 1 ⊂ P 2 ⊂ . . . ⊂ P k ⊂M ⊂ P k
1 ⊂ P k−1

1 ⊂ . . .

⊂ P 1
1 ⊂M1 ⊂ P 1

2 ⊂ P 2
2 ⊂ . . .

with

P a
j =

{
Mj−1, e

Mj−1

P a
j−1

}′′
.
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To simplify notation we will let

ea,j =



e
Mj−1

Mj−2
for a = k,

e
Mj−1

P k−a
j−1

for j odd, a 6= k,

e
Mj−1

P a+1
j−1

for j even, a 6= k.

(The notation is similar to the notation for the generators for AAk,n

above. It is hoped that the similarity will not cause confusion but rather
give away the punch line, namely that the map from aej to ea,j is generically
an isomorphism.)

Thus for a subfactor with a chain of k intermediate subfactors we have:

{1, ea,j : 0 ≤ a ≤ k, 1 ≤ j ≤ n− 1} ⊂ N ′ ∩Mn,

and

{1, ea,j : 0 ≤ a ≤ k, 2 ≤ j ≤ n− 1} ⊂M ′ ∩Mn.

It is the structure of the algebra generated by the set {1, ea,j : 0 ≤ a ≤
k, 1 ≤ j ≤ n− 1} that we seek.

Definition 19. Let

α0 = [P 1 : N ]
1
2

αa = [P a+1 : P a]
1
2 for 1 ≤ a ≤ k − 1

αk = [M : P k]
1
2

where [M : N ] is the index of the inclusion ofN ⊂M (see [Jo1] for definition
of index).

Let IAk,n(α0, α1, . . . αk) be the algebra generated by the set {1, ea,j : 0 ≤
a ≤ k, 1 ≤ j ≤ n− 1}.

Lemma 14. Given IAk,n as above we have:
1) ea,i eb,i = emax (a,b),i,
2) ea,i eb,j = eb,j ea,i for |i− j| ≥ 2 or,

|i− j| = 1 and a+ b < k,
3) ea,i eb,i±1 ea,i = c(a, b)ea,i ek−a−1,i±1 for a+ b ≥ k (e−1,i±1 = 1)

with c(a, b) as in Definition 1:

c(a, b) = k−a−1ci+1 k−b−1ci

aci bci+1

where aci =
{
α0 · · ·αa for i even
αk · · ·αk−a for i odd. and −1ci = 1.
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Proof. We assume i even; identical arguments hold for i odd. Relation 1
follows from the fact that Pmax (a,b)+1

i−1 ⊂ P a+1
i−1 , P

b+1
i−1 . Relation 2 follows

from {ea,i}′∩Mi−1 = P a+1
i−1 . Relation 3 follows from [BiJo1, Prop. 5.1]. �

Lemma 15. Let tr be the trace on Mn restricted to IAk,n. Then tr is a
Markov trace, that is,

tr(1) = 1,

tr(xea,n) =
1

(acn)2
tr(x) for all x ∈ IAk,n.

Proof. The proof follows from the fact that the conditional expectations are
trace preserving:

tr(xea,n) = tr(EMn
Mn−1

(xea,n)) = tr(xEMn
Mn−1

(ea,n)) =
1

(acn)2
tr(x).

�

Theorem 13. There is a surjective, trace-preserving, unital *-homomor-
phism

ι : FCk,n(α0 . . . αk) −→ IAk,n(α0 . . . αk)

given by
ι(1) = 1,

ι(aei) = ea,i, 0 ≤ a ≤ k, 1 ≤ i ≤ n− 1.

Proof. By definition of IAk,n, ι is clearly onto. That ι is a *-homomorphism
is established by Lemma 14. We now show ι is trace-preserving by showing
that the properties:

tr(1) = 1,

tr(x aen) =
1

(acn)2
tr(x) for x ∈ AAk,n,

completely determine the value of the trace on ∪∞n=0FCk,n. The form of
words in the basis Sk,n of AAk,n

∼= FCk,n indicates that a word v ∈ FCk,n+1

can be written as v = x aen y with x and y in FCk,n. Since the trace
property gives us that

tr(v) = tr(x aen y) = tr(yx aen) =
1

(acn)2
tr(yx),

we have by induction that the above properties determine the value of the
trace everywhere. Since the trace on FCk,n clearly satisfies the above two
properties, ι is trace preserving. �

In many cases ι is an isomorphism:

Theorem 14. Suppose αi ≥ 2 for 0 ≤ i ≤ k. Then the homomorphism
ι : FCk,n −→ IAk,n in Theorem 13 is an isomorphism. Thus FCk,n is
semisimple.
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Proof. Let FC0(α) = ∪∞i=0FC0,i(α). (The FC0,i(α) are generically the
Temperley-Lieb algebras.) Consider the trace TR on

FC0(α0)⊗ FC0(α1)⊗ · · · ⊗ FC0(αk)

given by the tensor product of the traces on FC0(αi). It is known that the
trace on the Temperley-Lieb algebra TL(αi) is faithful for αi ≥ 2 [GHJ].
Since the tensor product of faithful traces is faithful [Di], TR is faithful.
We can think of FCk,n ⊂ FC0,n(α0) ⊗ FC0,n(α1) ⊗ · · · ⊗ FC0,n(αk) in the
following way: view a diagram in FCk,n as an overlay of k+1 diagrams, each
diagram consisting of only strings labeled by ai, 0 ≤ i ≤ k. Each of these is
an element of FC0,n(αi) and since multiplication in FCk,n does not combine
strings with different labels, the multiplicative structure of FCk,n agrees
with that of FC0(α0)⊗FC0(α1)⊗· · ·⊗FC0(αk). It is clear that TR|FCk,n

is just the usual trace on FCk,n, and thus tr on FCk,n is faithful. Since ι is
trace preserving for a faithful trace, ker(ι)={0} and ι an isomorphism. �

The important condition for the above isomorphism was the faithfulness of
the trace. To determine the situation for the non-generic case we merely have
to examine to what extent the trace on FCk,n ⊂ FC0,n(α0)⊗ FC0,n(α1)⊗
· · · ⊗ FC0,n(αk) is not faithful.

Recall that Γk is the principal graph for the inclusion FCk,0 ⊂ FCk,1 ⊂
FCk,2 . . . . Each node of Γk is labeled by a “new” middle pattern w in the
alphabet {a0, a1, . . . , ak}. Let v = (v0, v1, . . . , vn) ∈ {N ∪∞}k. Define

Wv = {w : w does not have a string of consecutive ai’s longer than vi}.
Define Γk,v to be the subgraph of Γk consisting only of nodes labeled by
w ∈Wv.

Theorem 15. Given

(α0, α1, . . . , αk), αi ∈
{

2 cos
π

m
: m ≥ 2

}
∪ [2,∞),

set

vi =
{
m if αi = 2 cos π

m ,
∞ if αi ∈ [2,∞).

Then Γk,v is the principal graph for the tower

C ⊂ IAk,1 ⊂ IAk,2 ⊂ . . .

Proof. Define the ideal Ij
n to be the ideal generated by {x∗x : x ∈ F0,n(αj)

and tr(x∗x) = 0}. Again considering FCk,n ⊂ FC0,n(α0) ⊗ FC0,n(α1) ⊗
· · · ⊗ FC0,n(αk) as in the proof of Theorem 14, we have ι factors through
the algebra:

B = FC0,n(α0)/I0
n ⊗ FC0,n(α1)/I1

n ⊗ · · · ⊗ FC0,n(αk)Ik
n :

ι : FCk,n
ι1−→ B

ι2−→ IAk,n.
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Because the tensor product of faithful traces is faithful, we have that the
trace on B is faithful. Therefore since ι2 is trace preserving we have ι2 an
isomorphism. Thus for ι : FCk,n −→ IAk,n, ker(ι) is the intersection of
FCk,n and the ideal generated by

{I0
n ⊗ 1⊗ 1⊗ · · · ⊗ 1 ∪ 1⊗ I1

n ⊗ 1⊗ · · · ⊗ 1 ∪ · · · ∪ 1⊗ 1⊗ · · · ⊗ Ik
n}.

Let p be a diagram that is a projection in FCk,n with middle pattern w.
It follows that p ∈ ker(ι) mod FCk,n ken−1 FCk,n if and only if w 6∈ W .
The result now follows by applying this fact at every node of the Bratteli
diagram Γk. �

This completes the description of the underlying structure of the standard
invariant given by the presence of a chain of intermediate subfactors. When
considering a subfactor N ⊂ M , we can ask the following questions. Does
N ⊂M contain chains of intermediate subfactors? If so, how can we use the
added structural information obtained in this work to help determine the
entire structure of the standard invariant? The answer to the first question
is provided in [Bi1]. Work in the direction of the second question appears in
[BiJo3], where dimensional criterea are given for the standard invariant to
be exactly FC1,n, and in [La], where for certain examples, the standard in-
variants of N ⊂ P and P ⊂M are used to determine the standard invariant
of N ⊂M .
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