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We develop our general machinery of the Campbell–Haus-
dorff invariants of links, in the case of pure links, with em-
phasis on the connections with the lower central series of the
pure braid groups. We present a complete simple set of rules
for the Artin calculus of longitudes modulo the central series.
We prove that if two pure links differ by an order k pure braid
commutator, then their order k Campbell–Hausdorff invari-
ants p(k) are the same. In this case, the general theory offers
a decision test for the equality of p(k+1)-invariants. We intro-
duce the notion of homogenous link, which leads to important
computational improvements for the general p(k+1)-test. We
provide both general homogeneity criteria and concrete inter-
esting classes of homogenous examples. We illustrate the ef-
ficiency of our approach, on several classes of examples which
cannot be distinguished by other known link invariants.

Introduction

This paper is a sequel to [22], where we have introduced a sequence,
{p(k)}k≥2, of so-called Campbell-Hausdorff invariants of links. Let K be
an oriented and ordered n-component tame link in S3, with fundamental
group G =: π1(S3 \K).

Our starting point is as in Milnor’s construction of the µ-invariants [19].
The group G comes naturally equipped with a geometric peripheral struc-
ture, consisting of n meridians, mi ∈ G, and n longitudes, li ∈ G, associated
to the components of K, for i = 1, . . . , n. For each fixed k, k ≥ 2, Milnor
noticed that the meridians generate the nilpotent quotient G/ΓkG, where
ΓkG stands for the k-fold commutators of the group G. Consequently, one
may express each longitude (modulo commutators of length k) as a free
word in the meridians, l

(k)
i ∈ FX , for i = 1, . . . , n. Here FX denotes the free

group generated by x1, . . . , xn. In this way, one gets a system of algebraic
longitudes, l =: {l1, . . . , ln}, where li = {l(k)

i }k≥2, for i = 1, . . . , n, satisfying
certain convergence and normalization conditions. See [19].

Milnor’s idea was to extract from l numerical invariants for K, by looking
at the various (integer) coefficients of the Magnus expansions of the free
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words l
(k)
i . He was led to actually consider certain residue classes of these

coefficients, in order to eliminate the indeterminacy created by the various
possible choices for l. One serious drawback is the fact that each µ-invariant
takes values in a cyclic group which depends on the given link K.

Our basic idea in [22] was to introduce a new universal indeterminacy,
which depends only on the number of components, n. We are going to
recall it, briefly; see the next section for details. This indeterminacy is en-
coded by the action of a certain pro-unipotent Q-group, U , on a certain
filtered Q-vector space consisting of formal Lie derivations, Der +

1 , filtered
by {FkDer +

1 }k. The U -action on Der +
1 is Q-linear and filtration-preserving,

and everything depends only on n. The Campbell-Hausdorff expansion may
be used to construct a derivation, ∂(l) ∈ Der +

1 , for any given system of
algebraic longitudes, l. For each k ≥ 2, the k-th CH-invariant of K,
p(k)(K) ∈ U\Der +

1 /FkDer +
1 , is, by definition, the U -orbit of ∂(l) modulo

FkDer +
1 . We have proved in [22, Theorem A] that p(k)(K) is a well-defined

concordance invariant of K, for all k.
In more geometric terms, our CH approach has the following interpreta-

tion. Each nilpotent quotient, G/ΓkG, inherits from the link complement
a natural homological marking; that is, a collection of 2n distinguished ho-
mology classes in degrees 1 and 2, given by the orientation classes of the
meridians and neighbouring 2-tori respectively, corresponding to the com-
ponents of the link. This homological marking passes to the Malcev com-
pletion, (G/ΓkG) ⊗ Q. Let K and K ′ be two n-component links, with
fundamental groups G and G′. We have shown in [22, Remark 2.9] that
p(k)(K) = p(k)(K ′) if and only if the groups (G/ΓkG)⊗Q and (G′/ΓkG

′)⊗Q
are isomorphic by an isomorphism which preserves their distinguished low-
dimensional homology classes.

The two approaches lead to the same primary invariants; see [22, Remark
2.7]. Note however that in general the µ-invariants and the CH-invariants
exhibit an independent behaviour, as pointed out in [22, Example 3.4].

Our main goal in this paper is to develop and improve the general CH-
scheme, for the case of pure links. We are going to view the oriented links
as Artin closures, b̂, of elements b ∈ Bn, where Bn denotes Artin’s braid
group on n strings. If b ∈ Pn ⊂ Bn (where Pn is the pure braid group on
n strings), then one knows that b̂ has n components, which are naturally
oriented and ordered. One good reason for looking at pure links is the
existence of a canonical simple system of algebraic longitudes, to be denoted
by l(b) = {l1(b), . . . , ln(b)}, for any pure link, b̂. It has the property that
l
(k)
i (̂b) = li(b), for all k, and it can be canonically computed, by using the
embedding, Bn ⊂ Aut (FX), provided by the Artin representation. See for
example [3, 21], and also the next section, for details. The corresponding
CH-invariants of b̂ will be denoted by {p(k)(b)}.
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Like the µ-invariants, the CH-invariants are sensitive enough to detect
the unlink among pure links, and also to detect the lower central series
filtration of Pn, {ΓkPn}. See Remark 1.1, and Corollary 2.9 respectively, for
the precise statements, in a slightly more general (unordered and unoriented)
form.

We are thus going to look at pairs of pure braids of the form b = βα
and b′ = β′α, where α ∈ Pn and β, β′ ∈ ΓkPn, with k ≥ 2. The relation
between the CH-invariants and the lower central series of the pure braid
groups will be a recurrent theme of this paper. It was suggested by a result
of Stanford [24, Theorem 1] in the theory of finite-type (Vassiliev) invariants
of links. Stanford’s result says that if b and b′ are as above, then b̂ and b̂′

have the same Vassiliev invariants, up to order k − 1. It turns out that the
CH-invariants have a similar behaviour. Namely we show, in Corollary 2.8,
that under the same assumptions one has that p(k)(b) = p(k)(b′).

X.-S. Lin showed in [15] that the CH-invariants are of finite type, in a
certain sense. (At the same time, he also noticed that the CH-invariants
cannot be determined by quantum invariants.) Although less general than
the finite type invariants, the CH-invariants have the following advantage,
from the practical point of view. The theory of finite type invariants is a
general scheme, that is, even if one knows that b̂ and b̂′ can be distinguished
by higher order Vassiliev invariants, it is in general hard to find a specific
higher order invariant which does the job. The CH-theory is more concrete,
since it disposes of a built-in linear decision test for the equality at step
p(k+1), whenever one has equality at step p(k); see [22, Theorem 1.4]. A
similar non-linear decision test was introduced by Habegger-Lin in [9] to
describe their solution of the link-homotopy classification problem.

Our main results in this paper are contained in Section 2. Lemmas 2.2-2.6
describe a complete simple set of rules for the Artin calculus of longitudes of
pure braids, l(b), modulo the lower central series. A key tool is provided by
a general result of independent interest, namely Proposition 2.1. It is well-
known how to associate a graded Lie algebra to a certain type of filtrations
on a group (in particular, to the lower central series filtration); see [14]. For
any given group G, one may consider the Torelli group, TG, consisting of
those automorphisms of G which act trivially on the abelianization. The
Torelli group is naturally endowed with the Torelli filtration, which gives
rise to an associated graded Lie algebra. We establish, in Proposition 2.1,
a faithful relationship between this graded Lie algebra and the graded Lie
algebra of derivations of the graded Lie algebra associated to {ΓkG}, for
any group G. This is done via the Johnson homomorphism, introduced and
exploited in [10], in connection with the study of the mapping class groups,
in the case where G is a surface group. The connection with link theory
comes from the well-known fact that the Artin representation embeds Pn

into T (FX); see e.g., (1.1). In Theorem 2.7 and Corollary 2.9 we show that
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the Torelli filtration coincides with the lower central series filtration of Pn

(which is not true in general; see [10]), both being detected either by the
vanishing of the CH-invariants, or by the vanishing of l modulo the lower
central series of FX .

The graded Lie algebra associated to the lower central series of G will be
denoted by gr ∗ΓG =: ⊕k≥1gr k

ΓG, where gr k
ΓG =: ΓkG/Γk+1G. Note that

gr ∗ΓPn is torsion-free as a graded abelian group, and also that its graded Lie
algebra structure is rather well-understood; see [3, 7, 13].

Let b, b′ ∈ Pn be of the form b = βα and b′ = β′α, with α ∈ Pn and
β, β′ ∈ ΓkPn. We present a first improvement of our general CH-test in
Corollary 2.8. More precisely, we show that in this case p(k)(b) = p(k)(b′),
and that p(k+1)(b) = p(k+1)(b′) if and only if the class of β′β−1 modulo
Γk+1Pn, denoted by β′β−1 ∈ gr k

ΓPn ⊂ (gr k
ΓPn) ⊗ Q, belongs to a certain

indeterminacy subspace of (gr k
ΓPn)⊗Q, which depends on α.

We take a second step in Section 3, where we introduce the homogenous
links and pure braids. Here our main result is Theorem 3.2. It provides
a major improvement of the general p(k+1)-test, for the case of two pure
braids, b = βα and b′ = β′α, as above, under a homogeneity assumption
on α ∈ ΓhPn, with h < k. Namely we give a description of the above
indeterminacy subspace, which involves only the class of α modulo Γh+1Pn,
α ∈ gr h

ΓPn.
Proposition 3.3 offers two general homogeneity criteria. They are used

to check the homogeneity of several classes of examples of pure braids, in
Corollary 3.5, and to prove, in Corollary 3.6, the fact that all algebraic links
(in the sense of [20, §10]) are homogenous.

We illustrate in §6 the efficiency of our homogenous CH-tests, on three
classes of examples of pure links.

We exhibit, in Proposition 6.1, a series of infinite families, having the
same Vassiliev invariants up to order k − 1 and the same µ-invariants (of
arbitrarily high order), which are faithfully detected by p(k+1), up to oriented
(not necessarily ordered) isotopy. In Propositions 6.2 and 6.3 we present
two infinite families of pairs of pure links, which are detected by p(4), up
to oriented (unordered) isotopy. The examples from 6.2 are link-homotopic
and have the same sublinks, while the examples from 6.3 are link-homotopic
and share the same HOMFLY polynomial and the same µ-invariants (of
arbitrarily high order).

1. CH-invariants of pure braids.

We start by recalling the construction of our CH-invariants for the case
of pure links, following [22]. A braid on n strings b ∈ Bn acts (on the
right) on the free group on n letters, FX =: F(x1, . . . , xn), via the Artin
representation. If b is pure (b ∈ Pn), one knows that this action is of the
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following form:

(1.1) xib =vi xi, for i = 1, . . . , n,

with vi ∈ FX (where vx = vxv−1 stands for the group conjugation); see [3].
If one normalizes by requiring that

(1.2) ei(vi) = 0, for i = 1, . . . , n,

(where ei(v) equals the exponent sum of the letter xi in the free word v),
one gets well-defined algebraic longitudes

(1.3) li(b) = vi, for i = 1, . . . , n.

Next one considers the Campbell-Hausdorff group embedding

(1.4) ρ : FX −→ L̂X ,

defined on generators by ρ(xi) = xi, for i = 1, . . . , n. Here L̂X is the free
complete Q-Lie algebra on x1, . . . , xn. Its elements are formal Lie series in
the indeterminates x1, . . . , xn with rational coefficients. It carries the group
law provided by the well-known Campbell-Hausdorff formula; see [16, 23].
Set then

(1.5) ρli(b) = si =
∑
r≥1

sr
i , with sr

i ∈ Lr
X

(where Lr
X denotes the Q-span of those Lie monomials which are homoge-

nous of bracket length r), for each i = 1, . . . , n.
One may further consider the free bigraded Lie algebra L∗∗ = L∗∗(X ⊕ Y ),

freely generated by X = span Q {x1, . . . , xn}, Y = span Q {y1, . . . , yn}; the
upper degree is given by bracket length and the lower degree comes from
setting |x| = 0 for x ∈ X and |y| = 1 for y ∈ Y . There is an associated
bigraded Lie algebra of derivations, Der ∗∗, where Der r

j stands for those Lie
derivations of L∗∗ which are bihomogeneous, of upper degree +r (r ≥ 0)
and of lower degree −j (j ≥ 0). The Lie bracket is given by the (graded)
commutator of derivations; see [22, §1]. Everything in sight obeys to the
standard Koszul sign convention with respect to the lower degrees; see e.g.,
[25].

One may associate to b ∈ Pn the (formal) derivation ∂(b) =
∑

r≥1 ∂r(b),
with ∂r(b) ∈ Der r

1 given for each r ≥ 1 on the free generators by

(1.6) ∂r(b)xi = 0, for i = 1, . . . , n,
∂r(b)yi = [xi, s

r
i ], for i = 1, . . . , n,

as in [22, (2.1)-(2.2) and (1.3)].
Starting with two pure braids b, b′ ∈ Pn, the basic CH-test at step k + 1

may be described as follows [22, Theorem 1.4]. Assume that

(1.7) s′ri = sr
i , for every r < k and 1 ≤ i ≤ n,
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(where s′i = ρli(b′)). Then p(k+1)(b′) = p(k+1)(b) if and only if there exist
qt ∈ Der t

0, for 1 ≤ t < k, such that

(1.8)
∑

r+t<k

[qt, ∂r(b)] = 0

and

(1.9)
∑

r+t=k

[qt, ∂r(b)] = ∂k(b)− ∂k(b′).

The main goal of this paper is to provide a much simpler form of the
above test, for certain classes of pure braid examples, and then to illustrate
the usefulness of this approach, by comparing it to various other known link
invariants.

There is a general orbit space picture behind this, as explained in [22,
Introduction], see also [22, (1.3)-(1.4)]. If K is an arbitrary n-component
link (whose components are ordered and oriented), there are associated Mil-
nor systems of algebraic longitudes [19] (see also [22, Theorem 1.1]). Such
a system l provides for each i (1 ≤ i ≤ n) a sequence {l(k)

i }k of elements
of FX = F(x1, . . . , xn), which gives rise to si =: lim

−→k

ρ(l(k)
i ). Here the

limit is taken with respect to the topology of the natural complete filtration
{FsL̂X =: L̂≥s

X }s given by the order of the formal Lie series; see e.g., [22,
2.2]. (In the case of a pure link b̂ one has l

(k)
i = li(b), for all k.)

Denote by Der +
1 the completion of ⊕r≥1Der r

1(L) with respect to the filtra-
tion {⊕r≥sDer r

1}s and denote by {FsDer +
1 =:

∏
r≥s Der r

1}s the induced fil-
tration on Der +

1 . Define ∂(l) ∈ Der +
1 , ∂(l) =

∑
r≥1 ∂r(l), with ∂r(l) ∈ Der r

1,
as in (1.6) above. One may also construct the free complete graded Lie al-
gebra L̂∗, as the completion of L with respect to the upper degree filtration;
it is endowed with the induced order filtration, {FsL̂ = L̂≥s}s, as before.
It is then straightforward to reinterpret Der +

1 as being the complete Q-
vector space of those Lie derivations of degree −1 of L̂∗ which are strictly
filtration-increasing. (See e.g., [22, Introduction and (1.3)].)

Denote by U the pro-unipotent group of those filtration-preserving degree
zero Lie automorphisms of L̂∗ which act as the identity on the associated
graded, as in [22, Introduction]. It is not hard to see that U acts linearly by
conjugation on the filtered vector space Der +

1 . Denoting by p(k)(K) the U -
orbit of ∂(l) modulo FkDer +

1 (p(k)(K) ∈ U\Der +
1 /FkDer +

1 ), we have shown
in [22, Theorem A] that p(k)(K) is independent of l. It is an invariant of the
(ordered and oriented) concordance class of K. Moreover (1.7)-(1.9) above
correspond to the CH-test p(k+1)(b̂′) = p(k+1)(̂b), under the assumption
p(k)(b̂′) = p(k)(̂b), see [22, Theorem 1.4].
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By their construction, the CH-invariants are non-numerical invariants, ly-
ing in orbit spaces of (finite-dimensional) linear U -representations in
Der +

1 /FkDer +
1 = ⊕k−1

r=1 Der r
1, for k ≥ 2. One knows [18] that for every k this

U -representation factors through Uk, the canonical unipotent subgroup of
GL(Der +

1 /FkDer +
1 ) associated to the above direct sum decomposition. The

failure of numerical invariant theory comes from the fact that the polyno-
mial invariants of Uk in Der +

1 /Fk reduce to the subalgebra of polynomials on
Der 1

1, for every k; thus they are quite inefficient for detecting Uk-orbits, for
k ≥ 3. At the same time, the invariant theory of the U -action on Der +

1 /Fk

seems to be intractable.
What can be done instead is to use the linear decision test (1.8)-(1.9).

We shall see its usefulness, on examples, in Section 6.
There is also a linear natural action of the semidirect product Φ = Zn

2×Σn

on Der +
1 , which respects the filtration of Der +

1 and normalizes the previous
U -action; details may be found in the discussion preceding Proposition 2.8
[22]. It has the property that the Φ · U -orbit of ∂(l) modulo FkDer +

1 ,
to be denoted by p̃(k)(K), depends only on the unordered and unoriented
concordance class of K; see [22, Proposition 2.8].

Remark 1.1. The CH-invariants are faithful at the basepoint, on pure
links, that is, if b ∈ Pn and p̃(k)(b) = p̃(k)(1), for all k, then necessarily
b = 1.

Indeed, li(1) = 1, for i = 1, . . . , n, whence ∂(1) = 0. The equality of
the CH-invariants forces then ∂(b) ≡ 0 modulo FkDer +

1 , for all k, whence
[xi, s

r
i ] = 0, for i = 1, . . . , n and r ≥ 1. One may use now the commutation

properties of free Lie algebras [16, p. 328] (plus a normalization argument
for r = 1, see the beginning of the proof of Theorem 4.3 [22]) to infer
that ρ(li(b)) = 0, for i = 1, . . . , n. The injectivity properties of the CH-
representation and of the Artin representation imply then that b = 1.

2. Braid commutators and the Artin calculus of longitudes.

We want to explain how to handle the CH-decision test (1.8)-(1.9) for
pairs of pure braids of the form b = βα, b′ = β′α, with α ∈ Pn and
β, β′ ∈ ΓkPn. Here ΓkG denotes the kth term of the lower central series of
a group G (defined by Γ1G = G and inductively ΓkG = (G, Γk−1G), where
(x, y) = xyx−1y−1 stands for the commutator of two group elements). We
have to begin by closely examinating the relationship between the lower cen-
tral series of Pn and of FX , via the construction of the algebraic longitudes
((1.1)-(1.3)). This may be done within the framework of the Johnson homo-
morphism. Our first result in this section generalizes a basic construction
of Johnson [10], which turned out to be extremely useful in the study of
mapping class groups, corresponding to the case where G is a surface group.
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One may associate to any given group G the following objects: The graded
Lie algebra gr ∗ΓG =: ⊕k≥1ΓkG/Γk+1G, with Lie bracket induced by the
group commutator (there are no extra signs in the Lie identities!); the graded
Lie algebra of derivations, Der ∗(gr ΓG) = ⊕s≥1Der s(gr ΓG) (where Der s

stands for the degree s homogenous Lie derivations); the Torelli group TG,

TG =: {a ∈ Aut G | a ≡ id mod Γ2G}
and the decreasing filtration of TG, FsTG (s ≥ 1),

FsTG =: {a ∈ Aut G | a ≡ id mod Γs+1G}.
By an old result of Kaloujnine [12] one has (Fs, Ft) ⊂ Fs+t, for all s, t ≥

1, hence the commutator of automorphisms induces a graded Lie algebra
structure on gr ∗F TG =: ⊕s≥1FsTG/Fs+1TG and ΓsTG ⊂ FsTG, for all s ≥ 1.
We are ready to state our result:

Proposition 2.1. The Johnson construction which associates to a ∈ TG

and x ∈ G the element ax ·x−1 ∈ G induces a graded Lie algebra monomor-
phism

J : gr ∗F TG −→ Der ∗(gr ΓG),
for any group G.

Proof. We are going to use the notation (·) ≡k (·) to indicate either the
equality of two elements of TG modulo FkTG or the equality of two elements
of G modulo ΓkG.

First we claim that ax ≡s+k x, for any a ∈ FkTG and x ∈ ΓsG. For
s = 1 this is just the definition of Fk, so we may proceed inductively. Pick
up any x ∈ ΓsG and y ∈ G and compute a(x, y) = (ax, ay) = (xxs+k, ay)
(with xs+k ∈ Γs+k, by induction) ≡s+k+1 (x, ay) (by standard commutator
calculus, see e.g., [16]) = (x, yyk+1) ≡s+k+1 (x, y) (by a similar argument),
whence our claim. We thus have for each a ∈ Fk and s ≥ 1 a map ã :
Γs −→ Γs+k, defined by ãx = ax · x−1, inducing ã : Γs −→ gr s+k

Γ . If
x, y ∈ Γs then a(xy) · (xy)−1 = ax(ay · y−1)x−1 ≡s+k+1 (ax · x−1)(ay · y−1)
(by elementary commutator calculus). Therefore ã induces an additive map
ã : gr s

Γ −→ gr s+k
Γ . For any a, b ∈ Fk and x ∈ Γs we have a(bx) · x−1 =

a(bx · x−1) · (ax · x−1) ≡s+k+1 (bx · x−1)(ax · x−1) (since bx · x−1 ∈ Γs+k

and a ∈ F1). Consequently setting J(a) = ã, for a ∈ FkTG, we obtain a
well-defined additive degree zero map defined on gr ∗F TG with values in the
homogenous additive endomorphisms of positive degree of gr ∗ΓG, which is
injective by the very definition of the filtration of TG.

To finish the proof, two more (less trivial) verifications are needed: The
fact that ã is a Lie derivation of gr ∗ΓG, and the compatibility of J with the
Lie brackets.

Choose then arbitrarily a ∈ Fk, x ∈ Γs and y ∈ Γt. We have to show
that ã(x, y) ≡k+s+t+1 (ãx, y)(x, ãy). We begin by following the definitions
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and writing

ã(x, y) = ax · ay · ax−1(ay−1 · y)(x, y−1)y−1.

We may next commute ay−1 · y ∈ Γk+t with (x, y−1) ∈ Γs+t, modulo
Γk+s+t+1, expand (ãx, y)(x, ãy) and simplify to get the equivalent congru-
ence

ay · ax−1 · x ≡k+s+t+1 x−1yx · ax−1 · y−1x · ay.

This in turn may be rewritten as

y(y−1 · ay)(ax−1 · x) ≡k+s+t+1 y(y−1, x−1)(ax−1 · x)x−1y−1x · ay,

in order to perform again a commutation trick (applied to both the above
pairs of parentheses). Finally, after the simplification of both sides by
y(ax−1 · x) and a little cancelation, this reduces to the identity y−1 · ay
≡k+s+t+1 y−1 · ay, so we are done.

To see that J is a Lie algebra map we need to show that

(2.1) aba−1b−1(x) · x−1 ≡k+s+t+1 ã(bx · x−1) · [̃b(ax · x−1)]−1,

for any a ∈ Fs, b ∈ Ft and x ∈ Γk. We may first rewrite (̃a, b)x as follows

aba−1b−1(x) · x−1

= ab{[a−1(b−1x · x−1)(b−1x · x−1)−1]b−1x · x−1}aba−1(x) · x−1.

Note that b−1x · x−1 ∈ Γk+t, therefore ã−1(b−1x · x−1) ∈ Γk+s+t. It follows
that ab(ã−1(b−1x · x−1)) ≡k+s+t+1 ã−1(b−1x · x−1), since ab ∈ F1. We may
thus infer that

(̃a, b)x ≡k+s+t+1 ã−1(b−1x · x−1)

· ab
{
(b−1x · x−1)(a−1x · x−1)

}
· ab(x) · x−1.

The already established linearity properties of J together with the bilinear-
ity of the commutator of derivations allow us to replace a and b by their
inverses in the right-hand side of (2.1). Comparing the result with the above
computation for (̃a, b)x we get the equivalent congruence

(2.2) ab
{
(b−1x · x−1)(a−1x · x−1)

}
· ab(x) · x−1

≡k+s+t+1 a−1x · x−1 · b−1x · b−1a−1(x−1).

It is convenient to write the left-hand side of (2.2) in the form

a(x · bx−1) · a
{

b̃(a−1x · x−1) · (a−1x · x−1)
}
· a(x · bx−1)−1 · ax · x−1.

Note that x · bx−1, a(x · bx−1) ∈ Γk+t, a−1x · x−1, a(a−1x · x−1) ∈ Γk+s

and consequently b̃(a−1x · x−1), ab̃(a−1x · x−1) ∈ Γk+s+t, which enables us
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to replace the above expression (using a commutation argument modulo
Γk+s+t+1 ) by

abb−1{b(a−1x · x−1) · x · a−1x−1} .

This equals

ab(a−1x · x−1 · b−1x · b−1a−1(x−1)) ≡k+s+t+1 a−1x · x−1 · b−1x · b−1a−1(x−1),

as desired (see (2.2)), since b−1b̃(a−1x · x−1) ∈ Γk+s+t and ab ∈ F1. Our
proof is complete. �

The next series of lemmas completely describes the calculus of longitudes
modulo the lower central series of Pn and of FX .

Lemma 2.2. If α ∈ ΓsPn then li(α) ∈ ΓsFX , for i = 1, . . . , n.

Proof. The abelianization of (1.1) readily implies that the Artin represen-
tation embeds Pn into the Torelli group T (FX), and consequently ΓsPn ⊂
FsT (FX), for all s ≥ 1. By the definition of the Torelli filtration this im-
plies that 0 ≡s+1 xiα · x−1

i = (li(α), xi) (see (1.1)), for i = 1, . . . , n. As is
well-known gr ∗ΓFX is isomorphic to L∗X(Z) (the free graded Z-Lie algebra
on the degree one generators x1, . . . , xn). One also knows ([16, p. 328])
that the only homogenous elements of L∗X(Z) which commute with xi are
the multiples of xi.

We may use these facts to show that li(α) ≡t 0, for t ≤ s, by induction.
We need only to recall that li(α) ≡2

∑
j 6=i µijxj (as a consequence of the

normalization, see (1.2)), which completes the first nontrivial step (t =
2). �

Set then li(α) = li(α) mod Γs+1FX (i = 1, . . . , n), for α ∈ ΓsPn.

Lemma 2.3. The above map induces a well-defined additive map li : gr s
ΓPn

−→ gr s
ΓFX = Ls

X(Z), for i = 1, . . . , n.

Proof. Apply the general Artin calculus rule

li(αβ) = li(α)β · li(β)

(see [22, Lemma 3.2]) to α, β ∈ ΓsPn and next to α ∈ ΓsPn, β ∈ Γs+1Pn,
together with the preceding result. �

The next key lemma appeals to the delicate part of Proposition 2.1 (the
compatibility of J with the Lie algebra structures).

Lemma 2.4. Defining, for γ ∈ ΓkPn, γ̃ ∈ Der kLX(Z) by γ̃xi = [xi, li(γ)],
for i = 1, . . . , n (on the free Lie algebra generators) one has for any α ∈
ΓsPn and β ∈ ΓtPn

li(α, β) = [li(α), li(β)] + α̃(li(β))− β̃(li(α)), for i = 1, . . . , n.
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Proof. Let λ : gr ∗ΓPn −→ Der ∗(LX(Z)) be the negative of the composition
of the map induced by the Artin representation, gr ∗ΓPn −→ gr ∗F T (FX),
followed by Johnson’s homomorphism gr ∗F T (FX) −→ Der ∗(LX(Z)). We
know from Proposition 2.1 that λ is a graded Lie algebra map (the mi-
nus sign comes from the fact that Pn acts on FX on the right via Artin’s
representation). By construction we have for any γ ∈ ΓkPn

λ(γ)xi ≡k+2 (xiγ · x−1
i )−1,

which may be rewritten (see (1.1)) in additive notation as [xi, li(γ)], i.e.,
λ(γ) = γ̃. The fact that λ is a Lie map implies that

[xi, li(α, β)] = λ(α, β)xi = α̃(β̃xi)− β̃(α̃xi)

= α̃[xi, li(β)]− β̃[xi, li(α)]

= [xi, α̃(liβ)− β̃(liα)] + [[xi, liα], liβ]− [[xi, liβ], liα]

(since α̃ and β̃ are Lie derivations)

= [xi, [liα, liβ] + α̃(liβ)− β̃(liα)]

(by Jacobi). Invoking once more the commutation properties of a free Lie
algebra [16, p. 328], we get our stated formula. �

The previous lemmas offer a complete simple recipe of computation of the
algebraic longitudes modulo the lower central series, as soon as one knows
the values of li (1 ≤ i ≤ n) on a specific set of group generators of Pn. We
are going to use the well-known generators (ars)1≤r<s≤n, see [3, 1.8.2].

Lemma 2.5. The values of li(ars) ∈ L1
X(Z) = gr 1

ΓFX , for 1 ≤ r < s ≤ n

and 1 ≤ i ≤ n, are zero excepting lr(ars) = xs and ls(ars) = xr.

Proof. The precise form of (1.1) for b = ars is given in [3, 1.8.3]. It is
a routine exercise to apply the definitions (1.2)-(1.3) and then to get the
desired result by abelianization. �

Here is one more useful result in the Artin calculus modulo commuta-
tors, involving the action of the symmetric group Σn, which comes from the
conjugation in the full braid group Bn. (This corresponds to the passage
from ordered oriented to unordered oriented isotopy type, via the Artin clo-
sure.) Firstly one has the natural action of Σn on L∗X(Z) by (degree zero)
graded Lie algebra automorphisms which is given on the free generators by
gxi = xgi (g ∈ Σn, i ∈ {1, . . . , n}). On the other hand there is a well-known
short exact sequence of groups (see e.g., [3, p. 19])

(2.3) 1 −→ Pn −→ Bn
ν−→ Σn −→ 1.
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Thus Bn acts by conjugation on gr ∗ΓPn, by graded Lie algebra automor-
phisms, and since obviously the action of Pn is trivial one has in fact an
action of Σn, via ν.

Denoting by (·) the class modulo Γs+1 of an element belonging to Γs,
we thus have by definition (for g ∈ Σn and α ∈ ΓsPn) g(α) = σα, where
ν(σ) = g−1.

Lemma 2.6. For g ∈ Σn, α ∈ ΓsPn and 1 ≤ i ≤ n one has

li(gα) = glg−1i(α).

Proof. Pick σ ∈ Bn such that ν(σ) = g−1. One knows [3] that the Artin
action of σ on FX is of the following form

(2.4) xiσ =wi xg−1i, for i = 1, . . . , n.

According to [22, Lemma 3.5] one then has for every i

li(σα) = (wiα · lg−1i(α) · w−1
i )σ−1,

where wi ∈ FX is as in (2.4). Using Lemma 2.2 we may compute modulo
Γs+1 as follows

li(σα) ≡s+1 lg−1i(α)σ−1 · (wiα · w−1
i )σ−1 ≡s+1 lg−1i(α)σ−1

(since α ∈ ΓsPn ⊂ FsT (FX), whence wα ≡s+1 w, for any w ∈ FX). Finally
we get lg−1i(α)σ−1 ≡s+1 glg−1i(α), as desired, by noting that lg−1i(α) ∈
ΓsFX and remarking that the action of σ−1 on ΓsFX/Γs+1FX = gr s

ΓFX is
the Lie multiplicative extension of the action of σ−1 on gr 1

ΓFX = L1
X(Z).

This in turn may be easily read off from (2.4) by abelianization

xjσ
−1 ≡2 xgj , for j = 1, . . . , n,

which finishes the proof. �

The faithful relationship between the lower central series of Pn and of FX

is described by the following more precise form of Lemma 2.2. It is also
remarkable that in the case of Pn the lower central series filtration coincides
with the Torelli filtration, compare to [10, §7].

Theorem 2.7. If α ∈ Pn then the following are equivalent:
(i) α ∈ ΓsPn.
(ii) li(α) ∈ ΓsFX , for every i = 1, . . . , n.
(iii) α ∈ FsT (FX).

Proof. (i) ⇔ (ii). Plainly it will be enough to assume inductively that
α ∈ ΓkPn (for some k ≥ 1) and prove that α ∈ Γk+1Pn, if li(α) = 0 for
every i. This assertion in turn (which is trivial for n = 1) will be proved by
induction on n. It will follow for Pn by making use of the basic split exact
sequence [3, p. 23]

(2.5) 1 −→ Kn −→ Pn
η−→ Pn−1 −→ 1.
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In terms of Artin representations, if α ∈ Pn is represented by

α : F(x1, . . . , xn) ∼−→ F(x1, . . . , xn)

then η(α) is represented by

α mod xn : F(x1, . . . , xn−1)
∼−→ F(x1, . . . , xn−1).

To construct the splitting, extend the action of β ∈ Pn−1 to F(x1, . . . , xn),
by setting

(2.6) xnβ = xn.

The split exact sequence with trivial H1-monodromy (2.5) remains split
exact after applying the functor Γk, as shown in [7]. Therefore α = uβ, with
u ∈ ΓkKn and β ∈ ΓkPn−1. Then the hypothesis ln(α) = 0 implies ln(u) = 0
(by additivity, see Lemma 2.3, given that ln(β) = 1 by construction, see
(2.6)).

On the other hand the formula [22, Lemma 3.2] ln(vω) = ln(v)ω · ln(ω),
taken modulo xn and applied to v, ω ∈ Kn, which is the free group generated
by {arn | 1 ≤ r < n} (see [3, p. 23]), identifies ln mod xn : Kn −→
F(x1, . . . , xn−1) with the group isomorphism sending arn into xr, for all
r < n, see [3, 1.8.3]; compare also with [9, p. 400]. We may thus infer that
u ∈ Γk+1Kn. The other hypotheses made on α imply that li(β) = 0 for
1 ≤ i < n, whence β ∈ Γk+1Pn−1 by induction and thus α = uβ ∈ Γk+1Pn.

(i) ⇔ (iii). This time it will be enough to assume inductively that α ∈
ΓkPn ∩ Fk+1T (FX) and to infer that necessarily α ∈ Γk+1Pn. Lemma 2.2
and the construction of J (Proposition 2.1) imply that [li(α), xi] = 0 for
i = 1, . . . , n. It follows, as in Lemma 2.2, that li(α) ∈ Γk+1FX , for all i.
The preceding result enables us to infer that α ∈ Γk+1Pn, as needed. �

Going back to the setting of the previous section, let b, b′ ∈ Pn be of the
form b = βα and b′ = β′α, with α ∈ Pn and β, β′ ∈ ΓkPn.

Define an additive map Λ : gr k
ΓPn −→ Der k

1L(X ⊕ Y ) by Λ(γ)xi = 0,
i = 1, . . . , n and

(2.7) Λ(γ)yi = [xi, li(γ)], for i = 1, . . . , n,

where γ ∈ ΓkPn.
As a first corollary of our analysis of the Artin calculus modulo commu-

tators we may offer the following result.

Corollary 2.8. If b, b′ ∈ Pn are as above then p(k)(b′) = p(k)(b). More
precisely:

(i) s′ri = sr
i , for all r < k and 1 ≤ i ≤ n, as in (1.7).

(ii) ∂r(b′) = ∂r(b) = ∂r(α), for all r < k.
(iii) ∂k(b)− ∂k(b′) = Λ(β − β′).
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Proof. The assertion (ii) follows from (i) (see (1.6)), which in turn may be
proved as follows. One of the basic properties of the CH-representation
(1.4) is that if v ≡k v′ (v, v′ ∈ FX) then the formal Lie series ρv and ρv′

are equal modulo terms of bracket length at least k; see [14, 16]. With this
remark, given the definition (1.5) of si and s′i, the assertion to be proved
is a consequence of the multiplicative property [22, Lemma 3.2] which says
that

(2.8) li(b) = li(β)α · li(α), for i = 1, . . . , n

(and likewise for li(b′)). Therefore li(b) ≡k li(α) ≡k li(b′), since β, β′ ∈ ΓkPn

(use Lemma 2.2).
As for the last assertion, in order to compute ∂k(b) we will need ρli(b)

modulo terms of bracket length at least k + 1, for all i (and similarly for
∂k(b′)). By the same argument as before we may reduce modulo Γk+1 in (2.8)
and replace li(b) by li(β) · li(α) and li(b′) by li(β′) · li(α), since li(β), li(β′) ∈
ΓkFX and α ∈ T (FX). We recall now the CH-multiplication formula [16]

s · t = s + t +
1
2
[s, t] + terms of higher bracket length

(where s, t ∈ L̂X). As we have already remarked, li(β) ≡k 1 implies that
ρli(β) contains only terms of bracket length at least k. Therefore the above
CH-multiplication formula reduces to ρli(β)·ρli(α) ≡ ρli(β)+ρli(α) modulo
terms of degree at least k + 1 (and likewise for ρli(β′) · ρli(α)).

We infer that ∂k(b) = ∂k(β) + ∂k(α) and ∂k(b′) = ∂k(β′) + ∂k(α), by
construction, whence ∂k(b)− ∂k(b′) = ∂k(β)− ∂k(β′). Thus it will suffice to
show that β ∈ ΓkPn implies that ∂k(β) = Λ(β), in order to finish our proof.
On the other hand this claim is a direct consequence of the definitions of ∂k

and Λ, due to another basic property of the CH-representation [16], namely
that ρv ≡ v modulo terms of degree at least k + 1, for any v ∈ ΓkFX . Here
v denotes as usual the class of v modulo Γk+1FX , belonging to gr k

ΓFX =
Lk

X(Z). �

Our second corollary says that the lower central series filtration of pure
braids may be detected by (unordered, unoriented) CH-invariants; see also
Remark 1.1.

Corollary 2.9. If α ∈ Pn then α ∈ ΓkPn if and only if p̃(k)(α) = 0, where
0 ∈ (Φ · U\Der +

1 /FkDer +
1 ).

Proof. Since the action of Φ · U on Der +
1 is linear, the equality p̃(k)(α) =

0 translates to ∂(α) ∈ FkDer +
1 . As in Remark 1.1, this is equivalent to

ρli(α) ≡ 0 modulo FkL̂X , for all i. Since ρ is faithful with respect to the
natural filtrations (see [14, 16]) this in turn is equivalent to li(α) ∈ ΓkFX ,
for all i. Finally this means precisely that α ∈ ΓkPn, by Theorem 2.7. �
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3. Homogenous links.

Let K be an arbitrary n-component link, ordered and oriented. As recalled
in §1, the construction of the CH-invariants of K starts with the choice of
an algebraic system of longitudes, l = {l(k)

i }. One knows that l
(k+1)
i ≡ l

(k)
i

modulo ΓkFX , therefore ρl
(k+1)
i ≡ ρl

(k)
i modulo L̂≥k

X and thus we get for
each i a formal Lie series si =: lim

−→k

ρl
(k)
i ∈ L̂X . There is an associated Lie

derivation of L̂∗, ∂ = ∂(l) ∈ Der +
1 , defined on the free Lie generators by

∂xi = 0 and ∂yi = [xi, si], for i = 1, . . . , n.

Definition 3.1. A derivation ∂ ∈ Der +
1 of the form ∂ =

∑
j≥h ∂j , where

∂j ∈ Der j
1, for every j, is said to be h-homogenous if its U -orbit contains

∂h. A link K is h-homogenous if it has an algebraic system of longitudes l
such that ∂(l) is h-homogenous. A braid α ∈ Pn is h-homogenous if ∂(α) is
h-homogenous.

Consider then b = βα and b′ = β′α, with α ∈ ΓhPn and β, β′ ∈ ΓkPn,
k > h ≥ 1. The following result provides a major simplification of the
CH-test (1.8)-(1.9).

Theorem 3.2. If b, b′ ∈ Pn are as above then:
(i) Their CH-invariants of order k are equal, p(k)(b′) = p(k)(b).
(ii) If α is h-homogenous then p(k+1)(b′) = p(k+1)(b) if and only if the

derivation Λ(β − β′) constructed as in (2.7) belongs to

Im{ad (∂h(α)) : Der k−h
0 L(X ⊕ Y ) −→ Der k

1L(X ⊕ Y )},

or equivalently if and only if there exists θ ∈ Der k−hL∗X with the prop-
erty that for each i = 1, . . . , n one has

(∗i) [xi, li(β − β′)] ≡ [xi, θli(α)] + [θxi, li(α)]

modulo 〈[xj , lj(α)] | 1 ≤ j ≤ n〉.
Here β, β′ ∈ gr k

ΓPn represent the classes of β, β′ modulo Γk+1Pn and
likewise α ∈ gr h

ΓPn stands for the class of α modulo Γh+1Pn, and 〈(·)〉
denotes the (homogenous) Lie ideal of L∗X generated by (·).

Proof. The above statement (i) follows at once from Corollary 2.8.
For the proof of (ii) we will need the following general remarks. Denote by

Der +
0 the completion of⊕r≥1Der r

0(L) with respect to the upper degree filtra-
tion. Note that we may identify Der +

0 with the vector space of those degree
zero Lie derivations of L̂∗ which are strictly filtration-increasing, similarly as
we did before in the case of Der +

1 (see §1). As in that case, there is a natural
action of U on Der +

0 , by conjugation. Moreover the Lie bracket of Der ∗∗ in-

duces (by linearity and completion) a bilinear map Der +
0 ×Der +

1

[·,·]−→ Der +
1 ,
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which is obviously U -equivariant. Finally note that gr ∗F (u) = id, for any
u ∈ U , where {FkDer +

1 }k is the canonical filtration of Der +
1 ; see [18, 1.8].

These remarks may be used to rephrase (1.8)-(1.9) as follows: p(k+1)(b′) =
p(k+1)(b) if and only if there exists q ∈ Der +

0 with the properties

(3.1) [q, ∂(α)] ≡k 0

and

(3.2) [q, ∂(α)] ≡k+1 ∂(b)− ∂(b′).

Here we have used ≡s to denote the equality of elements in Der +
1 modulo

FsDer +
1 and we have used Corollary 2.8 (ii) to replace ∂r(b) in (1.8)-(1.9)

by ∂r(α), for r < k.
If α is h-homogenous then by Definition 3.1 there exists u ∈ U such that

u∂(α) = ∂h(α). Since the conjugation by u is a filtered automorphism of
Der +

1 and it is also compatible with the commutator of derivations, we may
replace (3.1)-(3.2) by the equivalent condition: There exists q ∈ Der +

0 such
that

(3.3) [q, ∂h(α)] ≡k 0

and

(3.4) [q, ∂h(α)] ≡ u
k+1 (∂(b)− ∂(b′)) ≡k+1 ∂(b)− ∂(b′).

(The second congruence from (3.4) comes from the fact that ∂(b)−∂(b′) ≡k 0,
see Corollary 2.8 (ii), because the conjugation by u is unipotent with respect
to the filtration {FsDer +

1 }, as recalled before.)
Writing now q =

∑
j≥1 qj , with qj ∈ Der j

0(L), we may use the homogene-
ity of ∂h(α) to rewrite (3.3)-(3.4) as follows

(3.5) [qj , ∂h(α)] = 0, for j < k − h

and

(3.6) [qk−h, ∂h(α)] = ∂k(b)− ∂k(b′).

Summing up and resorting to Corollary 2.8 (iii) we find that p(k+1)(b′) =
p(k+1)(b) if and only if Λ(β− β′) ∈ ad (∂h(α))Der k−h

0 L(X ⊕Y ), as asserted.
To get the stated equivalent form of this condition, reformulate (3.6) by
applying both sides to yi, 1 ≤ i ≤ n, to obtain by the definition of Λ the
equivalent form

(3.7) [xi, li(β − β′)] = qk−h∂h(α)yi − ∂h(α)qk−hyi, for all i.

(Note that the derivations are uniquely determined by their values on the
free generators and ∂xi = 0 for all i, if ∂ ∈ Der 1L(X⊕Y ), for trivial degree
reasons.)

Remember next that α ∈ ΓhPn, therefore ∂h(α)yi = [xi, li(α)], for all i;
see the proof of Corollary 2.8 (iii). Consequently qk−h∂h(α)yi = [xi, θli(α)]+
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[θxi, li(α)], where θ ∈ Der k−hLX is given by the restriction of qk−h to L∗X .
In fact a straightforward degree inspection shows qk−h to be uniquely de-
termined on X by θ ∈ Der k−hLX and on Y by qk−hyi =

∑n
j=1 cij , with cij

(1 ≤ i, j ≤ n) arbitrary elements belonging to ad k−h
X (yj). Here ad k−h

X (yj)
is the Q-span of the Lie monomials of the form ad (xi1) · · · ad (xik−h

)(yj).
We may thus see that {−∂h(α)qk−hyi}1≤i≤n is an arbitrary collection of
n elements of degree k + 1 belonging to 〈[xj , lj(α)] | 1 ≤ j ≤ n〉, since
∂ ad (xi1) · · · ad (xis)(yj) = ad (xi1) · · · ad (xis)(∂yj), for any ∂ ∈ Der 1L(X⊕
Y ) and 1 ≤ i1, . . . , is, j ≤ n. Thus (3.7) is equivalent to {(∗i)}1≤i≤n and
the proof of our theorem is complete. �

Set
∑

Y =
∑n

i=1 yi,
∑

Y ∈ Y . The next result offers two general homo-
geneity criteria.

Proposition 3.3. If ∂ ∈ Der +
1 is of the form ∂ =

∑
j≥h ∂j, with ∂j ∈ Der j

1,
then:

(i) ∂ is h-homogenous if and only if there is a filtered Lie isomorphism
v : L̂X

∼−→ L̂X such that gr ∗F (v) = id with respect to the canonical
filtration {FkL̂X}k≥1 and v(∂Y ) ⊂ 〈〈∂hY 〉〉, where 〈〈(·)〉〉 is the closed
Lie ideal of L̂X generated by (·).

(ii) Assuming that ∂h
∑

Y = 0 and that ∂h induces an injection Y/Q ·∑
Y −→ Lh+1

X , ∂ is h-homogenous if and only if there exist a filtered
Lie isomorphism v : L̂X

∼−→ L̂X and a homogenous derivation ∂′h ∈
Der h

1 satisfying ∂′h
∑

Y = 0 and such that v(∂Y ) ⊂ 〈〈∂′hY 〉〉.

Proof. By definition ∂ is h-homogenous if and only if u∂ = ∂hu, for some
u ∈ U . For obvious degree reasons it is enough to check the above equality
only on the free generators belonging to Y , which amounts to

v(∂yi) = ∂h(uyi), for i = 1, . . . , n,

where v = u|bLX
. To say that u ∈ U is equivalent (by the definition of

U , see §1) to saying that v is a filtered Lie automorphism of L̂X satisfying
gr ∗F (v) = id and demanding the restriction of u to Y to be of the form

uyi = yi +
∑
j≥1

ϕj
i (x, y), for i = 1, . . . , n,

with ϕj
i ∈ ad j

X(Y ), for all j.
These remarks give at once the “only if” part of the above statement (i).

Conversely, knowing that v(∂Y ) ⊂ 〈〈∂hY 〉〉 we infer equalities of the form

v(∂yi) =
∑
j≥0

ϕj
i (x, ∂hy), for i = 1, . . . , n,
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with ϕj
i ∈ ad j

X(Y ) for j ≥ 0 and where ϕj
i (x, ∂hy) denotes the result of

the substitution yl 7→ ∂hyl, for every l = 1, . . . , n, in the Lie polynomial
ϕj

i (x, y). Using ∂ =
∑

t≥h ∂t and the unipotency of v, we obtain

∂hyi = ϕ0
i (x, ∂hy), for all i

(by equating the lowest bracket degree terms of the preceding relations).
Therefore we may suppose that ϕ0

i (x, y) = yi, for all i. Set then u|bLX
= v

and uyi =
∑

j≥0 ϕj
i (x, y), for i = 1, . . . , n, to obtain u ∈ U with the property

that u∂ = ∂h, as required.
The “only if” part in the above statement (ii) follows from (i), with ∂′h =

∂h. For the converse implication, set g = gr 1
F (v)−1 : X

∼−→ X, denote by
ĝ ∈ Aut L̂X the completion of the (upper) degree zero Lie automorphism of
L∗X extending g, and write v = ĝ−1u, with u ∈ Aut L̂X . Then gr 1

F (u) = id
by construction, whence gr ∗F (u) = id (since gr ∗F (u) is a graded Lie algebra
map for any u ∈ Aut L̂X and gr ∗F L̂X = L∗X is generated in degree one). The
hypothesis v(∂Y ) ⊂ 〈〈∂′hY 〉〉 readily implies that u(∂Y ) ⊂ 〈〈ĝ∂′hY 〉〉. Due to
the fact that the ideal 〈〈ĝ∂′hY 〉〉 is homogenous and u is unipotent, a lowest
bracket degree argument as before reveals that necessarily ∂hY ⊂ ĝ∂′hY .
Whence we get a commutative diagram

Y/Q ·
∑

Y
∂h−−−→ Lh+1

X

t

y ybg−1

Y/Q ·
∑

Y

∂′h−−−→ Lh+1
X

(for some linear map t).
The assumption on the injectivity of ∂h from the above diagram readily

implies that t is an isomorphism and therefore we actually have ∂hY = ĝ∂′hY .
Consequently u(∂Y ) ⊂ 〈〈∂hY 〉〉 and we are done, by resorting to (i). �

Remark 3.4. Let K be a link having a Milnor system l such that l
(h)
i ≡ 1

modulo ΓhFX , for all i (for example K = α̂, with α ∈ ΓhPn, see Lemma
2.2). Set ∂ = ∂(l). It follows then from [22, Theorem 4.3 and (4.6)] that
∂ =

∑
j≥h ∂j and ∂h

∑
Y = 0. (In the case K = α̂, with α ∈ ΓhPn, this

translates to
∑n

i=1 [xi, li(α)] = 0, see the proof of Corollary 2.8 (iii).) The
other assumption made on ∂h in Proposition 3.3 (ii) is most natural, too.
For example, if h = 1 one may combine [22, (4.7)] and [17, §6] to see
that the map ∂1 : Y/Q ·

∑
Y → L2

X ≡ ∧2X may be identified with the
comultiplication ∆ : H2 → ∧2H1 (where H∗ = H∗(S3 \ K;Q)). It turns
out that the injectivity of ∆ characterizes the so-called generic links; see [1,
Example 4.3]. These enjoy several remarkable properties which have been
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studied in [1, 2, 17]. For example all algebraic links (in the sense of [20,
§10]) are generic; see [1, Example 4.5].

The preceding proposition may be used to produce several interesting
examples of homogenous links. For instance, denoting by σ1, . . . , σn−1 the
standard generators of the full braid group Bn, see [3, p. 18], and setting
zn = (σ1 · · ·σn−1)n, one knows that zn is a central element of Bn which be-
longs to Pn, for n ≥ 2, see [3, 1.8.4]. Also fn = σn−1σn−2 · · ·σ2

1 · · ·σn−2σn−1

∈ Pn, n ≥ 2, gives an interesting series of examples related to fibered links,
see e.g., [21].

Corollary 3.5. The pure braids zn, fn and ars, where 1 ≤ r < s ≤ n, and
n ≥ 2, are 1-homogenous.

Proof. The algebraic longitudes of the standard generators of Pn, ars, may
be immediately read off from [3, (1.15)]:

(3.8)


li(ars) = 1, if i < r or i > s,
li(ars) = (xr, xs), if r < i < s,
lr(ars) = xrxs, for i = r,
ls(ars) = xr, for i = s.

Similarly, using the description of the Artin representation of the standard
generators σi of Bn, see [3, (1.14)], it is straightforward to see that the
longitudes of fn and zn are as follows (see e.g., [21, 22]):

(3.9)
{

li(fn) = x1···xn−1xn, for i < n,
ln(fn) = x1 · · ·xn−1, for i = n

and

(3.10) li(zn) = x1 · · ·xn · x−1
i , for 1 ≤ i ≤ n.

This gives at once the following formulae for ∂1, by abelianization (since
ρΓ2FX ⊂ L̂≥2

X ):

(3.8′)

 ∂1(ars)yi = 0, for i 6= r, s,
∂1(ars)yr = [xr, xs],
∂1(ars)ys = [xs, xr]

(3.9′)
{

∂1(fn)yi = [xi, xn], for i < n,
∂1(fn)yn = [xn,ΣX ]

(where
∑

X =:
∑n

i=1 xi,
∑

X ∈ X), and

(3.10′) ∂1(zn)yi = [xi,ΣX ], for 1 ≤ i ≤ n.

The basic Campbell-Hausdorff trick of our proof is based on the following
standard remark (see [14] and also [22, Lemma 2.5]):

〈〈(w1, w
′
1), . . . , (wm, w′m)〉〉 = 〈〈[w1, w

′
1], . . . , [wm, w′m]〉〉,
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for any elements wi, w
′
i ∈ L̂X , where [·, ·] is the Lie algebra commutator and

(·, ·) is the CH-group commutator.
The proof for α = ars and α = fn is a direct consequence of Proposition

3.3 (i), taking v = id. To verify that ∂(α)yi = [xi, ρli(α)] ≡ 0 modulo
〈〈∂1(α)yj = [xj , lj(α)] | 1 ≤ j ≤ n〉〉, for all 1 ≤ i ≤ n, it suffices by the
previous remark to see that (xi, ρli(α)) ≡ ρ(1) modulo 〈〈(xj , lj(α)) | 1 ≤
j ≤ n〉〉, for all 1 ≤ i ≤ n. This amounts to making a routine check, for both
α = ars and α = fn. Namely we have to see that in the CH-group of L̂X

the relations (xj , lj(α)) = 1, for all j, imply the relations (xi, ρli(α)) = 1, for
all i, given the classical correspondence between closed ideals and normal
CH-subgroups of complete Lie algebras [14].

Finally the proof for α = zn uses Proposition 3.3 (ii). We shall take
∂′1 = ∂1(fn) and note that ∂1(zn)

∑
Y = 0 and ∂1(fn)

∑
Y = 0 (see Remark

3.4). The injectivity condition for ∂1(zn) : Y/Q ·
∑

Y −→ L2
X immediately

follows from the commutation properties of a free Lie algebra, via (3.10′).
To construct v, set

(3.11)
{

vxi = xi, for i < n,
vxn = (x1 · · ·xn−1)−1xn.

This defines a filtered Lie isomorphism v : L̂X
∼→ L̂X , which necessarily

is also a group automorphism of the associated CH-group of L̂X [14]. As
in the previous two cases, to check that v(∂(zn)yi) = [vxi, vρli(zn)] ≡ 0
modulo 〈〈∂′1yj = [xj , lj(fn)] | 1 ≤ j ≤ n〉〉, for all 1 ≤ i ≤ n, and thus
finish our proof, we may replace in the above congruences all Lie brackets by
CH-commutators and then replace 〈〈∂′1yj | 1 ≤ j ≤ n〉〉 by the normal CH-
subgroup generated by (xj , xn), 1 ≤ j < n. Resorting to (3.11) and (3.10), it
is straightforward to see that the relations (xj , xn) = 1, for 1 ≤ j < n, imply
the relations (vxi, vρli(zn)) = 1, for all i, which completes the proof. �

Corollary 3.6. All algebraic links (in the sense of [20, §10]) are 1-homo-
genous.

Proof. The key property of algebraic link complements S3 \ K is the fact
that they are formal spaces, in the sense of rational homotopy theory [25],
as shown in [6, Theorem 4.2]. Setting G = π1(S3 \K), it is well-known that
this implies the existence of a filtered Lie algebra isomorphism between the
Malcev Lie algebra G⊗Q and the (completed) holonomy Lie algebra L̂S3\K ;
see e.g., [13] for details and references on G⊗Q and L.

The Malcev Lie algebra of G is by definition G⊗Q =: lim
←−k

((G/ΓkG)⊗Q).

Here (G/ΓkG) ⊗Q is the Q-Lie algebra form of the Malcev completion of
the nilpotent group G/ΓkG and the Lie algebra G⊗Q is endowed with the
canonical (complete) inverse limit filtration. Let l be any Milnor system of
longitudes of an arbitrary n-link K. As pointed out in [22, Remark 2.9],
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there is a filtered Lie isomorphism

(3.12) G⊗Q ∼= lim
←−k

(L̂X/(〈〈∂(k)Y 〉〉+ L̂≥k
X )),

where ∂(k) = ∂(l(k)), with l(k) = {l(k)
i }1≤i≤n, for each k. It is immediate

to see that we may replace in (3.12) ∂(k) by ∂ = ∂(l), for every k, to get a
filtered Lie isomorphism

(3.13) G⊗Q ∼= L̂X/〈〈∂Y 〉〉

(where the filtration of the quotient is induced by the canonical filtration
{FsL̂X = L̂≥s

X }s).
On the other hand, we have shown in [22, (4.7)] how to compute ∂1

in terms of linking numbers. This gives, via [17, §6], another filtered Lie
isomorphism, valid for any link K,

(3.14) L̂S3\K ∼= L̂X/〈〈∂1Y 〉〉

(where the quotient carries again the filtration induced from L̂X).
We may now finish our proof by resorting to Proposition 3.3 (ii). We may

take ∂′1 = ∂1, recalling that in general one has ∂1
∑

Y = 0 and that ∂1 of an
algebraic link induces an injection Y/Q ·

∑
Y → L2

X ; see Remark 3.4. As
for the filtered Lie isomorphism v, it may be obtained in a standard way by
combining (3.13) and (3.14).

Set E = L̂X/〈〈∂Y 〉〉 and E1 = L̂X/〈〈∂1Y 〉〉. We have a filtered Lie isomor-
phism E

∼→ E1, which may be lifted by freeness to a filtered Lie morphism
v : L̂X → L̂X , with the property that v(∂Y ) ⊂ 〈〈∂1Y 〉〉. Since plainly both
canonical projections, L̂X → E and L̂X → E1, induce isomorphisms at the
gr 1

F -level, we infer that gr 1
F (v) : X

∼→ X is an isomorphism. This implies
that gr ∗F (v) is an isomorphism, since gr ∗F (L̂X) = L∗X and v is a Lie map.
We get inductively that v : L̂X/Fk

∼→ L̂X/Fk is an isomorphism, for all k,
therefore v : L̂X

∼→ L̂X is an isomorphism, as needed, by the completeness
of L̂X . �

4. Some homogenous CH-tests.

In this section we are going to reformulate on examples our key homogenous
CH-test {(∗i)}1≤i≤n (see Theorem 3.2 (ii)) in terms of the graded Lie algebra
gr ∗ΓPn. As a first step we shall get rid of ad (xi) in front of li(β − β′) from
(∗i).

To be precise, we are going to look at the property :

there exists θ ∈ Der k−1L∗X such that

(∗′i) [xi, li(γ)] ≡ [xi, θli(α)] + [θxi, li(α)]
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modulo 〈[xj , lj(α)] | 1 ≤ j ≤ n〉
for each i = 1, . . . , n

of a given γ ∈ ΓkPn (k ≥ 2), where α is one of the 1-homogenous braids zn

or ars of Corollary 3.5.
Beginning with α = zn, it will be convenient to consider, for any fixed j,

1 ≤ j ≤ n, the graded Lie algebra map πj : L∗(x1, . . . , xn) −→ L∗(xs | s 6=
j) given on the free generators by

(4.1)
{

πjxi = xi, for i 6= j,
πjxj = −

∑
i6=j xi.

Lemma 4.1. The above conditions {(∗′i)}1≤i≤n are equivalent for α = zn

with the conditions

li(γ) ≡ lj(γ) modulo 〈[xt,ΣX ] | 1 ≤ t ≤ n〉, for all 1 ≤ i, j ≤ n

or equivalently (for any fixed j, 1 ≤ j ≤ n)

πjli(γ) = πjlj(γ), for all i 6= j.

Proof. Setting I = 〈[xt, lt(zn)] | 1 ≤ t ≤ n〉 it is immediate to see that I =
〈[xt,

∑
X ] | 1 ≤ t ≤ n〉 (look at (3.10) and (3.10′)). Since li(zn) =

∑
X −xi,

for every i, the right-hand side of (∗′i) equals (modulo I)

[xi, θΣX ]− [xi, θxi]− [θxi, xi] = [xi, θΣX ]− θ[xi, xi] = [xi, θΣX ].

Therefore the conditions {(∗′i)}1≤i≤n just say that [xi, li(γ)−η]≡0 modulo I,
with i = 1, . . . , n, for some η ∈ Lk

X .
Notice that for any fixed j, L∗X/I is isomorphic to L∗(xs | s 6= j)×Q·

∑
X ,

the graded Lie direct product of L∗(xs | s 6= j) and the one-dimensional
abelian graded Lie algebra concentrated in degree one Q ·

∑
X , and the

map πj defined in (4.1) represents the projection of L∗X/I onto the first
factor. We may now invoke again the commutation properties of free graded
Lie algebras [16, p. 328] (remembering that k ≥ 2) to get all the desired
conclusions of the lemma. �

A similar argument will do the job in the other case (α = ars).

Lemma 4.2. The above conditions {(∗′i)}1≤i≤n are equivalent for α = ars

with
li(γ) ≡ 0 modulo 〈[xr, xs]〉, for all i 6= r, s.

Proof. Set I =: 〈[xr, xs]〉 = 〈[xj , lj(ars)] | 1 ≤ j ≤ n〉, see (3.8) and (3.8′).
Then the conditions {(∗′i)}1≤i≤n take the form

[xi, li(γ)] ≡I 0, for i 6= r, s,

[xr, lr(γ)] ≡I [xr, θxs] + [θxr, xs],
[xs, ls(γ)] ≡I [xs, θxr] + [θxs, xr],
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for some θ ∈ Der k−1L∗X . Taking into account that
∑n

i=1[xi, li(γ)] = 0 (see
Remark 3.4) the last of the above conditions follows from the others. On
the other hand the preceding one obviously is always fulfilled, by defining
θxs = lr(γ) and θxj = 0 for j 6= s. Therefore it suffices to show that
[xi, l] ≡I 0 implies l ≡I 0, for any l ∈ Lk

X , k ≥ 2, and for any i 6= r, s, in
order to finish our proof. For a fixed such i it is enough to establish the
corresponding commutation property for the universal enveloping algebra
U(L∗X/I), which is isomorphic to (T∗(xj | j 6= i)/〈xrxs − xsxr〉)

∐
T∗(xi),

graded by tensor degree. Namely it suffices to show that the centralizer of
xi equals T∗(xi), which in turn can be easily verified, given the free product
structure of the algebra U(L∗X/I). �

Now we may take a second step and express everything only in terms of
gr ∗ΓPn.

Proposition 4.3. If γ ∈ ΓkPn (k ≥ 2) is such that γ belongs to the graded
Lie subalgebra of gr ∗ΓPn generated by {ars | r, s 6= j}, for some j, 1 ≤
j ≤ n (e.g., if γ ∈ ΓkPn−1), then γ meets the requirements of the CH-test
{(∗′i)}i≤i≤n corresponding to α = zn if and only if γ = 0, where γ ∈ gr k

ΓPn

denotes as usual the class of γ modulo Γk+1Pn.

Proof. Let E∗j ⊂ gr ∗ΓPn be the graded Lie subalgebra generated by {ars |
r, s 6= j}. The result will follow easily from the following claim:

For any e ∈ Et
j (t ≥ 1) one has

(4.2) lj(e) = 0

and

(4.3) li(e) ∈ Lt(xp | p 6= j), for all i 6= j.

Granting the above claim, we may finish our argument as follows. We
know from Lemma 4.1 that the CH-test {(∗′i)}1≤i≤n is equivalent with the
fact that πjli(γ) = πjlj(γ), for all i 6= j. By hypothesis γ ∈ Ek

j , hence
πjlj(γ) = 0 (see (4.2)) and πjli(γ) = li(γ), for all i 6= j (see (4.3) and (4.1)).
Therefore our test is equivalent with li(γ) = 0 for all i, 1 ≤ i ≤ n, and this
happens if and only if γ = 0, as asserted, according to Theorem 2.7.

As far as our above two claims are concerned, we may induct on t. At
step t = 1 both (4.2) and (4.3) follow at once from Lemma 2.5. For the
induction step, assume (4.2)-(4.3) to hold for e, e′ ∈ E∗j . We are going to
show that they also hold for [e, e′] by using Lemma 2.4 to write

li[e, e′] = [li(e), li(e′)] + ẽ(li(e′))− ẽ′(li(e)), for 1 ≤ i ≤ n.

This already gives the result claimed in (4.2), for i = j. For i 6= j we may use
again the above formula together with the induction hypotheses on e and
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e′. To complete the proof of our second claim (4.3) we note that for any f ∈
gr ∗ΓPn having the property that li(f) ∈ L∗(xp | p 6= j), for all 1 ≤ i ≤ n, the
associated derivation f̃ ∈ Der ∗L(x1, . . . , xn) defined in Lemma 2.4 leaves
invariant the Lie subalgebra L∗(xp | p 6= j) ⊂ L∗(x1, . . . , xn). This property
in turn needs to be checked only for the generators xp (p 6= j), due to the
fact that f̃ is a Lie derivation. One has f̃xp = [xp, lp(f)], by construction,
and this is clearly an element belonging to the desired subalgebra, by our
assumptions on f , for any p 6= j. �

Concerning the graded Lie algebra structure of gr ∗ΓPn, one knows for
example (see [3, §1.4]) that the split exact sequence (2.5) exhibits Pn as a
semidirect product, Pn = F(arn | 1 ≤ r < n) × Pn−1. The structure map
is given by the Artin representation Pn−1 −→ Aut F(arn | r < n) (after an
obvious change of notation for the generators of the free group). Accordingly
[7] gr ∗ΓPn splits as a semidirect graded Lie product

(4.4) gr ∗ΓPn = L∗(arn | r < n)(Z)× gr ∗ΓPn−1.

Here the adjoint representation of gr ∗ΓPn−1 in the free Lie algebra equals by
construction the graded Lie algebra map

λ = −J : gr ∗ΓPn−1 −→ Der ∗(L(arn | r < n)(Z))

≡ Der ∗(L(x1, . . . , xn−1)(Z))

(where J is Johnson’s homomorphism, as in Proposition 2.1); see the proof
of Lemma 2.4. We recall that if γ ∈ ΓkPn−1 then λ(γ) = γ̃, where

(4.5) γ̃xi = [xi, li(γ)], for i = 1, . . . , n− 1.

The simplest nontrivial example occurs for n = 3, where the above dis-
cussion implies that

(4.4′) gr ∗ΓP3 = L∗(a1, a2)(Z)× (Z · a)

(where we have denoted for future convenience ar3 by ar, for r = 1, 2, and
a12 by a); here Z · a is a free rank one abelian Z-Lie algebra concentrated in
degree one and

(4.5′) [a, a1] = [a2, a] = [a1, a2]

(see Lemma 2.5).
For concrete computations one may use standard Hall bases of free Lie

algebras, see e.g., [16]; for example {[a1, a2]} is a Z-basis of L2(a1, a2)(Z),
{A1 =: [a1, [a1, a2]], A2 =: [a2, [a1, a2]]} is a Z-basis of L3(a1, a2)(Z) ...

The simplest nontrivial homogenous CH-test corresponding to α = ars

occurs for n = 3 and k = 3 and it may be ultimately rephrased within gr ∗ΓP3

as follows.
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Proposition 4.4. For a given γ ∈ Γ3P3, set

γ = c1[a1, [a1, a2]] + c2[a2, [a1, a2]], with c1,2 ∈ Z

(where γ ∈ gr 3
ΓP3 stands as usual for the class of γ modulo Γ4P3). Then

γ satisfies the conditions {(∗′i)}1≤i≤3 corresponding to α = a12 ∈ P3 if and
only if c1 = c2.

Proof. By Lemma 4.2, all we have to show is that l3(γ) ≡ 0 mod 〈[x1, x2]〉
if and only if c1 = c2.

By a repeated application of Lemmas 2.4 and 2.5 we find that

(4.6) l3([a1, [a1, a2]]) = [x1, [x1, x2]] + [[x1, x3], x2]− [x1, [x2, x3]],
l3([a2, [a1, a2]]) = [x2, [x1, x2]] + [x1, [x2, x3]]− [x2, [x3, x1]].

Computing modulo I =: 〈[x1, x2]〉 we arrive at

l3([a1, [a1, a2]]) ≡I 2 · [[x2, x3], x1],
l3([a2, [a1, a2]]) ≡I −2 · [[x2, x3], x1].

The additive property of Lemma 2.3 and the passage to the enveloping
algebra U(LX/I) = Q[x1, x2]

∐
Q[x3] allow us to reformulate the conditions

{(∗′i)}1≤i≤3 as follows

2(c1 − c2) · [[x2, x3], x1] = 0 in U(LX/I).

This is equivalent with c1 = c2, as asserted, since one may expand the
brackets and easily see that [[x2, x3], x1] is a nonzero element of the free
product of polynomial algebras, Q[x1, x2]

∐
Q[x3]. �

5. Unordered isotopy classes of pure links and Σn-actions.

As is well-known [3], the conjugation in Bn does not change the oriented
isotopy type of the Artin braid closure. For pure closed braids, which come
naturally equipped also with an ordering of their components (corresponding
to the labels of the strings), one has the following more precise statement:

Given any b, b′ ∈ Pn, their Artin closures b̂ and b̂′ are oriented (not neces-
sarily ordered) isotopic if and only if there exists σ ∈ Bn, belonging to some
fixed complete set of representatives for the cosets of Pn, such that σ̂b and b̂′

are oriented (and ordered) isotopic links.

Thus our CH-invariants {p(k)}k≥2 may be used to detect unordered oriented
isotopy types of pure links, via the conjugation action of Bn on Pn and the
induced action of Σn on the graded Lie algebra gr ∗ΓPn, see Lemma 2.6.

On the other hand, let us recall from [22, Proposition 2.8] another natural
action of Σn, by bigraded Lie algebra automorphisms, on the bigraded Lie
algebra of derivations Der ∗∗L(X ⊕ Y ) described in Section 1. The group
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Aut L∗∗(X ⊕Y ) of bihomogenous Lie algebra automorphisms, which clearly
acts on the bigraded Lie algebra Der ∗∗L(X ⊕ Y ) by conjugation, may be
identified with GL(X)×GL(Y ), by taking the restrictions of automorphisms
to the free generators. The above mentioned action of Σn on Der ∗∗ is defined
by restriction, via the following product representation of Σn in GL(X) ×
GL(Y ), given for any g ∈ Σn by

(5.1)
{

gxi = xgi, for i = 1, . . . , n,
gyi = ygi, for i = 1, . . . , n.

We begin with the following Σn-equivariant appendix of our homogenous
CH-test (Theorem 3.2).

Lemma 5.1.
(i) The map Λ : gr ∗ΓPn −→ Der ∗1L(X ⊕ Y ) constructed in (2.7) is equi-

variant with respect to the above Σn-actions.
(ii) For any α ∈ ΓhPn and g ∈ Σn one has

g∂h(α) = ∂h(α) if and only if gα = α

(where gα denotes the conjugation action of g on the class of α, α ∈
gr h

ΓPn).
(iii) For any α ∈ ΓhPn set H = {g ∈ Σn | g∂h(α) = ∂h(α)}. Then the

map

ad (∂h(α)) : Der ∗0L(X ⊕ Y ) −→ Der ∗+h
1 L(X ⊕ Y )

is H-equivariant.

Proof. The first basic equivariant property is a consequence of Lemma 2.6,
which may be used to compute, for any g ∈ Σn, γ ∈ ΓsPn, and 1 ≤ i ≤ n

Λ(gγ)(yi) = [xi, li(gγ)] = [xi, glg−1i(γ)].

On the other hand, we get, using the definition of Λ (see (2.7)) and (5.1)
above

gΛ(γ)(yi) = gΛ(γ)(yg−1i) = g[xg−1i, lg−1i(γ)] = [xi, glg−1i(γ)].

The second assertion of the lemma is then a corollary of the first, due to
the fact that ∂h(α) = Λ(α) (see the proof of Corollary 2.8 (iii)), in conjunc-
tion with Theorem 2.7, which implies that Λ is injective. (For the injectivity
of Λ one also needs to use the commutation properties of a free Lie algebra,
together with the normalization condition (1.2) in degree ∗ = 1.)

Finally, the last statement (iii) may be checked by a routine application of
the fact that Σn acts on Der ∗∗L(X ⊕ Y ) by Lie algebra automorphisms. �

For practical purposes one may compute the Σn-action on gr ∗ΓPn by re-
sorting to the graded Lie algebra structure. This is a folk statement, whose
relevant details are going to be recorded for the reader’s convenience.
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The semidirect graded Lie splitting described in (4.4)-(4.5) together with
Lemma 2.5 may be used to argue inductively on n. Thus it can be shown that
gr k

ΓPn is a finitely generated free abelian group, for all k ≥ 1. In particular
the component gr 1

ΓPn admits as a Z-basis the set {ars | 1 ≤ r < s ≤ n}
(which obviously may be identified with the set of 2-element subsets of
{1, . . . , n}, by associating to ars the subset {r, s}). Finally, in this way
one may also obtain a system of defining relations between the graded Lie
algebra generators of gr ∗ΓPn, {ars}1≤r<s≤n. It is given by the relations (4.5′)
corresponding to every 3 distinct indices 1 ≤ r, s, t ≤ n,

(5.2) [ars, art] = [ast, ars] = [art, ast],

together with the commutation relations

(5.3) [ars, atu] = 0,

for every 4 distinct indices 1 ≤ r, s, t, u ≤ n. The Σn-module structure of
gr ∗ΓPn may then be handled as in the lemma below.

Lemma 5.2.
(i) The Σn-module gr 1

ΓPn is isomorphic to the free Z-module generated by
the Σn-set of 2-element subsets of {1, . . . , n}, endowed with the obvious
Σn-action, for every n.

(ii) The above property, together with (4.4′) and (4.5′), suffice to describe
the Σ3-action on gr k

ΓP3, for all k.

Proof. Remember that we have identified ars ∈ gr 1
ΓPn with {r, s} ⊂ {1,

. . . , n}. For the proof of (i), it will be plainly enough to show that g · ar,s =
agr,gs, for any g ∈ Σn (with the convention that auv =: avu, if 1 ≤ v <

u ≤ n). Equivalently, we must show that li(g · ar,s) = li(agr,gs), for all i;
see Theorem 2.7 and Lemma 2.3. This we may do by an easy computation
which uses Lemmas 2.6 and 2.5.

We may formulate the above statement (ii) more precisely, for k = 2.
Namely we claim that gr 2

ΓP3 is the free rank one signature Z-module of Σ3.
To see this it is enough (see (4.4′)) to verify that τ1[a1, a2] = τ2[a1, a2] =
−[a1, a2]; here we have denoted by τi ∈ Σn the transposition (i, i + 1), for
1 ≤ i < n. To make the above computation, one may use the fact that Σn

acts on gr ∗ΓPn by graded Lie algebra automorphisms, Lemma 5.2 (i) and the
defining relations (4.5′). For example,

τ1[a1, a2] = [τ1a13, τ1a23] = [a23, a13] = −[a1, a2],

and similarly

τ2[a1, a2] = [a12, a23] = [a, a2] = −[a1, a2].

Inductively, we have to compute the action of g ∈ Σ3 on a basic commuta-
tor of the form [c, c′], with c ∈ Ls(a1, a2)(Z), c′ ∈ Lt(a1, a2)(Z), s+t = k ≥ 3,
and s ≤ t. We have to distinguish two cases. When s ≥ 2, g[c, c′] = [gc, gc′],
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with gc ∈ Ls(a1, a2)(Z) and gc′ ∈ Lt(a1, a2)(Z) already computed. Thus we
just have to rewrite [gc, gc′] as a linear combination of basic commutators
in Lk(a1, a2)(Z), see e.g., [16]. If s = 1 then necessarily t ≥ 2 (since k ≥ 3),
hence gc′ ∈ Lt(a1, a2)(Z). On the other hand, gc is also already computed
and belongs to {a1, a2, a}, by property (i). If gc = ar (r = 1, 2), then we
are done, as before. Finally if gc = a then [a, gc′] ∈ Lk(a1, a2)(Z) may be
computed by Jacobi with the aid of the relations (4.5′), which completes our
inductive step. �

Example 5.3 (k = 3). The action of Σ3 on gr 3
ΓP3 is given by

(5.4) τ1A1 = −A2, τ1A2 = −A1,
τ2A1 = A1 + A2, τ2A2 = −A2,

where {A1 = [a1, [a1, a2]], A2 = [a2, [a1, a2]]} is the Hall basis of gr 3
ΓP3 =

L3(a1, a2)(Z) and τi is the transposition (i, i + 1), for i = 1, 2. Indeed,{
τ1A1 = −[a2, [a1, a2]] = −A2,
τ1A2 = −[a1, [a1, a2]] = −A1,

(by the results of Lemma 5.2 for k = 1, 2) and{
τ2A1 = −[a, [a1, a2]] = −[[a, a1], a2]− [a1, [a, a2]] = A1 + A2,
τ2A2 = −[a2, [a1, a2]] = −A2

(by the results of Lemma 5.2 for k = 1, 2, the Jacobi identity and the
relations (4.5′)).

6. CH-invariants versus Vassiliev and other link invariants.

We have pointed out in [22] some similarities and differences between our
CH-invariants and Milnor’s µ-invariants. In this section we are going to
present a similar comparison with finite type invariants, on examples. Vas-
siliev’s invariants are more general than the CH-invariants (which are of
finite type, in a certain sense; see [15]) and more powerful than the CH-
invariants (which fail to distinguish knots; see [22, §3]). On the other hand,
the CH-approach has the advantage to offer a more specific useful concrete
tool for many-component links, as we shall soon see. We will examine a
series of three classes of examples. As in the previous sections, we are going
to look at the Artin closures of pairs of pure braids of the form b = βα and
b′ = β′α, with α ∈ Pn and β, β′ ∈ ΓkPn, where k ≥ 2.

The basic motivation is provided by Stanford’s result [24, Theorem 1],
which says that b̂ and b̂′ have the same Vassiliev invariants of order less than
or equal to k−1. We have seen, in Corollary 2.8, that a similar phenomenon
occurs for the CH-invariants, namely that p(k)(b) = p(k)(b′). Stanford also
showed how to use his preceding result to obtain infinite families of distinct
links, sharing the same Vassiliev invariants, up to order k − 1, with an
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arbitrary given link K; see [24, Theorem 2]. We begin by constructing
similar (less general but simpler) classes of examples, which are faithfully
detected by p(k+1). The point is that the CH-theory offers a concrete p(k+1)-
test, whenever p(k)(K) = p(k)(K ′), while it seems to be a difficult job to find
a specific higher order Vassiliev invariant to distinguish K from K ′.

We shall take α equal to the central braid zn ∈ Pn (n > 3), β = γm and
β′ = γt (m, t ≥ 0), where γ ∈ ΓkPn is such that γ ∈ gr k

ΓPn is a nonzero
element belonging to the graded Lie subalgebra generated by {ars | r, s 6= j}
for some j, 1 ≤ j ≤ n (one may use for example any nonzero γ ∈ gr k

ΓPn−1),
as in Proposition 4.3.

Proposition 6.1. The pure links {γ̂mzn}m≥0 have the same Vassiliev in-
variants of order less than or equal to k − 1 and the same µ-invariants of
arbitrarily high order, for any γ ∈ ΓkPn (k ≥ 2). If γ ∈ gr k

ΓPn is as above
then γ̂mzn and γ̂tzn are oriented isotopic if and only if m = t. The isotopy
type is detected by p(k+1).

Proof. The assertion on Milnor’s µ-invariants of the oriented and ordered
links γ̂mzn may be easily proved as follows. As is well-known [19] (see also
[22]) the first µ-invariants µij (1 ≤ i, j ≤ n) have trivial indeterminacy
(µij = µij) and may be computed by abelianization from the algebraic
longitudes. More precisely, li(α) =

∑n
j=1 µij(α̂)xj ∈ gr 1

ΓFX , for any α ∈ Pn.
By Lemma 2.3 and (3.10) we thus see that µij(γ̂mzn) = 1 for all i 6= j and
µii(γ̂mzn) = 0 for all i. Since in general µI , where I = (i1, . . . , is), and
1 ≤ i1, . . . , is ≤ n, is defined only modulo ∆I · Z, where ∆I is the greatest
common divisor of certain µ-integers µJ , where the multiindex J is shorter
than I (see [19]), it is straightforward to infer that all the other µ-invariants
are trivial: µI(γ̂mzn) = 0 for all s > 2.

On the other hand, the Artin closures of γmzn and γtzn are oriented
(not necessarily ordered) isotopic if and only if the closures of σ(γmzn)
and γtzn are oriented and ordered isotopic for some σ ∈ Bn, as recalled
in Section 5. For the rest of the proof it will be then enough to show
that if p(k+1)(σ(γm)zn) = p(k+1)(γtzn) for some σ ∈ Bn then necessarily
m = t. By Theorem 3.2 and Corollary 3.5 the equality of the above p(k+1)-
invariants is equivalent with the fact that the derivation Λ(m · gγ − t · γ)
belongs to Im ad (∂1(zn)) for some g ∈ Σn (where the action of Σn on
gr ∗ΓPn is induced by the conjugation action of Bn, as in Lemma 2.6), since
zn is 1-homogenous. Since zn is a central element of Bn, we infer from
Lemma 5.1 (ii)-(iii) that ad (∂1(zn)) is a Σn-equivariant map, and conse-
quently Der k

1L(X ⊕ Y )/Im ad (∂1(zn)) is a (finite-dimensional) Σn-vector
space. Therefore the above p(k+1)-test may be rephrased as saying that
m · gΛ(γ) = t · Λ(γ) (where the equality is understood to take place in
Der k

1L(X⊕Y )/Im ad (∂1(zn))), for some g ∈ Σn; use the equivariant Lemma
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5.1 (i). Since γ 6= 0 by hypothesis, the homogenous CH-test from Proposi-
tion 4.3 and Theorem 3.2 (ii) may be invoked to infer that Λ(γ) represents
a nonzero vector modulo Im ad(∂1(zn)).

If m = 0 this readily implies t = 0 and if m 6= 0 we know that t/m is
an eigenvalue of the finite-order linear map induced by g on the quotient,
hence t = ±m, which implies that actually t = m, since m, t ≥ 0. �

Clearly the first interesting examples of pure links arise from P3. While
we had to assume, in the preceding result, that n > 3, our next result shows
that the CH-method may be used efficiently for pure links on 3 strands,
too. Consider for example b = βα and b′ = β−1α, where α is the standard
generator a12 ∈ P3 and β ∈ Γ3P3. Set β = c1A1 + c2A2, where Ai =
[ai, [a1, a2]] and ai = ai3, for i = 1, 2, as in Proposition 4.4.

Proposition 6.2. The pure links β̂α have the same sublinks (up to oriented
isotopy) and are link-homotopic, for any β ∈ Γ3P3. If c1 6= c2 then β̂α and
β̂−1α are not oriented isotopic, the difference between them being picked up
by p(4).

Proof. The first assertion is immediate. Deleting the ith strand corresponds
to applying the canonical projection pi : P3 −→ P2, for 1 ≤ i ≤ 3, see
[3]. Since P2 is abelian pi(βα) = pi(a12), for all i, therefore the 2-sublinks
are independent of β (and are either trivial or Hopf links). The passage
from link isotopy to link homotopy corresponds to the canonical projection
p : P3 −→ H(3) and one knows that Γ3H(3) = 0, see [9, 1.12], whence
the claim on link-homotopy. (Actually both the above properties are a
consequence of the fact that the links β̂α share the same µ-invariants.)

As in the previous proof, we shall conclude by showing that p(4)(σb) =
p(4)(b′) for some σ ∈ B3 implies that c1 = c2. Firstly p(4)(σb) = p(4)(b′)
implies that p(2)(σb) = p(2)(b′) [22, Theorem A (ii)]. The equality of the
p(2)-invariants translates in turn to the fact that li(σb) = li(b′), for all i
(see [22, Remark 2.7]), due to the relation between abelianized longitudes
and Milnor’s µij-invariants, explained in the preceding proof. Consequently,
(see Theorem 2.7) ga12 = a12, with g = ν(σ−1), as in Lemma 2.6. By the
description of the Σ3-module gr 1

ΓP3 recorded in Lemma 5.2 (i), g must be
either 1 or the transposition τ1 = (12). Therefore either σ = 1, or σ = σ1

and σb =σ β · α, since a12 = σ2
1; see [3].

The 1-homogeneity of α (Corollary 3.5) implies, via Theorem 3.2 (ii) plus
the homogenous CH-test of Proposition 4.4, that p(4)(σb) = p(4)(b′) if and
only if one has c1(gβ + β) = c2(gβ + β), where γ = c1(γ)A1 + c2(γ)A2 is
the expression of any given element γ ∈ gr 3

ΓP3 with respect to the basis
{A1, A2}, as usual.
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If g = 1 this gives that c1(β) = c2(β), as desired. For g = τ1 one
has that c1(gβ) = −c2(β) and c2(gβ) = −c1(β); see Example 5.3. Hence
c1(gβ + β) = c2(gβ + β) if and only if c1(β) = c2(β), as stated. �

It was noticed in [15] that the CH-invariants, like the µ- invariants, can-
not be determined by quantum invariants. Our last result exhibits exam-
ples having the same HOMFLY polynomial and at the same time equal
µ-invariants of arbitrarily high order, which may be handled by homoge-
nous CH-tests. We shall consider pairs of the form b = βzn and b′ = β−1zn,
(b, b′ ∈ Pn), with β ∈ Γ3P3. Set β = c1A1+c2A2, as in the previous example.

Proposition 6.3. The pure n-links β̂zn and β̂−1zn (with n ≥ 3) have the
same HOMFLY polynomial, the same µ-invariants and are link-homotopic,
for any β ∈ Γ3P3. If c1 6= c2, c1 6= 0 and c2 6= 0, then they are distinguished
by p(4), up to oriented isotopy, for n > 6.

Proof. As before, we are going to prove that if p(4)(σb) = p(4)(b′) for some
σ ∈ Bn then c1 = c2 or c1 = 0 or c2 = 0, for n > 6. The fact that
p(4)(σ(β)zn) = p(4)(β−1zn) for some σ ∈ Bn may be reformulated as follows:
πnli(gβ + β) = πnlj(gβ + β), for all 1 ≤ i 6= j ≤ n, for some g ∈ Σn; see
Theorem 3.2 (ii) and Lemma 4.1. By Lemma 2.6 this condition in turn may
be rewritten as follows

(∗) πnglg−1i(β) + πnli(β) = πnglg−1j(β) + πnlj(β)

(for all 1 ≤ i 6= j ≤ n), for some g ∈ Σn. We are going first to infer that g
must leave invariant the subset {1, 2, 3}.

To this end, let us start by noting that li(β) ∈ L(x1, x2, x3)(Z), for i ≤ 3,
and li(β) = 0, for i > 3, since β ∈ P3 and consequently xiβ ∈ F(x1, x2, x3),
for i ≤ 3, and xiβ = xi, for i > 3; see the definitions (1.1)-(1.3). On the
other hand it follows immediately from (4.6), given the definition of π3 (see
(4.1)), that π3l3(β) = c1[x2, [x1, x2]] + c2[x1, [x1, x2]]. A similar iteration
of Lemmas 2.4 and 2.5 readily gives that π3l1(β) = π3l2(β) = π3l3(β). If
there is some i ≤ 3 such that g−1i > 3 and at the same time there is some
j > 3 such that g−1j > 3, then the equality (∗) implies that πnli(β) = 0.
Given that li(β) ∈ L(x1, x2, x3)(Z) for i ≤ 3, we may conclude by (4.1)
that necessarily li(β) = 0, if n > 3. Hence π3li(β) = 0, and this implies
that c1 = c2 = 0, by our previous computation. Thus we infer that either
g({1, 2, 3}) = {1, 2, 3} or g−1({4, . . . , n}) ⊂ {1, 2, 3}; in the second case we
get that n ≤ 6, a contradiction. Denote by h ∈ Σ3 ⊂ Σn the restriction of g
to {1, 2, 3} (i.e., hi = gi for i ≤ 3 and hi = i for i > 3). We deduce from the
above discussion that the relations (∗) continue to hold also for h. Therefore
hβ+β ∈ gr 3

ΓP3 ⊂ gr 3
ΓPn meets the requirements of the homogenous CH-test

of Lemma 4.1. For n > 3 this implies, via Proposition 4.3, that hβ = −β,
for some h ∈ Σ3.
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The explicit description of the Σ3-module gr 3
ΓP3 (see Example 5.3) leads

then immediately to the desired conclusion: c1 = c2 or c1 = 0 or c2 = 0
(corresponding to h = (12) or h = (23) or h = (13)).

The equality of the µ-invariants follows from Proposition 6.1 and the as-
sertion on link-homotopy is proved as in Proposition 6.2. The proof of the
coincidence of the HOMFLY polynomials is based on an idea of Birman [4]
and uses the general machinery developed in [11] (see also [5]). One knows
that for each n there exists a representation of Bn into a finite-dimensional
C-algebra Bn, ρn : Bn −→ Bn, inducing a surjection C[Bn] −→ Bn. More-
over there is a trace (a C-linear map vanishing on the algebra commutators)
τn : Bn −→ C. Here Bn, ρn and τn depend on two complex parameters
and have the property that: Given any b, b′ ∈ Bn such that e(b) = e(b′)
(where e stands for the exponent sum with respect to the standard genera-
tors σ1, . . . , σn−1 of Bn), the HOMFLY polynomials of their Artin closures
b̂, b̂′ will coincide as soon as τnρn(b) = τnρn(b′). See [11], [5]. In our case
e(b) = e(b′) = e(zn), since β ∈ Γ2Bn.

Next one knows [11] that generically Bn is semisimple (it is isomorphic
to C[Σn]). Therefore it splits as a product of full matrix algebras, Bn =∏

i M(di;C), and the restriction of τn to each M(di;C) is the usual matrix
trace, up to a normalization factor. It will be thus enough to check that
tr πiρn(b) = tr πiρn(b′), for all i, where πi : Bn −→ M(di;C) denotes the
canonical projection. Since zn is central in C[Bn], πiρn(zn) will be a scalar,
for all i. Thus we are left with proving that tr πiρn(β) = tr πiρn(β−1) for
all i, if β ∈ Γ2B3 and n ≥ 3. Since one also has group inclusions Bm ⊂ Bn

and algebra maps Bm −→ Bn commuting with the above representations
ρm and ρn, for m ≤ n, it will plainly suffice to check the above equality of
traces for n = 3.

By the classical representation theory of Σ3 there are three matrix rep-
resentations of B3 to be considered; see [11]. For two of them di = 1 and
consequently πiρ3(β) = πiρ3(β−1) = 1, since β ∈ Γ2B3. For the other
one di = 2, whence again tr πiρ3(β) = tr πiρ3(β)−1. The last equality
follows from elementary matrix theory, since πiρ3(β) ∈ SL(2;C) because
β ∈ Γ2B3. �
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