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We give a complete classification of simple representations
of the braid group B3 with dimension ≤ 5. As an applica-
tion of our techniques, we also obtain nontrivial q-versions of
some of Deligne’s formulas for dimensions of representations
of exceptional Lie groups.

1.

We give a complete classification of all simple representations of B3 for
dimension d ≤ 5 over an algebraically closed field K of any characteristic.
To describe our result in detail, recall that B3 is given by generators σ1 and
σ2 which satisfy the relation σ1σ2σ1 = σ2σ1σ2. Moreover, it is well-known
that the center of B3 is generated by ζ = (σ1σ2)3. It is easy to see that ζ
acts on a simple d-dimensional B3- module via the scalar δ which satisfies
the equation δd = det(A)6, where A is the linear endomorphism via which
σ1 acts on V . Our main result states that the eigenvalues of A and the scalar
δ completely determine a simple representation of B3 for dimension ≤ 5, up
to equivalence; for d ≤ 3 it is uniquely determined by the eigenvalues of A.
Moreover, such simple representations exist if and only if the eigenvalues do
not belong to the zero set of certain polynomials in the eigenvalues and δ
which we list explicitly (see Proposition 2.8, Section 2.10 and 2.11, Remark
4).

One of the motivations for this paper was studying braided tensor cate-
gories by analysing braid representations. The categories under considera-
tion have a Grothendieck semiring isomorphic to the one of a semisimple Lie
group. It turns out that in this context it suffices to classify representations
of B3 up to dimension 5. Indeed, as an application, we obtain uniform for-
mulas for the categorical dimensions of objects in the second tensor power
of the adjoint representation in braided tensor categories closely related to
the conjectured series of exceptional Lie algebras, as proposed by Deligne
and Vogel.

Our approach in this paper is quite elementary: We first show that as-
suming a certain triangular form of the matrices A and B of the generators
of B3, the braid relation reduces to checking the values of certain coeffi-
cients of the matrix BA. We then show that for dimension d ≤ 5 one can

491

http://pjm.math.berkeley.edu/pjm
http://dx.doi.org/10.2140/pjm.2001.197-2


492 IMRE TUBA AND HANS WENZL

always assume such a triangular form, and that the matrix coefficients are
determined by the eigenvalues and δ, up to certain renormalizations. These
explicit representations are then used to compute polynomials which deter-
mine whether the representation is simple or not. Moreover, we show in
the last section how these polynomials can be used to compute categorical
dimensions of objects in braided categories, and we give explicit formulas
for them.

After having completed this research we learned of other approaches to-
wards classifying braid representations, notably via local systems by N.
Katz, and via quivers. These approaches as well as the case with d ≥ 6
are discussed in the end of Chapter 2.

We would like to thank M. Hunziker, N. Wallach, A. Wassermann, B.
Westbury and, in particular, P. Deligne for useful discussions.

1.1. Let B3 be Artin’s braid group, given by generators σ1 and σ2 and the
relation σ1σ2σ1 = σ2σ1σ2. It is well-known that B3 maps surjectively onto
SL(2,Z), e.g. via the map

σ1 7→
(

1 1
0 1

)
, σ2 7→

(
1 0
−1 1

)
.

It is easy to check that this homomorphism maps

σ1σ2σ1 = σ2σ1σ2 7→ S =
(

0 1
−1 0

)
and σ1σ2 7→ U =

(
1 1
−1 0

)
.

Moreover, the center of SL(2,Z) is equal to ±1, and the corresponding ele-
ments S̄ and Ū in the quotient PSL(2,Z) have orders 2 and 3 respectively.
It is known that PSL(2,Z) is isomorphic to the free product Z2 ∗ Z3 of
a cyclic group of order 2 with a cyclic group of order 3, and that the iso-
morphism can be chosen such that S̄ and Ū are the generating elements of
these cyclic groups. Finally, the center Z of B3 is generated by (σ1σ2)3, and
B3/Z ∼= PSL(2,Z).

1.2. In the following we assume A and B to be invertible d×d matrices over
the algebraically closed field K satisfying ABA = BAB. Hence σ1 7→ A,
σ2 7→ B defines a representation of B3. Let λ1, ... λd be the eigenvalues
of A (with λi not necessarily distinct from λj for i 6= j) and define δ =
det(A)6/d = (

∏d
i=1 λi)6/d.

Lemma. (a) Conjugation via ABA maps A to B and B to A.
(b) ABA(AB)−1 = B and BAB(BA)−1 = A.
(c) (ABA)2 = δ1, and (ABA)−1 = δ−1ABA if A and B generate the full

d× d matrix ring.
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(d) For any choice δ1/6 of a sixth root of δ the map σ1 7→ δ−1/6A, σ2 7→
δ−1/6B defines a representation of B3 and of PSL(2,Z) ∼= B3/Z.

(e) If {e1, e2, . . . , ed} is a basis of eigenvectors of A, and bi = ABAei,
then {b1, b2, . . . , bd} is a basis of eigenvectors of B.

Proof. It follows from the braid relation that BAB−1 = A−1BA, from which
one easily deduces claims (a) and (b). For (c), observe that (σ1σ2σ1)2

= (σ1σ2)3 is in the center of B3. As we assume an irreducible represen-
tation of B3, the center has to act via a scalar matrix, say λ1. Comparing
determinants (using det(A) = det(B), we get λd = det(A)6. Statement (e)
follows from (a); (d) is clear.

1.3. We say that the d×d matrices A and B are in ordered triangular form
if A is an upper triangular matrix with eigenvalue λi as i-th diagonal entry,
and B is a lower triangular matrix with eigenvalue λd+1−i as i-th diagonal
entry.

Lemma. Assume A and B are in ordered triangular form, satisfying ABA
= BAB. Then:

(a) Any d× d matrix F = (fij) such that FBF−1 = A has matrix entries
fij = 0 for i + j > d + 1. This holds, in particular, for F = BA.

(b) Any d× d matrix E = (eij) such that EAE−1 = B has matrix entries
eij = 0 for i + j < d + 1. This holds, in particular, for E = AB.

Proof. Let {w1, w2, . . . , wd} be the standard basis for Kd. By assump-
tion, the eigenspace of A corresponding to eigenvalues λ1, . . . , λr is equal to
span{w1, w2, . . . , wr}, for r = 1, 2, . . . , d, while the corresponding eigenspace
for B is equal to span {w1̄, w2̄, . . . , wr̄}, where ī = d + 1− i. Hence F maps
span{w1, w2, . . . , wr} onto span{w1̄, w2̄, . . . , wr̄}, from which we deduce the
triangular shape of F . The second statement in (a) follows from Lemma
1.2(b). Statement (b) is proved similarly.

Proposition. Assume A and B are in ordered triangular form, satisfying
ABA = BAB. Let ī = d + 1 − i. After rescaling our basis vectors, if
necessary, we can assume:

(a) ABA is a skew diagonal matrix, with (ABA)i,̄i = (−1)i+1δ1/2.
(b) bij = (−1)i+jaī,j̄.
(c)

∑i
k=1(−1)k+iaī,k̄ak,̄i = (BA)i,̄i = (−1)i+1δ1/2/λi.

(d) If i + j > d + 1,
∑min(i,j)

k=1 (−1)k+iaī,k̄ak,j = (BA)ij = 0.
(e) Statements (a)-(d) also hold for the coefficients of the matrices A′ =

DAD−1 and B′ = DBD−1 if D is a diagonal matrix with dii = dī̄i 6= 0.
In particular, if the entries aid for 1 < i ≤ [(d + 1)/2] are nonzero, we
can choose arbitrary nonzero numbers for them.
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Proof. Statements (a) and (b) follow from the previous Lemma and Lemma
1.2(a) and (c). Statements (c) and (d) follow from explicit matrix computa-
tions, exploiting the triangular shapes of A, B and BA, and using statement
(a). For (e), observe that conjugation by D does not change ABA, and also
leaves A′ and B′ in ordered triangular form. One can now prove statements
(a)-(d) for A′ and B′ as we did before for A and B.

Corollary. (a) a1d = δ1/2/λ1λd.
(b) a2,d−1 = (λ2ad−1,da1,d−1 − δ1/2)/λ2λd−1.

Proof. By Proposition, (c), we have δ1/2/λ1 = (BA)1d, with the latter being
equal to a1dλd. Statement (b) follows similarly, using Proposition (c).

Proposition 1.4. Let A be an upper triangular matrix with eigenvalues
λ1, λ2, . . . , λd down the diagonal, and let S be a skew-diagonal matrix with
S2 = c1 for some constant c such that B = SAS−1. Moreover, assume:

(a) (BA)ij = 0 for i + j > d + 1.
(b) λi(BA)īi = csi,̄i.

Then A and B satisfy the braid relations.

Proof. Observe that S−1 is a scalar multiple of S. Hence B = S−1AS =
SAS−1. We get from this AB = S(BA)S−1, hence (AB)ij = 0 for i + j <
d + 1. Exploiting the triangular shapes of the matrices, we get that A(BA)
is upper skew-triangular and (AB)A is lower skew-triangular. Hence ABA
is of skew-diagonal shape, with (ABA)i,̄i = λi(BA)i,̄i = csīi, and ABA
commutes with S. Hence

BAB = S(ABA)S−1 = ABA.

1.5. An example.
Let V be a (d + 1)-dimensional vector space, with a basis labeled by

0, 1, . . . , d, and let λ0, λ1, . . . , λd be parameters satisfying λiλd−i = c for a
fixed constant c. Only for this subsection we define ī = d− i. Then we get
a [d+1

2 ] parameter family of representations of B3 via the matrices

A =
((

ī
j̄

)
λj

)
ij

, B =
(

(−1)i+j

(
i
j

)
λī

)
ij

.

To prove this, it satisfies to check the conditions of Proposition 1.4, with S
being the skew-diagonal matrix defined by sij = (δi,j̄(−1)iλī). This can be
fairly easily checked, using the identity

d∑
k=0

(−1)i+k

(
i
k

) (
k̄
j̄

)
= (−1)i

(
d− i
d− j

)
= (−1)i

(
ī
j̄

)
.

This identity is well-known, and can be easily proved by induction on i.
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2. Representations of B3 of dimension d ≤ 5.

2.1. In the following let V be a B3-module over the field K. Let {e1, e2, . . . ,
ed} be a basis of generalized eigenvectors of A, and let {b1, b2, . . . , bd} be a
basis of generalized eigenvectors of B with bi = ABAei for i = 1, 2, . . . , d.
We shall always assume that if A and B have Jordan blocks, the labeling
is chosen such that they are upper triangular. As a consequence of our
assumptions and Lemma 1.2, there exist scalars cij , 1 ≤ i, j ≤ d such that

bi =
d∑

j=1

cjiej and ei = δ−1
d∑

j=1

cjibj .

As (ABA)2 = δ1, the matrix ABA is diagonalizable. We will usually refer
to an eigenvalue of ABA just as δ1/2, not specifying which root we choose.
We shall also consider the subspaces

W = span{e1, e2, . . . , ed−1} ∩ span{b1, b2, . . . , bd−1}

W ′ =
⋂
i∈N

(AB)i(span{e1, e2, . . . , ed−1}).

Observe that W ′ ⊂ W , as ABei = ABAA−1ei = λ−1
i bi. Moreover, W is

invariant under ABA and W ′ is invariant under AB. Also observe that W
has codimension ≤ 2 and W ′ has codimension ≤ 3, being the intersection of
2 resp. 3 subspaces of V with codimension 1. We shall need the following
simple observations:

(i) Each of the sets {σ1, σ2}, {σ1, σ1σ2} or {σ1σ2σ1, σ1σ2} generates B3.
(ii) Let I be a subset of {1, 2, . . . , d}. If V ′ = span{ei, i ∈ I} =

span{bi, i ∈ I}, then V ′ is a B3-submodule.
(iii) If W has codimension 1, it would coincide with span{e1, e2, . . . , ed−1}

and with span{b1, b2, . . . , bd−1}, and therefore would be a B3-submodule, by
(ii).

(iv) If both W and W ′ have codimension 2, they would coincide; this
space would be invariant under both ABA and AB, from which one easily
deduces that it is a B3-submodule, by (i).

Proposition 2.2. Let V be a simple B3-module of dimension d ≤ 5. Then
an eigenvector of A, say ei can not be contained in a proper subspace of V
which is invariant under B and contains bi = ABAei.

Proof. We choose the labeling of (generalized) eigenvectors so that e1 is
contained in a B-invariant subspace spanned by generalized eigenvectors b1,
. . . , bd−1. Let W and W ′ be as in 2.1. By 2.1(iii) and (iv), the claim
follows immediately unless W has codimension 2 and W ′ has codimension
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3. As W has at least dimension 1, containing e1, we get the claim for d = 2
immediately.

d = 3: Here W has to be 1-dimensional, containing both e1 and b1, i.e.,
it is an eigenspace of both A and B.

d = 4: By assumption, W contains both e1 and b1 and has dimension 2.
If e1 and b1 are linearly dependent, the claim follows from (2.1)(ii). Hence
we can assume them to be a basis for W . As dim W ′ = 1, there exists an
eigenvector v = αe1 +βb1 of AB in W ′. We can assume β 6= 0, as otherwise
v would be an eigenvector of both A and AB, from which the claim would
follow by 2.1(i). But then

µ(αe1 + βb1) = AB(αe1 + βb1) = λ−1
1 b1 + βλ1Ab1,

where µ is the eigenvalue of v. We deduce from this Ab1 ∈ W , and also
δBe1 = BABAb1 ∈ BAB(W ) = W . Hence W is invariant under both A
and B.

d = 5 : We can assume W to have a basis {e1, b1, x}, with x an eigenvector
of ABA with eigenvalue δ1/2 (see 2.1). As AB is diagonalizable, we can
choose a basis of eigenvectors vi = α(i)e1 +β(i)b1 +γ(i)x, i = 1, 2 for W ′. We
have ABvi = wi + α(i)λ−1

1 b1, with wi = λ1β
(i)Ab1 + γ(i)ABx, for i = 1, 2.

As ABvi and b1 are in W , so is wi, for i = 1, 2.
Case 1: If w1 and w2 are linearly dependent, then there exist scalars ν1 and
ν2 such that ν1v1 + ν2v2 6= 0 and ν1w1 + ν2w2 = 0. But then AB(ν1v1 +
ν2v2) ∈ W ′ is a nonzero multiple of b1; in particular, b1 ∈ W ′. But then also

δλ1e1 = δAe1 = A(BAB)b1 = (AB)2b1 ∈ W ′.

Hence W ′ is spanned by e1 and b1, and therefore is also invariant under
ABA.
Case 2: If w1 and w2 are linearly independent, then also ABx and Ab1

are in W . We conclude Be1 ∈ W as in the case d = 4. Moreover, also
δ1/2B−1x = B−1BABx = ABx ∈ W , i.e., B−1x is a linear combination of
e1, b1 and x. If the coefficient of x is not equal to 0 in this linear combination,
we can multiply it by B and solve for Bx, which shows that it is in W . In
this case, W is invariant under both B and BAB. If B−1x is a linear
combination of only e1 and b1, we can multiply this linear combination by
AB to obtain for Ax a linear combination in b1 and Ab1 ∈ W . Hence W is
invariant under A and ABA. The claim follows, using 2.1(i).

Corollary. Let V be a simple B3-module with dimension d ≤ 5. Then the
minimal polynomial of A coincides with its characteristic polynomial.

Proof. Let b ∈ V , let S̃ = span{Aib, i = 0, 1, . . . }, and let λ be an eigenvalue
of A. Then it is well-known that the intersection of the eigenspace of the
eigenvalue λ (for A) with S̃ has at most dimension 1. To see this directly, let
pλ be the projection onto the generalized eigenspace of A for the eigenvalue
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λ, with the kernel being the direct sum of the generalized eigenspaces for
the other eigenvalues. Then we get

pλS̃ = span{Aipλb, i = 0, 1, . . . } = span{(A− λ)ipλb, i = 0, 1, . . . }.
The claim now follows from the fact that the nonzero elements in {(A −
λ)ipλb, i = 0, 1, . . . } are linearly independent, and A acts as a full Jordan
block on their span.

If the minimal polynomial of A does not coincide with the characteristic
polynomial, there exists an eigenvalue, say λ1, whose eigenvectors span a
subspace E of dimension at least 2. If there is an eigenvalue distinct from
λ1, say λj , pick an eigenvector bj of B belonging to λj . Then span{Asbj , s =
0, 1, . . . , d− 2} forms an A-invariant subspace S′ such that dim S′ ∩E ≤ 1,
as proved in the last paragraph. Let S be the subspace generated by S′ and
the eigenvectors of A with eigenvalue λj . Then also dim S ∩ E ≤ 1, i.e.,
S is a proper A-invariant subspace of V which contains both bj and BAbj .
Hence V could not be a simple B3-module.

If A only has one eigenvalue, dim E ≥ 2 implies that we have at least 2
different Jordan blocks. Let bj be an eigenvector of B belonging to a block
of maximum length. Let S′ = span{Asbj , s = 0, 1, . . . , d − 2}, which is a
proper subspace of V by assumption. If S′ did not contain ej = BAbj , it
would not contain the whole Jordan block of ej either. Hence the space S
spanned by S′ and {ej} is a proper A-invariant subspace containing both ej

and bj , and hence is a B3-submodule. If S′ does contain ej , it would be a
proper B3-submodule by the same argument.

Lemma 2.3. Let e1 and e2 be either 2 eigenvectors of A with eigenvalues
λ1 and λ2, or let them be generalized eigenvectors with Ae1 = λe1 and
Ae2 = λe2 + e1.

(a) Let V ′ = span{e1, e2, b1, b2}. If dim V ′ ≤ 3, then there exists a nonzero
B3-invariant subspace of V of dimension ≤ 3.

(b) Let d = 5 and let V ′′ = span{e1, e2, e3, b1, b2}, with e3 a generalized
eigenvector belonging to e1 or e2, or an eigenvector. If dim V ′′ ≤ 4, it
contains a nonzero B3-invariant subspace.

Proof. The claim in (a) follows from 2.1(ii) if dim V ′ = 2. Hence we can
assume dim V ′ = 3. Let W = span{e1, e2}∩span{b1, b2}. Then dim W = 1,
as otherwise {e1, e2, b1, b2} would be linearly independent. In particular, W
is spanned by an eigenvector w = α1e1 + α2e2 of ABA. Let us assume first
that both e1 and e2 are eigenvectors. If λ1 = λ2, w would be a common
eigenvector of both A and ABA, and we are done. Hence we can assume
λ1 6= λ2. We can also assume α2 6= 0 in the expression for w, as otherwise
w would be an eigenvector of both A and ABA. Moreover, we also have
δ1/2w = ABAw = α1b1 + α2b2. We now compute

ABw = B−1BAB(α1e1 + α2e2) = α1δ
1/2w + α2(λ−1

2 − λ−1
1 )b2,
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(AB)2w = δ1/2A(α1e1 + α2e2) = δ1/2(λ1w + α2(λ2 − λ1)e2).
The coefficients of e2 and b2 in the expressions above are nonzero. Hence the
vectors {e2, b2, w} and {w, ABw, (AB)2w} are bases for the same subspace.
This proves that it is both invariant under AB (second basis, as (AB)3w =
δw) and under ABA (first basis). This proves statement (a) if both e1 and
e2 are eigenvectors. If e2 is a generalized eigenvector, we compute

ABw = δ1/2λ−1w − δ1/2α2λ
−2b1, (AB)2w = δ1/2λw + δ1/2α2e1.

One shows as before that span{w, ABw, (AB)2w} = span{e1, b1, w}, from
which one deduces the claim.

Observe that V ′ ⊂ V ′′. Statement (b) follows immediately from (a) if
dim V ′ < 4. Hence we can assume dim V ′ = 4 and V ′ = V ′′, which there-
fore is invariant under ABA. Moreover, the space U = span{e1, e2, e3} ∩
span{b1, b2, b3} has at least dimension 2, being the intersection of 2 sub-
spaces of V ′ with codimension 1; we can assume dim U = 2 as otherwise U
would be an invariant subspace. Hence it contains 2 linearly independent
eigenvectors w1 and w2 of ABA. Moreover, if w1 =

∑
αjej , we can assume

α3 6= 0; otherwise w1 ∈ span{e1, e2} ∩ span{b1, b2} which is 0 (the vectors
e1, e2, b1, b2 are a basis for V ′). Now the equality ABAw1 = δ1/2w1 implies

(∗) BAw = B

 3∑
j=1

αjλjej

 =
3∑

j=1

δ1/2αjλ
−1
j ej = δ1/2A−1w.

We want to show that we can assume e3 6∈ U . If e3 is a generalized eigen-
vector belonging to e1 with e3 ∈ U , we can replace it by e3 + τe1 for any
scalar τ ∈ K. This new vector would only be in U for any choice of τ if
e1 ∈ U . But then U would be spanned by e1 and e3, and would be a B3-
submodule, being invariant under A and ABA. If e3 is an eigenvector in
U ⊂ span{b1, b2, b3}, the claim follows from Prop. 2.2.

So we can assume that X = span{e3, w1, w2} coincides with span{e1, e2,
e3}. If e4 and e5 were eigenvectors with same eigenvalue λ, then either
ABAe3 ∈ X (which would make X invariant under both A and ABA), or
span({ABAe3} ∪X) would be equal to span({ẽ4} ∪X), where ẽ4 is a linear
combination of e4 and e5, and, in particular, it is an eigenvector of A. Using
these 2 different spanning sets, we see that we would obtain a 4-dimensional
subspace invariant under both A and ABA.

Hence we can assume that V/X has at most 2 A-invariant 1-dimensional
subspaces, and, similarly V/span{b1, b2, b3} has at most 2 B-invariant 1-
dimensional subspaces. Expanding the vectors in the equation (∗) as a linear
combination of {e3, w1, w2}, and observing that w1, w2 ∈ span{b1, b2, b3},
we obtain that Be3 is congruent to a multiple of e3 modulo span{b1, b2, b3}.
But this would imply that e3 together with b1, b2, b3 spans a B-invariant
subspace of dimension ≤ 4. Statement (b) now follows from Proposition
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2.2, if e3 is an eigenvector. If e3 is a generalized eigenvector belonging to,
say e1, we could show as before that also e′3 = e3 + τe1 is in a 4-dimensional
B-invariant subspace containing b1, b2 and b3. As this is true for any τ ∈ K,
and there are only at most 2 such subspaces, we obtain that also e1 itself is
in a B-invariant subspace containing b1. The claim follows from Proposition
2.2.

Proposition 2.4. Let V be a simple B3-module with dimension ≤ 5. Then
there exists a basis of V with respect to which A and B act in ordered tri-
angular form (see 1.3). Moreover, this is possible for any labeling of the
generalized eigenvectors as long as A appears in upper triangular Jordan
form.

Proof. To construct such a basis, we can always assume at least one eigen-
vector e1 for A and b1 for B, and at least one more (generalized) eigenvector
e2 as in Lemma 2.3. We define w1 = e1 and wd = b1. For d ≥ 3, ob-
serve that cd1 6= 0 by Proposition 2.2, with cij as in 1.3, for 1 ≤ i, j ≤ d.
Hence we can define w2 = e2 − (cd2/cd1)e1, which is both in span{e1, e2}
and in span{b1, . . . , bd−1}. For d ≥ 4, define wd−1 = ABAw2, which is in
span{b1, b2} and in span{e1, . . . , ed−1}. Finally, if d = 5, we can express
b3 as a linear combination of {e1, e2, e3, b1, b2}, by Lemma 2.3. Hence there
exist scalars α1 and α2 such that w3 = b3−α1b1−α2b2 is in span{e1, e2, e3}∩
span{b1, b2, b3}. By construction, it follows that

(∗) wi ∈ span{e1, e2, . . . , ei} ∩ span{b1, b2, . . . , bd+1−i} for 1 ≤ i ≤ 3.

It follows from (∗) that span{w1, w2, . . . , wi} ⊂ span{e1, e2, . . . , ei} and that
span{wd+1−i, wd+2−i, . . . , wd} ⊂ span{b1, b2, . . . , bi}. Let us check equality
for d = 5. This follows by construction for i ≤ 3. But then span{w1, w2, w3}
= span{e1, e2, e3} and span{w4, w5} = span{b1, b2}. The linear indepen-
dence of the wi’s now follows from Lemma 2.3(b). Hence the inclusions
below (∗) actually are equalities, from which easily deduces the triangular
forms of A and B by induction on i. The cases d < 5 are similar and easier
to check.

Proposition 2.5. Let V be a simple B3-module of dimension d with d =
2, 3. Then there exists a basis for V for which A and B acts via the matrices

A =
(

λ1 λ1

0 λ2

)
, B =

(
λ2 0
−λ2 λ1

)
for d = 2

A =

λ1 λ1λ3λ
−1
2 + λ2 λ2

0 λ2 λ2

0 0 λ3

 , B =

 λ3 0 0
−λ2 λ2 0
λ2 −λ1λ3λ

−1
2 − λ2 λ1


for d = 3.
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Proof. For d = 2: By Proposition 2.4, we can assume A and B in ordered
triangular form, with only the nonzero off-diagonal entries to be computed.
Rescaling one of the basis vectors, we can assume a12 = λ1. We obtain
b21 = −λ2 from the braid relation ABA = BAB.

For d = 3: Again, by Proposition 2.4, we only need to compute the
nonzero off-diagonal entries of A and B, which are in ordered triangular
form. By Corollary 1.3, we can assume a13 = λ2 = b31. If a23 = 0, then
also b21, by Proposition 1.3(b). But then span{w1, w3} would be a subspace
invariant under both A and B, contradicting V being simple. Hence we
can assume a23 = λ2 = −b21, by Prop. 1.3(e). Finally, we compute from
(BA)33 = 0 that b32 = −λ1λ3λ

−1
2 − λ2.

Proposition 2.6. Let V be a simple 4-dimensional B3-module, and let D =√
λ2λ3/λ1λ4. Then we can find a basis for V with respect to which we get

the matrices

A =


λ1 (1 + D−1 + D−2)λ2 (1 + D−1 + D−2)λ3 λ4

0 λ2 (1 + D−1)λ3 λ4

0 0 λ3 λ4

0 0 0 λ4



B =


λ4 0 0 0
−λ3 λ3 0 0
Dλ2 −(D + 1)λ2 λ2 0
−D3λ1 (D3 + D2 + D)λ1 −(D2 + D + 1)λ1 λ1

 .

Proof. For the proof, we first assume A and B in the form of Proposition
1.3. Then we get from its corollary

a14 = δ1/2/λ1λ4 = (λ1λ2λ3λ4)1/4D, a23 = (a34a13λ2 − δ1/2)/λ2λ3,

a34 =
λ3

a14
a24 =

λ1λ3λ4

(λ1λ2λ3λ4)3/4
a24, a13 =

(λ1λ2λ3λ4)3/4

λ1λ2λ4
a12,

where the last 2 equalities follow from (BA)24 = 0 and (BA)42 = 0. It
follows from the equations above that a34 = 0 if and only if a24 = 0, and in
this case, also b21 = 0 = b31, by Prop. 1.3(b). But then span {w2, w3} would
be a B3-submodule, contradicting simplicity of V . By Proposition 1.3,(e)
we can choose a24 = λ4, from which one deduces

a34 =
λ1λ3λ

2
4

(λ1λ2λ3λ4)3/4
.

We get from (BA)34 = 0, using the substitution in Prop. 1.3(b) that

a23 = (λ1λ2λ3λ4)1/4(D + 1).
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Similarly, we obtain from (BA)44 = 0, using Prop. 1.3(b) and the results so
far

a13 = λ−1
4 λ2λ3(D + 1 + D−1), a12 =

λ1λ
2
2λ3

(λ1λ2λ3λ4)3/4
(D + 1 + D−1).

To get A and B into the form as stated, it suffices to conjugate the matrices
via the diagonal matrix diag(λ4/ai4)i. This shows that there exist at most 2
representations of B3 with prescribed eigenvalues λi for A, up to conjugation,
depending on the choice of the square root in the expression for D.

Observe that we used the equations (BA)ij = 0 for j = 4 and i > 1 for
the computation of matrix entries above. It is easy to check (BA)ij = 0 for
the remaining entries for which i+j > 5. Hence condition (a) of Proposition
1.4 is satisfied, and condition (b) follows from Prop 1.3(d). Hence A and B
satisfy the braid relations.

Proposition 2.7. Let V be a simple 5-dimensional B3-module. Then there
exists a basis with respect to which A and B act as ordered triangular ma-
trices. Moreover, the module is uniquely determined by the eigenvalues of A
and the choice γ of a 5th root of det(A), up to equivalence.

Proof. We proceed as in the proof of Proposition 2.5, using the results of
Section 1.3. By Corollary 1.3(a), we get

a15 =
δ1/2

λ1λ5
=

γ3

λ1λ5
.

If a35 = 0, we can conclude from (BA)35 = 0 that a34a25 = a35(λ3+a15) =
0. If a34 = 0, then also b31 = 0 = b32 by Prop. 1.3(b). In this case,
span{w1, w2, w4, w5} is a B3-submodule. Hence we can assume a34 6= 0 and
a25 = 0. But then a45 = (λ4/a15)a25 = 0 too by Corollary 1.3(b); and the
matrix entries b21, b31 and b41 are also equal to 0, by Prop. 1.3(b). Hence
span{w1, w5} is an invariant subspace.

So we can assume a35 6= 0. Assume a45 = 0; then also a25 = (a15/λ4)a45 =
0. We get from (BA)45 = 0 that a35a23 = λ2a45 +a24a25−a25a15 = 0. Since
a35 6= 0, a23 = 0. It follows that b21, b41 and b43 are all equal to 0, by Prop.
1.3(b). This would entail that span{w1, w3, w5} is a B3-submodule.

Hence we can assume that ai5 6= 0 for i = 1, 2, ... 5. We can choose
a45 = λ4 and a35 = a15, by Prop. 1.3(e). We now show that the equations
in (1.3) completely determine the other entries of A and B. As this does
not seem to be completely straightforward, we include the details for the
interested reader. Using (BA)25 = 0 and (BA)35 = 0 we get

a25 = a15 =
γ3

λ1λ5
, a34 = a15 + λ3 =

γ3

λ1λ5
+ λ3.
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From (BA)24 = − δ1/2

λ2
= −γ3

λ2
,

a24 = a14 −
γ3

λ2λ4
.

Substituting this into (BA)34 = 0, we find

a14 =
a34(λ2λ3λ4 + γ3)
(a34 − a35)λ2λ4

=
(

λ2λ4

γ2
+ 1

) (
λ3 +

γ3

λ2λ4

)
,

and hence

a24 =
γ3

λ1λ5
+ λ3 + γ.

Using (BA)52 = 0 we obtain

a12 =
λ2a14

a15
=

(
1 +

γ2

λ2λ4

) (
λ2 +

γ3

λ3λ4

)
.

Now (BA)45 = 0 gives us

a23 = a24 − a15 +
λ2λ4

a15
= γ + λ3 +

γ2

λ3
.

Finally, using (BA)55 = 0, we get

a13 =
(

γ2

λ3
+ λ3 + γ

) (
1 +

λ1λ5

γ2

)
.

This shows that all entries of A and B are uniquely determined by the
eigenvalues λi of A and by a choice of a 5th root of det(A). It is now a
straightforward computation to check the remaining conditions of Prop. 1.4
to prove that the matrices A and B do indeed define a representation of
B3. Alternatively, the existence question might be more easily settled using
some of the methods discussed in Section 2.11.

2.8. Define for 1 ≤ r ≤ d the polynomials P
(d)
r (x) =

∏
i6=r(x− λi), where

1 ≤ i ≤ d with i 6= r. Observe that these polynomials divide the characteris-
tic polynomial of A. It follows from the corollary of Prop. 2.2 that P

(d)
r (A)

is a nonzero rank 1 matrix; if the d eigenvalues of A are mutually distinct, it
is a multiple of the projection onto the eigenspace of λr, with kernel being
the direct sum of the eigenspaces of the other eigenvalues.

Now observe that for our braid representations, A and B are matrices
with coefficients in the ring R of Laurent polynomials in the λi’s and γ, a
d-th root of det(A) for d = 4, 5. As also the matrix P

(d)
r (A)P (d)

s (A)P (d)
r (A)

is a multiple of P
(d)
r , we obtain Laurent polynomials Q

(d)
rs in R by

P (d)
r (A)P (d)

s (B)P (d)
r (A) = Q(d)

rs P (d)
r (A).



REPRESENTATIONS OF B3 503

Proposition. (a) P
(d)
1 (B)P (d)

d (A) = Q
(d)
1d Edd, where Edd is the matrix

with a 1 in the (dd)-entry and zeroes everywhere else.
(b) If Q

(d)
ij = 0, then P

(d)
i (B)P (d)

j (A) = 0.
(c) The matrix (

∏d
r=i(A − λr)) has nonzero entries in its last column at

most in the 1-st until i− 1-st row.
(d) The Laurent polynomials Q

(d)
rs are given by

Q(2)
rs = −λ2

r + λrλs − λ2
s, Q(3)

rs = (λ2
r + λsλk)(λ2

s + λrλk),

Q(4)
rs = −γ−2(λ2

r + γ2)(λ2
s + γ2)(γ2 + λrλk + λsλl)(γ2 + λrλl + λsλk),

where {r, s, k, l} = {1, 2, 3, 4}.

Q(5)
rs = γ−8(γ2 + λrγ + λ2

r)(γ
2 + λsγ + λ2

s)
∏

k 6=r,s

(γ2 + λrλk)(γ2 + λsλk).

Proof. The statements are shown by straightforward computations. We
give some details for the interested reader. For statement (a), observe that
P

(d)
1 (B) is nonzero only in the last row, where it coincides with the right-

eigenvector of B for the eigenvalue λ1, and that P
(d)
d (A) is nonzero only in

the last column, where it coincides with the left eigenvector of A for the
eigenvalue λd. Using the triangular form of the matrices, and the fact that
the nonzero diagonal entries are P

(d)
1 (λ1) and P

(d)
d (λd), respectively, these

matrices can be computed easily. It is also obvious that P
(d)
1 (B)P (d)

d (A) is
a multiple of Edd, and, multiplying it by P

(d)
d (A) from the left, that this

multiple is equal to Q
(d)
1d .

Statement (b) follows from (a) and the fact that we obtain matrices in
ordered triangular form independent of the labeling, Prop. 2.4. Statement
(d) follows similarly from (a). Statement (c) is straightforward.

Main Theorem 2.9. Let K be an algebraically closed field.
(a) Any simple B3 module is uniquely determined by the eigenvalues of A,

up to a choice of a square root γ2 of det(A) (for d = 4) resp. a 5-th
root γ of det(A) (for d = 5).

(b) There exists a simple B3 module V of K-dimension d ≤ 5 if and only
if the eigenvalues λi of A and the quantities γ2 (for d = 4) and γ (for
d = 5), as defined in (a), satisfy Q

(d)
rs 6= 0 for r 6= s and 1 ≤ r, s ≤ d,

with Q
(d)
rs as defined in 2.8. The eigenvalues λi need not be mutually

distinct for this statement.

Proof. Let V be a simple B3-module. By Propositions 2.5-7, we can assume
a basis for V such that A and B act via matrices as described there. This
shows part (a).
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It remains to be shown for which values of the parameters the represen-
tations given there are simple. Let us assume Q

(d)
ij = 0 for some i 6= j,

1 ≤ i, j ≤ d. If V is simple, we can assume P
(d)
i (A) 6= 0, by the corollary

of Prop. 2.2. Hence there exists a vector v for which ei = P
(d)
i (A)v is an

eigenvector of A. As Q
(d)
ji = 0, also P

(d)
j (B)P (d)

i (A) = 0, by Prop. 2.8(b).
Obviously, ei is in the subspace spanned by {Brei, 0 ≤ r ≤ d − 2} ∪ {bi},
which is B-invariant; it is a proper subspace of V as the minimal polyno-
mial of the restriction of B to it divides P

(d)
j . We obtain the existence of a

nontrivial B3-submodule from Prop. 2.2, i.e., V can not be simple.
On the other hand, assume that Q

(d)
ij 6= 0 for all 1 ≤ i 6= j ≤ d. Let W be

a nonzero B3-submodule of V . Then it contains at least one eigenvector of A,
say ei. As P

(d)
i (A) 6= 0 by Prop. 2.8(a), we can assume this eigenvector to be

of the form ei = P
(d)
i (A)v for some v ∈ V , also if A is not diagonalizable. Let

j 6= i. Then = ABAP
(d)
j (B)P (d)

i (A)v is an eigenvector of A with eigenvalue
λj , provided it is nonzero. Using (ABA)−1Pi(B)ABA = Pi(A), one easily
checks that P

(d)
i (B)ej = Q

(d)
ij (ABA)ei, which is nonzero by our assumptions.

Hence W contains eigenvectors for each eigenvalue of A.

Case 1: Assume A has at least 2 distinct eigenvalues, which we label λ1

and λ2. By triangularity of A, their eigenvectors can be chosen in the form
(1, 0, . . . )t and (∗, 1, 0, . . . )t, which are both in W . It is easy to see from this
that e1, e2, b1 = ABAe1 and b2 = ABAe2 together with Ab1 (which is the
last column of A) span V , which therefore is equal to W .

Case 2: Assume A and B has only one eigenvalue, say λ. Then

P
(d)
1 (A)P (d)

d (B) = (A− λ)d−1(B − λ)d−1 = Q1dEdd.

As Q1d 6= 0, the eigenspaces of λ for both A and B are 1-dimensional. If
W is a nonzero B3-submodule, it therefore must contain the eigenvector wd

of B. The set of vectors S = {(A − λ)iwd, i = 0, 1, ... d − 1} is in W . As
(A − λ)d−1 6= 0, so is its last column (A − λ)d−1wd, by triangularity of A.
Hence S is linearly independent. This finishes the proof.

Corollary. The simple SL(2,Z) modules and the simple PSL(2,Z) modules
are given by all simple B3-modules for which δ2 = 1 (for SL(2,Z)) and for
which δ = 1 (for PSL(2,Z)). Observe that δ = −(λ1λ2)3 for d = 2 and
δ = (λ1λ2λ3)2 for d = 3.

2.10. Parameter spaces for B3 and PSL(2,Z). Let Id be the ideal in
K[λ1, . . . , λd] (for d ≤ 3) and in K[λ1, . . . , λd, γ] (for d = 4, 5) generated by
the least common multiple of the Q

(d)
rs , 1 ≤ r < s ≤ d. Let Nd be the zero set

of Id in Kd (resp. in Kd+1 for d > 3). Observe that Nd is invariant under
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the action of the symmetric group, acting via permuting the coordinates
λi, 1 ≤ i ≤ 5 in Kd. The main theorem can now be reformulated as follows:

Main Theorem′. There exists a 1-1 correspondence between equivalence
classes of simple B3 modules of dimension d ≤ 5 and the Sd orbits in
Kd\Nd.

Remarks 2.11. 1. After this research was completed we became aware of
a number of related approaches and results. We learned from P. Deligne
that results similar to ours are obtained in N. Katz’s work [K] on rigid local
systems by a more general and less elementary method. In particular, he
sketched to us how one can obtain the classification of 5-dimensional braid
representations from Katz’s work (see also Remark 4 below).

2. We also learned of another approach using quiver theory (see [Ws] and,
for a more general approach, [S]). The following result appears explicitly in
a preprint by Westbury:

Recall that in the PSL(2,Z)-quotient of B3 the elements ABA and AB
have order 2 and 3 respectively. Let n1 and n2 be the dimensions of the
eigenspaces of ABA, and let m1, m2 and m3 be the dimensions of the
eigenspaces of AB. Then there exists an indecomposable representation of
PSL(2,Z) if and only if ni ≥ mj for i = 1, 2 and j = 1, 2, 3. Moreover, the
parameter space for representations of this type has dimension d2−n2

1−n2
2−

m2
1 −m2

2 −m2
3 + 1. This result is in accordance with our findings for d ≤ 5,

but does not say anything about when the representations are simple (e.g.
for d = 4 there also exist indecomposable but not simple representations
with AB only having 2 eigenvalues).

3. We do not expect our methods to work for dimension ≥ 6 without
significant changes. For one, we can not expect ordered triangular forms
for A and B: Indeed, if this were the case, Tr(ABA) = 0 for any simple
6-dimensional representation of B3, by Prop. 1.3(a), i.e., n1 = n2 = 3. To
get a counterexample, it suffices to find 6×6 matrices of order 2 and 3 which
generate the whole ring of 6× 6 matrices and such that n1 = 4 and n2 = 2.

Similarly, the result quoted under 2 also shows that we will have more
parameters than the eigenvalues for d ≥ 6 and suitable values of m1,m2,m3,
n1, n2.

4. There exists a beautiful and simple argument which considerably nar-
rows down which polynomials can occur in the simplicity statement of Theo-
rem 2.9, and which also explains the nature of the factors in the polynomials
Q

(d)
ij to some extent. We were told this argument by P. Deligne:
Let V be a d-dimensional B3 module on which the central element ζ =

(σ1σ2)3 acts as a scalar δ. Assume that V has an r-dimensional B3-sub-
module W on which σ1 acts with eigenvalues λ1, . . . , λr. Comparing
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determinants of the restriction of ζ to W , we get that

(∗) (λ1 . . . λd)6r = (λ1 . . . λr)6d.

Hence whenever ζ acts as a scalar and (∗) is NOT satisfied, the represen-
tation has to be simple. Unfortunately, this argument produces a sufficient
but not a necessary condition for V being simple.

5. A result which could be related to our findings is Coxeter’s classification
of finite quotients of B3 defined by the additional relation σp

i = 1, for i = 1, 2:
The additional relation defines a finite quotient if and only if p ≤ 5 (see [C]).

3. An Application to Tensor Categories.

3.1. We shall use the results of the previous section to compute categori-
cal dimensions for certain simple objects in braided tensor categories related
to exceptional Lie groups. We will not give much background information
about tensor categories here (see e.g., [DM], [JS], [KW] or [T]), as the
application itself is rather elementary. The reader not familiar with the cat-
egorical language should think of the categories as representation categories
of quantum groups.

Let C be a semisimple ribbon tensor category with trivial object 11 over
an algebraically closed field K (see [T] for precise definitions); this means,
in particular, that End (X) is a semisimple K-algebra for any given object
X in C, and the homomorphisms between 2 objects in C form a vector space
over K.

In the following, let Z be a simple selfdual object in C; this means that
the trivial object 11 appears with multiplicity one as a direct summand in
Z⊗2. Let p ∈ End(Z⊗2) be the projection onto 11, and let p1 = p ⊗ 1 and
p2 = 1⊗p be elements in End(Z⊗3). In the following we will always assume
the following (rigidity) condition

p2p1p2 6= 0.(3.1)

As Z ⊗ 11 is canonically isomorphic to the simple object Z, p2(a ⊗ 1)p2 is
equal to a scalar multiple of p2 for any a ∈ End(Z⊗2). Let Y be a direct
summand in Z⊗2, with respect to a chosen direct sum decomposition of
Z⊗2. This decomposition defines a projection pY onto Y . We define the
categorical dimension dim Y by

(dim Y )p2 = (dim Z)2p2(pY ⊗ 1)p2.(3.2)

This definition depends on a choice of dim Z. In the following we will always
require dim 11 = 1. Taking for pY the projection p1, it follows from (3.1) and
(3.2) that dim Z is uniquely determined up to a sign; dim Y is independent
of the choice of the sign. So, in particular, if Z⊗2 contains a subobject
isomorphic to Z, dim Z is uniquely determined by (3.2). It is not hard to
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check that for subobjects of Z⊗2 this definition coincides with the usual
definition of categorical trace as e.g., for ribbon tensor categories (see [T]).

3.2. Assume that C allows a braiding (see e.g., [JS], [T]). For the purpose
of this article, it suffices to know that this entails that there exists a canonical
endomorphism c ∈ End(Z⊗2) such that c1c2c1 = c2c1c2, with ci elements in
End(Z⊗3) defined as before the pi. We have the following simple:

Lemma. Assume that Z⊗2 decomposes as a direct sum
⊕

i Yi of d mutu-
ally nonisomorphic simple objects Yi, each of which has nonzero dimension.
Moreover, we assume that c acts on Yi via the scalar λi, and λi 6= λj for
i 6= j.

Then Hom(Z,Z⊗3) is a simple d-dimensional B3-module, with the action
defined via σjf = cj ◦ f for all f ∈ Hom(Z,Z⊗3) and j = 1, 2; moreover,
each eigenvalue of cj has multiplicity 1.

Proof. Let p(i) ∈ End(Z⊗2) be the projection onto Yi, with p = p(1) being
the projection onto 11 ⊂ Z⊗2 and let ι : 11 → Z⊗2 be a nonzero homo-
morphism. It follows from rigidity that (p(i) ⊗ 1) ◦ (1 ⊗ ι) is a nonzero
homomorphism and that dim Hom(Z,Z⊗3) = dim End(Z⊗2) = d; it can
also be checked explicitly for the examples below. Hence V = Hom(Z,Z⊗3)
is a d-dimensional vector space on which both c1 and c2 act via concatena-
tion of morphisms. Moreover, it has a basis of eigenvectors (p(i)⊗1)◦ (1⊗ ι)
of c1. If this representation of B3 were not simple, fix a composition series
of V , and pick an eigenprojection p(i) of c such that the eigenprojections
p(i) ⊗ 1 and p1 = p ⊗ 1 of c1 act nonzero on different simple factors. As p1

is conjugate to p2 = 1 ⊗ p (as c1 and c2 are conjugate), we can conclude
p2(p(i) ⊗ 1)p2 = 0, which would contradict the assumption about nonzero
dimensions.

Corollary. Using the notations of the Lemma, with Y1
∼= 11, we have

dim Yi =
Q

(d)
1i (dim Z)2

P
(d)
1 (λ1)P

(d)
i (λi)

,

where Q1i, P
(d)
1 (λ1) and P

(d)
i (λi) are as in Section 2.8.

Proof. Observe that the projection onto the eigenspace of A with eigenvalue
λ is given by P

(d)
i (A)/P

(d)
i (λi) The claim now follows from (3.2) and Prop.

2.8(a).
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3.3. Let us first consider the case with C a braided tensor category whose
Grothendieck semiring is isomorphic to the semiring of the representation
category of the Lie group G with G being an orthogonal group O(N) or a
symplectic group Sp(N). We take as object Z the vector representation of
G. It is well-known that in this case Z⊗Z ∼= 11⊕X⊕Y , with X and Y simple
objects corresponding to the antisymmetrization and a subrepresentation of
the symmetrization (traceless tensors) of the 2nd tensor power of the vector
representation. It can be shown that in this case (only using the assumptions
of braiding, and the given Grothendieck semi-ring), the eigenvalues are of the
form αq,−αq−1, αr−1, with α a 4-th root of unity and q, r ∈ K. Moreover,
r is ± a power of q, depending on the given category (see below). Using
the notations [n] = qn − q−n and [λ + n] = rqn − r−1q−n, it follows from
Corollary 3.2 that

dim Z = α2

(
[λ]
[1]

+ 1
)

= α2

(
r − r−1

q − q−1
+ 1

)
,

and

dim X =
[λ− 1] + [2]

[2]
[λ]
[1]

, dim Y =
[λ + 1] + [2]

[2]
[λ]
[1]

.

This method can be extended to define similar functions also for objects in
higher tensor powers of Z, which are labeled by Young diagrams (see [Wn,
Theorem 5.5]). The q-dimensions for G = O(N) are obtained by setting
λ = N − 1, for G = Sp(N) they are obtained by setting λ = −N − 1.
More generally, it is possible to reconstruct such categories similarly as it
was done for categories of type A in [KW]; however, in this case we would
need the assumption of the category being braided. So in this comparatively
simple case knowledge about braid representations allows us to reconstruct
the tensor category.

3.4. The discussion in 3.3 can be carried over to exceptional Lie groups to
some (so far rather limited) extent. We use the notations [n] = sn/2− s−n/2

and [λ + n] = t1/2sn/2 − t−1/2s−n/2 for n ∈ N and λ a formal variable; in
our formulas, the result will be independent of the choice of square roots
of s and t. It can be shown that for an exceptional Lie algebra g, the 2nd
tensor product g⊗2 of its adjoint representation decomposes as a direct sum
11⊕g⊕X2⊕Y2⊕Y ∗

2 . Here we use the same notations as in [De]. We are going
to use the following results about quantum groups, which are essentially due
to Drinfeld [Dr2] (for a description of the relationship between operators c
(braiding operators) and quantum Casimir (= twist) also see e.g., [T]); here
aY denotes the scalar via which the Casimir acts on a simple g-module Y :
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(i) The braiding operator c acts on the simple summand Y ⊂ g⊗2 via
the scalar ±qaY −2ag , with the sign depending on whether Y is in the sym-
metrization or antisymmetrization of g⊗2,

(ii) the operator (c1c2)3 acts on the simple summand K ⊂ g⊗3 via the
scalar q2aK−6ag .

Now setting q2ag = s−3 and qaY2
−2ag = t, and using the formulas for the

action of the Casimir in [De], one sees easily that the eigenvalues of c (acting
on g⊗2) are s6 (for 11), −s3 (for g), −1 (for X2), t (for Y2) and st−1 (for Y ∗

2 ).
It follows from this that detV (c1) = s10, where detV (c1) is the determinant
of the linear operator via which c1 acts on V .

In order to completely determine the 5-dimensional representation of B3

on V = Hom(g, g⊗3), we only need to compute the scalar δ by which the
central element (c1c2)3 acts on V . This is equivalent to determining the
5-th root γ of detV (c1) given by δ = γ6 = detV (c1)γ = s10γ. By (ii), we get
δ = q2ag−6ag = s12. Combining the last 2 formulas, we get γ = s2. One can
now check, using Corollary 3.2, that

dim g =
[4][λ− 6][λ + 5]

[2][λ− 1][λ]
,

dim X2 =
[5][λ− 6][λ + 5][λ− 4][λ + 3][2λ + 4][2λ− 6]

[1][λ][λ− 1][λ + 2][λ− 3][2λ][2λ− 2]
,

dim Y2 =
[6][5][4][λ + 5][λ− 4][3λ− 6]

[2][λ− 1][λ][2λ][2λ− 1][λ− 2]
,

dim Y ∗
2 =

[6][5][4][λ− 6][2λ + 6][3λ + 3][λ + 2]
[2][λ− 1][λ][2λ− 2][2λ− 1][2λ + 4][λ + 1]

.

These rational functions are s-deformations of formulas given in [De] for the
classical case.

3.5. The computations above in the orthogonal case were used by Toledano
Laredo in [TL] in the context of fusion of representations of loop groups,
based on unpublished notes of the second named author. We have been
informed by Antony Wassermann that he uses our results for 5-dimensional
braid representations in connection with fusion of representations of loop
groups corresponding to exceptional Lie groups.
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