
Pacific
Journal of
Mathematics

THE KERNEL OF FOCK REPRESENTATIONS OF WICK
ALGEBRAS WITH BRAIDED OPERATOR OF

COEFFICIENTS

Palle E. T. Jørgensen, Daniil P. Proskurin, and Yurĭı S.
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It is shown that the kernel of the Fock representation of
a certain Wick algebra with braided operator of coefficients
T , ||T || ≤ 1, coincides with the largest quadratic Wick ideal.
Improved conditions on the operator T for the Fock inner
product to be strictly positive are given.

1. Introduction.

The problem of positivity of the Fock space inner product is central in the
study of the Fock representation of Wick algebras (see [2], [3], [5], [6]). The
paper [6] presents several conditions on the coefficients of the Wick algebra
for the Fock inner product to be positive. If the operator of coefficients of
the Wick algebra T satisfies the braid condition and the norm restriction
‖T‖ ≤ 1, then, as proved in [2], the Fock inner product is positive. Moreover
if −1 < T < 1, it was shown in [2] that the Fock inner product is strictly
positive. In this article we prove that, for braided T with ‖T‖ ≤ 1, the kernel
of the Fock inner product coincides with the largest quadratic Wick ideal.
In particular this implies that, for −1 < T ≤ 1, the Fock inner product is
strictly positive definite, and the Fock representation is faithful.

This article is organized as follows. In Sec. 2 we present definitions of
Wick algebras and the Fock representation and show that, in the braided
case, the kernel of the Fock representation is generated by the kernel of the
Fock inner product. In Sec. 3 we prove that if the operator T is braided and
‖T‖ ≤ 1, then the kernel of the Fock inner product coincides with the two-
sided ideal generated by ker(1+T ). In Sec. 4 we combine results obtained in
Sec. 2 and Sec. 3 to examine the C∗-representability of certain Wick algebras
or their quotients. All results are illustrated by examples of different kinds
of qij-CCR.
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2. Preliminaries.

For more detailed information about Wick algebras and the Fock represen-
tation we refer the reader to [6]. In this section we present only the basic
definitions and properties.

1. The notion of a ∗-algebra allowing Wick ordering (Wick algebra) was
presented in the paper [6] as a generalization of a wide class of ∗-algebras
[7], including the twisted CCR and CAR algebras (see [10]), the q-CCR (see
[4]) algebra, etc.

Definition 1. Let J = Jd = {1, 2, . . . , d}, T kl
ij ∈ C, i, j, k, l ∈ J, be such that

T kl
ij = T lk

ji . The Wick algebra with the set of coefficients {T kl
ij } is denoted

W (T ), and is a ∗-algebra, defined by generators ai, a∗i , i ∈ J, which satisfy
the basic relations:

a∗i aj = δij1 +
d∑

k,l=1

T kl
ij ala

∗
k.

Definition 2. Monomials of the form ai1ai2 · · · aima∗j1a
∗
j2
· · · a∗jk

are called
Wick ordered monomials.

It was proved in [6] that the Wick ordered monomials form a basis for
W (T ).

Let H = 〈e1, . . . , ed〉. Consider the full tensor algebra over H, H∗, de-
noted by T(H,H∗). Then

W (T ) ' T(H,H∗)
/ 〈

e∗i ⊗ ej − δij1−
∑

T kl
ij el ⊗ e∗k

〉
.

To study the structure of Wick algebras, and the structure of the Fock
representation, it is useful to introduce the following operators on H⊗n :=
H ⊗ · · · ⊗H︸ ︷︷ ︸

n

(see [6]):

T : H ⊗H 7→ H ⊗H, T ek ⊗ el =
∑
i,j

T lj
ikei ⊗ ej , T = T ∗,

Ti : H⊗n 7→ H⊗n, Ti = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1

⊗T ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−i−1

,

Rn : H⊗n 7→ H⊗n, Rn = 1 + T1 + T1T2 + · · ·+ T1T2 · · ·Tn−1,

Pn : H⊗n 7→ H⊗n, P2 = R2, Pn+1 = (1⊗ Pn)Rn+1.

In this article we suppose that the operator T is contractive, i.e., ‖T‖ ≤ 1,
and satisfies the braid condition, i.e., on H⊗ 3 the equality T1T2T1 = T2T1T2

holds. It follows from the definition of Ti that then TiTj = TjTi if |i− j| ≥ 2,
and for the braided T one has TiTi+1Ti = Ti+1TiTi+1.
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Remark 1. These conditions hold for such well-known algebras as qij-CCR,
µ-CCR, µ-CAR (see [6]).

The Fock representation of a Wick ∗-algebra is determined by a vector Ω
such that a∗i Ω = 0 for all i = 1, . . . , d (see [6]).

Definition 3 (The Fock representation). The representation λ0, acting on
the space T(H) by formulas

λ0(ai)ei1 ⊗ · · · ⊗ ein = ei ⊗ ei1 ⊗ · · · ⊗ ein , n ∈ N ∪ {0},
λ0(a∗i )1 = 0,

where the action of λ0(a∗i ) on the monomials of degree n ≥ 1 is determined
inductively using the basic relations, is called the Fock representation.

Note that the Fock representation is not a ∗-representation with respect
to the standard inner product on T(H). However, it was proved in [6] that
there exists a unique Hermitian sesquilinear form

〈
· , ·

〉
0

on T(H) such that
λ0 is a ∗-representation on (T(H),

〈
· , ·

〉
0
). This form is called the Fock

inner product on T(H).
The subspaces H⊗n, H⊗m, n 6= m, are orthogonal with respect to

〈
· , ·

〉
0
,

and on H⊗n we have the following formula (see [6]):〈
X, Y

〉
0

=
〈
X, PnY

〉
, n ≥ 2.

So, the positivity of the Fock inner product is equivalent to the positivity of
operators Pn, n ≥ 2, and I =

⊕
n≥2 ker Pn determines the kernel of the Fock

inner product. It was noted in [6] that the Fock representation is the GNS
representation associated with the linear functional f on a Wick algebra such
that f(1) = 1 and, for any Wick ordered monomial, f(ai1 · · · aina∗j1 · · · a

∗
jm

) =
0. Then for any X, Y ∈ T(H) we have (see [6]):〈

X, Y
〉
0

= f(X∗Y ).

2. In the following proposition we describe the kernel of the Fock represen-
tation of a Wick algebra with braided operator T in terms of the Fock inner
product.

Proposition 1. Let W (T ) be the Wick algebra with braided operator T ,
and let the Fock representation λ0 be positive (i.e., the Fock inner product
is positive definite). Then ker λ0 = I⊗ T(H∗) + T(H)⊗ I∗.

Proof. First, we show that X ∈ ker Pm implies X ∈ ker λ0. Indeed, let
Y ∈ H⊗n; then

λ0(X)Y = X ⊗ Y.

Note that for braided T we have the following decomposition (see [2] and
Sec. 3 for more details):

Pn+m = P (Dm)(Pm ⊗ 1n),
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where

P (Dm) = R̃n+mR̃n+m−1 · · · R̃m+1,

R̃k = 1 + Tk−1 + Tk−2Tk−1 + · · ·+ T1T2 · · ·Tk−1, k ≥ 2.

Then

Pn+m(λ0(X)Y ) = Pn+m(X ⊗ Y ) = P (Dm)(PmX ⊗ Y ) = 0,

and λ0(X) = 0 on
(
T(H) ,

〈
· , ·

〉
0

)
. Therefore I ⊂ ker λ0, and since kerλ0

is a ∗-ideal,

I⊗ T(H∗) + T(H)⊗ I∗ ⊂ ker λ0.(1)

To prove the converse inclusion, we need a formula determining the action
of λ0(X∗) on T(H) for any X ∈ H⊗ k, k ∈ N. For k = 1, X = ei, i = 1, . . . , d,
it was proved in [6] that:

λ0(e∗i )Y = µ(e∗i )RnY, ∀Y ∈ H⊗n,

where µ(e∗i ) : T(H) 7→ T(H) is the annihilation operator:

µ(e∗i )ei1 ⊗ ei2 ⊗ · · · ⊗ ein = δii1ei2 ⊗ · · · ⊗ ein .

Then, using the definition of Pn, it is easy to see that, for X ∈ H⊗n and
Y ∈ H⊗n,

λ0(X∗)Y =
〈
X, PnY

〉
=

〈
X, Y

〉
0
.

Let now

Z =
n∑

i=1

YiX
∗
i +

l∑
j=n+1

YjX
∗
j ∈ ker λ0,

where Yi ∈ T(H), i = 1, . . . , l,

Xi ∈ H⊗m, i = 1, . . . , n , Xj ∈ H⊗nj , nj > m , j = n + 1, . . . , l.

Now (1) implies that we can suppose that the elements Xi are linearly
independent modulo I. Denote by {X̂i, i = 1, . . . , n} ⊂ H⊗m a family dual
to the {Xi, i = 1, . . . , n} with respect to

〈
· , ·

〉
0
, i.e., such that〈

Xi , PmX̂j

〉
=

〈
Xi , X̂j

〉
0

= δij , i, j = 1, . . . , n.

Since, for any j = n + 1, . . . , l and i = 1, . . . , n,

λ0(X∗
j )X̂i = 0,

we have, in
(
T(H) ,

〈
· , ·

〉
0

)
,

0 = λ0(Z)X̂i = Yi, i = 1, . . . , n,

which implies Yi ∈ I, i = 1, . . . , n. The proof can be completed by evident
induction. �
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Remark 2. In particular, we have shown, for braided T , and for any X ∈
H⊗n and Y ∈ ker Pm, that

X ⊗ Y ∈ ker Pn+m.

By similar arguments, Y ⊗ X ∈ ker Pn+m, i.e., I =
〈⊗

n≥2 ker Pn

〉
is a

two-sided ideal in T(H).

The two-sided ideal J ⊂ T(H) is called a Wick ideal (see [6]) if it satisfies
the following condition:

T (H∗)⊗ J ⊂ J⊗ T (H∗) .(2)

If J is generated by some subspace of H⊗n, then J is called a homogeneous
Wick ideal of degree n.

We show that for Wick algebras with braided operator of coefficients, I

is a Wick ideal .

Proposition 2. Let T satisfy the braid condition, and I =
〈⊕

n≥2 ker Pn

〉
;

then

H∗ ⊗ I ⊂ I + I⊗H∗.(3)

Proof. Note that Conditions (2) and (3) are equivalent (see [6]). To prove
the proposition, it is sufficient to show that, if X ∈ ker Pn for some n ≥ 2,
then for any i = 1, . . . , d,

e∗i ⊗X ∈ ker Pn−1 + ker Pn ⊗H∗.

Indeed, for any X ∈ H⊗n, we have the following formula (see [9]):

e∗i ⊗X = µ(e∗i )RnX + µ(e∗i )
d∑

k=1

T1T2 · · ·Tn(X ⊗ ek)⊗ e∗k.

Then for X ∈ ker Pn, we have

Pn−1µ(e∗i )RnX = µ(e∗i )(1⊗ Pn−1)RnX = µ(e∗i )PnX = 0.

Note that, for braided T , for any k = 2, . . . , n,

Tk(T1T2 · · ·Tn) = (T1T2 · · ·Tn)Tk−1,

which implies that

(1⊗ Pn)(T1T2 · · ·Tn) = (T1T2 · · ·Tn)(Pn ⊗ 1).

Then for any k = 1, . . . , d,

Pnµ(e∗i )T1T2 · · ·Tn(X ⊗ ek) = µ(e∗i )(1⊗ Pn)T1T2 · · ·Tn(X ⊗ ek)

= µ(e∗i )T1T2 · · ·Tn(Pn ⊗ 1)(X ⊗ ek) = 0.

�
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For Wick algebras with braided T , the largest homogeneous ideal of degree
n is generated by kerRn (see [6] and [9]), i.e., the condition ker Rn 6= {0}
is necessary and sufficient for the existence of homogeneous Wick ideals. In
the following proposition we show that the same is true for arbitrary Wick
ideals.

Theorem 1. If J ⊂ T(H) is a non-trivial Wick ideal, then there exists
n ≥ 2 such that ker Rn 6= {0}.

Proof. For any X ∈ T(H), by deg X we denote the highest degree of its
homogeneous components. Let Y ∈ J be of minimal degree.

Y = Y1 + Y2 + · · ·+ Yk, Yi ∈ H⊗ni , i = 1, . . . , k, ni ∈ N ∪ {0}.
Suppose that deg Y ≥ 2: Then for any i = 1, . . . , d, we have

e∗i ⊗ Y =
k∑

j=1

µ(e∗i )RnjYj + µ(e∗i )
k∑

j=1

d∑
l=1

T̃nj (Yj ⊗ el)⊗ e∗l ,

where we put R0 = 1, R1 = 1, and

T̃k =


T1T2 · · ·Tk, k ≥ 2,

T, k = 1,

1, k = 0.

Then Condition (3) implies that for any i = 1, . . . , d,
k∑

j=1

µ(e∗i )RnjYj ∈ J.

Since the degrees of these elements are less than the degree of Y , we conclude
that

k∑
j=1

µ(e∗i )RnjYj = 0, i = 1, . . . , d,

and the independence of the Wick ordered monomials then implies

µ(e∗i )RnjYj = 0, i = 1, . . . , d.

Let Yk be the highest homogeneous component of Y ; then, by our assump-
tion, deg Yk ≥ 2, and

∑d
i=1 eiµ(e∗i )Rnk

Yk = Rnk
Yk = 0, i.e., Yk ∈ ker Rnk

.
To complete the proof, note that if X = β +

∑d
i=1 αiei ∈ J, then for any

j, we have

e∗j ⊗X = αj + βe∗j +
d∑

i=1

αi

d∑
k,l=1

T kl
ji el ⊗ e∗k,

and (3) implies αj = 0, j = 1, . . . , d, β = 0. �
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3. The structure of ker Pn.

In this section, we show that for Wick algebras with braided T satisfying
the condition −1 < T ≤ 1, the Fock representation is faithful, and for
−1 ≤ T ≤ 1, the kernel of the Fock representation is generated by the
largest quadratic Wick ideal (the largest quadratic Wick ideal is the largest
homogeneous Wick ideal of degree 2).

To do this we need some properties of quasimultiplicative maps on the
Coxeter group Sn (for more detailed information we refer the reader to [2]).

1. Consider Sn+1 as a Coxeter group, i.e., a group defined as follows: Sn+1 =〈
σi : σ2

i = e, σiσj = σjσi, |i− j| ≥ 2, σiσi+1σi = σi+1σiσi+1, i = 1, . . . , n
〉
.

In order to study the invertibility of Pn for any family of operators {Ti , i =
1 . . . , n, T ∈ B(K)}, satisfying the conditions

TiTi+1Ti = Ti+1TiTi+1, T ∗
i = Ti, −1 ≤ Ti ≤ 1,

where K is a separable Hilbert space, we may define (as in [2]) the function

φ : Sn+1 7→ B(K)

by the formulas

φ(e) = 1, φ(σi) = Ti,(4)

φ(π) = Ti1 · · ·Tik ,(5)

where π = σi1 · · ·σik is a reduced decomposition. It was shown in [2] that

Pn+1 = P (Sn+1) =
∑

σ∈Sn+1

φ(σ).

Denote by S the set of generators of Sn+1 as a Coxeter group. Consider, for
any J ⊂ S, the set

DJ = {σ ∈ Sn+1 | |σs| = |σ|+ 1, ∀ s ∈ J}.

Let WJ be a Coxeter group, generated by J . Then Sn+1 = DJWJ (see
[1]), and Pn+1 = P (DJ)P (WJ) (see [2]). Using the equalities P ∗

n+1 = Pn+1,
P (WJ)∗ = P (WJ), we obtain Pn+1 = P (WJ)P (DJ)∗, where for all M ⊂
Sn+1,

P (M) =
∑
σ∈M

φ(σ).

In what follows we use a quasimultiplicative analogue of the Euler-Solomon
formula (see [2, Lemma 2.6]):∑

J⊂S
J 6=S, J 6=∅

(−1)|J |P (DJ) = −(−1)|S|1 + φ(σ(n+1)
0 )− P (Sn+1),(6)
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where σ
(n+1)
0 is the unique element of Sn+1 with maximal possible length of

the reduced decomposition.

Remark 3. 1. The element σ
(n+1)
0 of the group Sn+1 has the form

σ
(n+1)
0 = (σ1 · · ·σn)(σ1 · · ·σn−1) · · · (σ1σ2)σ1.

Set Un = φ(σ(n+1)
0 ): Then

Un = (T1T2 · · ·Tn)(T1T2 · · ·Tn−1) · · · (T1T2)T1.

2. It is easy to see that the operator Un is selfadjoint, and, taking adjoints,
we can rewrite (6) in the following form:∑

J⊂S, J 6=∅

(−1)|J |P (DJ)∗ = (−1)n+11 + Un − Pn+1.(7)

3. Note also that, for all J ⊂ S, the group WJ is isomorphic to Sk for
some k < n, or to the direct product of some such groups.

2. In what follows we shall use the following properties of the operator Un.

Proposition 3. ker Pn+1 is invariant with respect to the action of Un.

Proof. First we show that for all J ⊂ S,

P (D∗
J) : ker Pn+1 7→ ker Pn+1.

It can be easily obtained from the equality

Pn+1P (DJ)∗ = P (DJ)P (WJ)P (DJ)∗ = P (DJ)Pn+1.

Then by (7), we have

Un − (−1)n1: ker Pn+1 7→ ker Pn+1.

�

Proposition 4. Let operators {Ti, i = 1, . . . , n} satisfy the braid condition
TiTi+1Ti = Ti+1TiTi+1, i = 1, . . . , n− 1, and TiTj = TjTi, |i− j| ≥ 2. Then

TkUn = UnTn+1−k, ∀ k = 1, . . . n.(8)

Proof. 1. For n = 1 the equality is evident.
2. Suppose that (8) holds for any n ≤ m. Note that

Um+1 = T1T2 · · ·Tm+1Um.
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Then, for 1 < k ≤ m + 1, we have

TkUm+1 = Tk(T1T2 · · ·Tm+1)Um

= T1T2 · · ·Tk−2TkTk−1TkTk+1 · · ·Tm+1Um

= T1T2 · · ·Tk−2Tk−1TkTk−1Tk+1 · · ·Tm+1Um

= (T1T2 · · ·Tm+1)Tk−1Um

= T1T2 · · ·Tm+1UmTm+1−(k−1)

= Um+1Tm+2−k.

In particular, for k = m + 1 we have Tm+1Um+1 = Um+1T1. Then taking
adjoints, we obtain the required equality for k = 1. �

3. Now we can formulate the main result of this paper.

Theorem 2. Let W (T ) be a Wick algebra with braided operator T satisfying
the norm bound ‖T‖ ≤ 1. Then for any n ≥ 2, we have

ker Pn+1 =
∑

k+l=n−1

H⊗ k ⊗ ker(1 + T )⊗H⊗ l =
n∑

k=1

ker(1 + Tk).

Proof. In fact, we shall prove the following: Let T1, T2, . . . , Tn ∈ B(K),
where K is a finite-dimensional Hilbert space, be selfadjoint contractions
satisfying the relations

TiTi+1Ti = Ti+1TiTi+1, 1 ≤ i ≤ n− 1, TiTj = TjTi, |i− j| ≥ 2.

Then

ker Pn+1 =
n∑

k=1

ker(1 + Tk).(9)

(It follows trivially from the decomposition Pn+1 = P (D{k})(1 + Tk) that∑n
k=1 ker(1 + Tk) ⊂ ker Pn+1.)
We proceed using induction.

The case n = 2.
In this case P2 = 1 + T .

The case n 7→ n + 1.
It follows from Pn+1 = P (WJ)P (DJ)∗ that

P (DJ)∗ : ker Pn+1 7→ ker P (WJ),

i.e., ran(P (DJ)∗|ker Pn+1) ⊂ ker P (WJ). Moreover, it is obvious that for any
J ⊂ S, ker P (WJ) ⊂ ker Pn+1. Therefore, by (7), we have the following
inclusion:

ran(Un − (−1)n1)|ker Pn+1 ⊂
∑

J⊂S, J 6=∅

ker P (WJ).
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Since, for J ⊂ S, the group WJ = WJ1 × · · · ×WJk
, where WJl

' Snl
with

nl < n+1, we have a decomposition into the product of pairwise commuting
selfadjoint operators

P (WJ) = P (WJ1) · · ·P (WJk
).

Therefore

ker P (WJ) =
k∑

l=1

ker P (WJl
) ⊂

n∑
i=1

ker(1 + Ti),

where the last inclusion is obtained from the assumption of induction. So,

ran(Un − (−1)n1)|ker Pn+1 ⊂
n∑

i=1

ker(1 + Ti).(10)

Consider the operator 1−U2
n. Since Un = U∗

n : kerPn+1 7→ ker Pn+1, then

ker Pn+1 = ran(1− U2
n)|ker Pn+1 + ker(1− U2

n)|ker Pn+1 .

Moreover, since ran(1 − U2
n) ⊂ ran(Un − (−1)n1), using (10), we have the

inclusion

ker Pn+1 ⊂
n∑

k=1

ker(1 + Ti) + ker(1− U2
n)|ker Pn+1 .

To finish the proof it remains only to show that

ker(1− U2
n) ∩ ker Pn+1 ⊂

n∑
i=1

ker(1 + Ti).

To this end, we may present 1− U2
n in the form

1− U2
n = 1− T1T2 · · ·TnU2

n−1Tn · · ·T2T1

= (1− T 2
1 ) + T1(1− T 2

2 )T1

+ · · ·
+ T1T2 · · ·Tn−1(1− T 2

n)Tn−1 · · ·T2T1

+ T1T2 · · ·Tn(1− U2
n−1)Tn · · ·T2T1.

Since ‖T‖ ≤ 1 implies that ‖Ti‖ ≤ 1, i = 1, . . . n, and ‖Uk‖ ≤ 1, k ≥ 2, then
we have a sum of non-negative operators, and v ∈ ker(1− U2

n) implies that

T 2
1 v = v,

T 2
2 T1v = T1v,

...

T 2
nTn−1 · · ·T2T1v = Tn−1 · · ·T2T1v.

However, TkUn = UnTn+1−k implies that TkU
2
n = U2

nTk, and, consequently,

Tk : ker(1− U2
n) 7→ ker(1− U2

n), k = 1, . . . , n.
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Moreover, since the restriction of T1 to ker(1− U2
n) is an involution,

ran(T1)|ker(1−U2
n) = ker(1− U2

n),

and, for any v ∈ ker(1−U2
n), we have T 2

2 v = v. By the same arguments, we
obtain that

∀ v ∈ ker(1− U2
n), T 2

i v = v, i = 1, . . . , d.

Let now v ∈ ker(1− U2
n) ∩ ker Pn+1; then, for any k = 1, . . . , n,

Pn+1Tkv = P (D{k})(1 + Tk)Tkv

= P (D{k})(Tk + T 2
k )v

= P (D{k})(1 + Tk)v = Pn+1v = 0.

Therefore Tk maps ker(1−U2
n)∩ker Pn+1 onto itself for any k = 1, . . . , n. This

fact implies that, for any σ ∈ Sn+1, we have φ(σ)v ∈ ker(1−U2
n)∩ker Pn+1,

and

∀ k = 1, . . . , n, ∀σ ∈ Sn+1, (1− T 2
k )φ(σ)v = 0.

For convenience, we fix the set Sn+1, and set vi := φ(πi)v for πi ∈ Sn+1

(π1 := id and v1 = v). Then the condition Pn+1v = 0 takes the form
n!∑

k=1

vk = 0.(11)

Finally, for any pair i 6= j there exist generators σi1 , . . . , σim ∈ S such that

πj = σi1 · · ·σimπi

and

vj = Ti1 · · ·Timvi.

Note that, if vk = Trvl for some r = 1, . . . , n, then T 2
r vk = vk implies that

vk − vl ∈ ker(1 + Tr). Therefore, for any i 6= j,

vi − vj ∈
n∑

k=1

ker(1 + Tk).

In particular, for any j = 2, . . . , n!,

v1 − vj ∈
n∑

k=1

ker(1 + Tk).

Then from (11), we have

n! v = n! v1 ∈
n∑

k=1

ker(1 + Tk),

and therefore

v ∈
n∑

k=1

ker(1 + Tk).

�
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Remark 4. Evidently the proof does not depend on the dimension of K.
Indeed, in the case when K is infinite-dimensional, the linear subspace in
(9) is replaced by its closure. I.e., if K is a separable Hilbert space and
{Ti, i = 1, . . . , n} are selfadjoint contractions satisfying the braid conditions,
then

ker Pn+1 =
n∑

k=1

ker(1 + Tk).

As a corollary we have an improved version of the result of Bożejko and
Speicher (see [2]).

Proposition 5. If the operator T satisfies the braid condition, and −1 <
T ≤ 1, then Pn > 0, n ≥ 2, i.e., the Fock inner product is strictly positive,
and the Fock representation acts in the whole space T(H).

Proof. Recall that if T is braided and ‖T‖ ≤ 1 then Pn ≥ 0 (see [2]). It
remains only to show that kerPn = {0} for −1 < T ≤ 1. This fact trivially
follows from our theorem since in this case ker(1 + T ) = {0}. �

4. Corollaries and examples.

We summarize the results obtained above in the following proposition.

Proposition 6. If W (T ) is a Wick algebra with braided operator of co-
efficients T satisfying the norm bound ‖T‖ ≤ 1, then the following three
statements hold.

1. The kernel of the Fock representation is generated by the largest qua-
dratic Wick ideal. In particular, if −1 < T ≤ 1, then the Fock repre-
sentation is faithful.

2. For any n ≥ 2 we have the inclusion In ⊂ I2.
3. If −1 < T ≤ 1, then W (T ) has no non-trivial Wick ideals.

Example 1. Consider the q-CCR algebra based on a Hilbert space H and
the relations

a∗i ai = 1 + qaia
∗
i , i = 1, . . . , d,

a∗i aj = qaja
∗
i , i 6= j, 0 < q < 1.

We pick an orthogonal basis (ei) in H, and then T is determined on this
basis by the formulas

Tei ⊗ ej = qej ⊗ ei, ‖T‖ < 1.

It is evident that T is braided. Then by the proposition, we cannot have
any Wick ideals in W (T ).
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It was proved in [2] that for braided T satisfying the norm bound ‖T‖ < 1,
the Fock representation is bounded. Therefore we may consider the C∗-
algebra generated by operators of the Fock representation.

Recall that a ∗-algebra is called C∗-representable if it can be realized as
a ∗-subalgebra of a certain C∗-algebra (see for example [7]). Combining the
results of Theorem 2 and Proposition 5, we obtain the following statement.

Proposition 7. If W (T ) is a Wick algebra with braided operator of coeffi-
cients T satisfying the norm bound ‖T‖ < 1, then W (T ) is C∗-representable.

Suppose that, in the case of braided T with ‖T‖ = 1 and ker(1 + T ) 6=
{0}, the Fock representation is bounded. Then Theorem 2 implies that the
quotient W (T )/I2 is C∗-representable.

Example 2. Consider the following type of qij-CCR (see [2]):

a∗i ai = 1 + qiaia
∗
i , i = 1, . . . , d, 0 < qi < 1,

a∗i aj = λijaja
∗
i , i 6= j, |λij | = 1, λij = λij .

The corresponding T is braided, ‖T‖ = 1, and

ker(1 + T ) =
〈
ajai − λijaiaj , i < j

〉
.

Moreover, the Fock representation of this algebra is bounded. Then, as
noted above, the ∗-algebra generated by the relations

a∗i ai = 1 + qiaia
∗
i , i = 1, . . . , d, 0 < qi < 1,

a∗i aj = λijaja
∗
i , i 6= j, |λij | = 1, λij = λij ,

ajai = λijaiaj , i < j

is C∗-representable.
A description of the irreducible representations of these relations can be

found for example in [8, Sec. 2.4].

Note that, if ‖T‖ = 1, then the operators of the Fock representation can
be unbounded.

Example 3. Consider the following Wick algebra:

a∗i ai = 1 + aia
∗
i , i = 1, . . . , d,

a∗i aj = qaja
∗
i , i 6= j, −1 < q < 1.

The corresponding T is determined by the formulas

Tei ⊗ ei = ei ⊗ ei, T ej ⊗ ei = qei ⊗ ej , i 6= j, i = 1, . . . , d.

It is easy to see that T is braided and −1 < T ≤ 1. So, the Fock represen-
tation of this algebra is faithful. Note that, if we consider the complement
of T(H) with respect to the Fock inner product, then the operators of the
Fock representation are unbounded.

For the definition and properties of representations of ∗-algebras by un-
bounded operators, see for example [11].
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Unbounded representations of Wick algebras will be considered in more
detail later.
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