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This paper describes a method of constructing an unlimited
number of infinite families of continued fraction expansions of
the square root of D, an integer. The periods of these con-
tinued fractions all have identifiable sub patterns repeated a
number of times according to certain parameters. For exam-
ple, it is possible to construct an explicit family for the square
root of D(k, l) where the period of the continued fraction has
length 2kl − 2. The method is recursive and additional pa-
rameters controlling the length can be added.

Section 1.

In the last 20 years (starting with an example by D. Shanks), more and more
examples of families of quadratic surds with unbounded continued fraction
length have appeared. A long list of explicit continued fractions discovered
by L. Bernstein, C. Levesque and G. Rind is given in [LR]. H.C. Williams
[W], T. Azuhatu [A] and many others have added to this list over the
years. In [vdP], A. van der Poorten gives several examples as he illustrates
how matrices not only make such expansions more manageable, but also
are an integral part of the theory of continued fractions. In this note, we
describe a method of constructing an unlimited number of distinct families
of expansions using two matrix identities.

Typically in the known examples, a family of surds is given in terms of
several parameters of which one is explicitly connected with the length of the
period in the partial quotients. For instance, an integer d(k, n),

√
d(k, n)

might have the form[
n, a1, b1, c1, d1, a2, b2, c2, d2, a3, b2, c2, d2, . . . , ak, bk, ck, dk, 2n

]
where the partial quotients ai, bi, ci, di are given as formula in terms of n
and i. The internal structure of the repeating quotients contains a recurring
pattern of length 4 repeated k times.

In this paper we will describe methods for constructing families of in-
teger square roots where two or more parameters control different aspects
of the period length of the continued fraction expansion; i.e.,

√
d(k1, k2, n)

produces a period containing a recurring pattern of length k2 repeated k1
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times. Further we will see how to produce surds with periods of ever in-
creasing complexity. We will describe a method that takes the period of
one example and inserts it inside a more complicated recurring pattern. For
example, starting with a sequence ~a of length k2 taken from one continued
fraction, we can construct another continued fraction that involves a recur-
ring pattern bi,~a, ci that appears k1 times in the repeating part. The process
is recursive, and it can be used to produce ever more elaborate sequences
of partial quotients. Finally, our method will allow us to choose the partial
quotients to be of any size so our fractions can be chosen to limit the occur-
rence of small partial quotients. While there is no end to the number and
complexity of families our methods can produce, they become increasingly
difficult to write down explicitly in terms of the controlling parameters.

The notation that follows gets rather involved, and we will be forced to
set some conventions just to make things readable. To start we will no
longer overline the repeating quotients in the expansion a quadratic surd,
and agree that √

d = [a0; a1, a2, . . . . . . . . . , an]
means that the quotients a1, a2, . . . . . . . . . , an repeat. We will still use

[a0; a1, a2, . . . . . . . . . , an]

for the finite continued fraction in hopes that the context will allow the
correct interpretation.

Suppose we have a matrix

N =
(

0 1
1 a1

)(
0 1
1 a2

)
· · ·
(

0 1
1 an

)
.

We will use the shorthand notation N = {a1, a2, . . . . . . . . . , an} to express

such a product. We will write
−→
N to denote the sequence a1, a2, . . . . . . . . . , an.

We will denote the reverse sequence as
←
N which could just as well be written

as
−→
NT .
Any such matrix can be viewed as a fractional linear functions, and we

will denote this action as (
s t
u v

)
[x] =

sx + t

ux + v
.

Of course, the composition of functions corresponds to matrix multiplication.
To set out the method used in the proofs, we will begin with an example.

This example will illustrate the steps used in this paper to evaluate a con-
tinued fraction, and allow readers to reconcile the layout of these steps with
their own style. The example we will use is in one of the sequences we will
construct later,

√
31. In this case, the expansion claimed is

√
31 = [5; 1, 1, 3, 5, 3, 1, 1, 10].
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We can compute the convergents of the first cycle using the familiar PQ
chart:

5 1 1 3 5 3 1 1 10

Q 1 0 1 1 2 7 37 118 155 273 2885

P 0 1 5 6 11 39 206 657 863 1520 16063

For our purposes it is better to change the last quotient in this chart from
10 to 5, then the last two columns look like

1 5

273 1520

1520 8463

This calculation can be expressed in our matrix notation as

M = {5; 1, 1, 3, 5, 3, 1, 1, 5} =

(
273 1520

1520 8463

)
.

Because the continued fraction repeats, the value of this fraction satisfies
the quadratic equation

M [x] =
273x + 1520
1520x + 8463

=
1
x

.

This reduce to
273x2 = 8463

or
x2 = 31.

Further we can obtain the smallest solutions to Pell’s equation from these
last two columns

15202 − 2732 · 31 = 1.

In general, if
√

d = [a0; a1, a2, . . . . . . . . . , 2a0], then the corresponding ma-
trix M = {a0, a1, a2, . . . . . . . . . , a0} must have the form

M =

(
s t

t sd

)
where

s2d− t2 = ±1.

Then
√

d is the solution to the quadratic equation:

M [x] =
1
x

.
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Further,(
s t

t sd

)(√
d −

√
d

1 1

)
=

(
1 1
√

d −
√

d

)(
t + s

√
d 0

0 t− s
√

d

)
.

If d 6≡ 1 (mod 4) and is square free, t + s
√

d is the fundamental unit of
Q(
√

d).

Section 2.

All of our examples hinge on the reduction of a matrix product of the form

M = A(Nk−1Nk−2Nk−3 · · ·N2N1N0)A(Nk−1Nk−2Nk−3 · · ·N2N1N0)T A.

Suppose we have a family of matrices of the form

Nt =

(
p 2brt

brk−1−t q

)
where

pq − 2b2rk−1 = ε = ±1

and
qr − p = 2bm for some m.

The product Nk−1Nk−2Nk−3 · · ·N2N1N0 can be reduced quickly. If(
1 0

0 r

)
,

it is easy to see that Nt = C−tN0C
t. So our first reduction is

Nk−1 · · ·N1N0 = C−k(CN0)k.

Now consider

K = CN0 =

(
p 2b

brk qr

)
.

The fixed value of KT [x], α, satisfies

2bα2 + (qr − p)α− brk = 0.

So if
d = m2 + 2rk

and

α =
−m +

√
d

2
,

then α and its conjugate ᾱ are fixed values of KT [x].
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Next, let

E =

(√
d −

√
d

1 1

)
and

A =

(
0 1

1 m

)
.

Now one simply verifies that

C−kAE =

(
1 1

α−1 ᾱ−1

)
=

(
α ᾱ

1 1

)(
α−1 0

0 ᾱ−1

)
.

Next

KT

(
α ᾱ

1 1

)
=

(
2bα2 + qrα 2bᾱ2 + qrāl

2bα + qr 2bᾱ + qr

)
.

So we have

KT

(
α ᾱ

1 1

)
=

(
α ᾱ

1 1

)(
β 0

0 β̄

)
where

β = 2bα + qr = 2bα + p = p + 2b(m + α) = p− 2bᾱ.

Now β and its conjugate β̄ are the eigenvalues of KT (and consequently
K). Immediately,

(KT )k =

(
α ᾱ

1 1

)
=

(
α ᾱ

1 1

)(
βk 0

0 β̄k

)
.

Next

A

(
α ᾱ

1 1

)
=

(
1 1

m + α m + ᾱ

)
=

(
1 1

−ᾱ −α

)
.

This in turn diagonalizes K:

K

(
1 1

−ᾱ −α

)
=

(
β 0

0 β̄

)
.

Again

Kk

(
1 1

−ᾱ −α

)
=

(
1 1

−ᾱ −α

)(
βk 0

0 β̄k

)
.

Finally

AC−k

(
1 1

−ᾱ −α

)
=

(
1 1
√

d −
√

d

)(
1
2α 0

0 1
2α

)
.
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Now the whole point of this is

Nk−1Nk−2Nk−3 · · ·N2N1N0 = C−k(CN0)k = C−kKk.

So if we define M as

M = A(Nk−1Nk−2Nk−3 · · ·N2N1N0)A(Nk−1Nk−2Nk−3 · · ·N2N1N0)T A

then

ME = AC−kKkA(C−kKk)T AE

= AC−kKkA(KT )kC−kAE

=

(
1 1
√

d −
√

d

)(
β2k 0

0 β̄2k

)(
1

2α2 0

0 1
2α2

)
.

This implies

M

(√
d −

√
d

1 1

)
=

(
1 1
√

d −
√

d

)(
γ 0

0 γ̄

)
,

and so our identity is immediately useful in establishing the continued frac-
tion expansion of

√
d.

Proposition 1. Suppose we have a family of matrices of the form

Ni(q, b,m, r) =

(
qr − 2bm 2bri

brk−1−i q

)
i = 0, 1, 2, . . . , k − 1.

Further suppose that each Ni = {a(i, 1), a(i, 2), . . . , a(i, n)} where a(i, j)
are integers. If d(m, r) = m2 + 2rk, then the following is a valid continued
fraction expansion of

√
d(m, r):

√
d(m, r) =

[
m;
−→
N0,

−→
N1, . . . ,

←−
Nk−1, . . . ,

←−
N1,

←−
N0, 2m

]
.

Further if d(m, r) is square free and d ≡ 2 or 3 (mod 4), then the funda-
mental unit of Q(

√
d(m, r)) is

β2k

2α2

where

α =
−m +

√
d(m, r)

2
and β = qr − 2bm− 2bᾱ.
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Section 3.

The calculation above can be used directly to produce examples of continued
fractions of quadratic surds with arbitrarily long repeating pattern. Let b, n
and k be any natural numbers. We have√

(b(2bn + 1)k + n)2 + 2(2bn + 1)k

=
[
b(2bn + 1)k + n;

b, 2b(2bn + 1)k−1, b(2bn + 1), 2b(2bn + 1)k−2, b(2bn + 1)2, . . . ,

b(2bn + 1)k−2, 2b(2bn + 1)1, b(2bn + 1)k−1, 2b,

b(2bn + 1)k + n,

2b, b(2bn + 1)k−1, 2b(2bn + 1), b(2bn + 1)k−2, 2b(2bn + 1)2, . . . ,

2b(2bn + 1)k−2, b(2bn + 1)1, 2b(2bn + 1)k−1, b, 2b(2bn + 1)k + 2n
]
.

The length of the repeating pattern is 4k + 2. This expansion comes from
the matrix product(

0 1

1 brk−1−t

)(
0 1

1 2brt

)
=

(
1 2brt

brk−1−t 2b2rk−1 + 1

)
which is in the form used in Section 2 provided qr − p = 2b2rk + r − 1 is
divisible by 2b. If we choose r = 2bn + 1, this condition will be met. In the
proposition, we wrote qr − p = 2bm. Keeping this notation

m = brk + n = b(2bn + 1)k + n.

This leads us to the surd
√

d =
√

m2 + 2rk =
√

(b(2bn + 1)k + n)2 + 2(2bn + 1)k.

Note that every partial quotient in this family is greater than or equal to
b, so this gives infinite families of quadratic surds with all partial quotients
arbitrarily large.

In this example, r = 2bn + 1 is odd, so d = m2 + 2rk ≡ 2 or 1 (mod 4). If

d = (b(2bn + 1)k + n)2 + 2(2bn + 1)k

is square free, the fundamental unit of Q(
√

d) comes directly from the con-
tinued fraction. This unit is

β2k

2α2

where

α =
1
2
(−b(2bn + 1)k − n +

√
d),
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and

β = 1− 2bᾱ = 1 + bn + b2(2bn + 1)k + b
√

d.

The next example is similar to examples found in [vdP]. Here
√

d(k, b, n)
has length 6k + 2. Let b, n and k be any natural numbers,√

(b(2bn− 1)k − n)2 + 2(2bn− 1)k

=
[
b(2bn− 1)k − n; b− 1, 1, 2b(2bn− 1)k−1 − 1,

b(2bn− 1)− 1, 1, 2b(2bn− 1)k−2 − 1,

b(2bn− 1)2 − 1, 1, 2b(2bn− 1)k−3 − 1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b(2bn− 1)k−2 − 1, 1, 2b(2bn− 1)− 1,

b(2bn− 1)k−1 − 1, 1, 2b− 1,

b(2bn− 1)k − n,

2b− 1, 1, b(2bn− 1)k−1 − 1

2b(2bn− 1)1 − 1, 1, b(2bn− 1)k−2 − 1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2b(2bn− 1)k−2 − 1, 1, b(2bn− 1)− 1,

2b(2bn− 1)k−1 − 1, 1, b− 1,

2b(2bn− 1)k − 2n
]
.

This identity is verified by computing the matrix product(
0 1

1 brk−1−t − 1

)(
0 1

1 1

)(
0 1

1 2brt − 1

)
=

(
1 2brt

brk−1−t 2b2rk−1 − 1

)
.

For r = 2bn− 1, this gives qr − p = 2b2rk − r − 1 = 2b(brr − n).
Once again r is odd, and we can get information about units in quadratic

fields directly from the proof of this identity. If d in this example is square-
free, the fundamental unit of Q[

√
d] is

β2k

2α2

where α = 1
2(−b(2bn− 1)k + n +

√
d), and β = 1− 2bᾱ.

Section 4.

In the second example above, we found a family of expansions in which
the repeating partial quotients contain a recurring pattern of the form
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Ai, 1, Bk−i. Next we provide a method for producing expansions where the
repeating pattern contains recurring patterns of the form Ai, a1, a2, . . . , an,
Bk−i. Unfortunately, the ai cannot be chosen arbitrarily. We will see later
exactly how to choose proper ai.

Suppose you have an integral matrix product of the form

{a1, a2, . . . . . . . . . , an} =

(
u v

2v − δw w

)
,

where δ = 0 or 1. The determinant of this matrix is

ε = (−1)n = uw − 2v2 + δvw.

If we choose the following values for b, r,m, Ai, and Bi, then we can produce
a family of matrices like those in Proposition 1 from

Ni = {vAk−1−i, a1, a2, . . . . . . . . . , an, Bi}.

For any value of l ≥ 0, let

b = b(u, v, w, δ; l) = v

r = r(u, v, w, δ; l) = ε(w2 − 2v2) + 2lwv

Ai = Ai(u, v, w, δ; l) =
ri − 1

w
Bi = Bi(u, v, w, δ; l) = 2vAi + δ

and

m = m(u, v, w, δ; l) = vAk + εl.

Now it may not be immediately clear that the Ai are all integers, but they
are since

r − 1 = ε(w2 − 2v2) + 2lwv − 1

= ε(w2 + ε− uw − δvw) + 2lwv − 1

= ε(w2 − uw − δvw) + 2lwv.

Thus
r − 1

w
= ε(w − u− δv) + 2lv.

These values are set so that we have the required form:(
0 1

1 vAk−1−i

)(
u v

2v − δw w

)(
0 1

1 Bi

)
=

(
w 2bri

brk−1−i q

)
where

q = u + (2v − δw)vAk−1−i + Bibr
k−1−i.
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We can simplify q using the fact that the determinant qw − 2b2rk−1 = ε.
Then

q =
2b2rk−1 + ε

w
.

Thus it is independent of i. To use Proposition 1, we need to check that
qr − w = 2bm.

qr − w =
2v2rk + εr − w2

w
=

2v2rk + (w2 − 2v2) + 2εlwv − w2

w

= 2v
rk − 1 + εlvw

w
= 2v

(
v
rk − 1

w
+ εl

)
= 2v(vAk + εl) = 2vm

because b = v and m = vAk + εl.
Once we have our matrix family, we have a continued fraction expansion

for √
d =

√
m2 + 2rk

where m = vAk + εl, and Ak = rk−1
w . We can write

d = (vAk + εl)2 + 2wAk + 2 = v2A2
k + 2(εlv + w)Ak + 2.

Section 5.

Suppose we have a sequence of integers a1; a2, . . . , an for which

{a1; a2, . . . , an} =

(
u v

2v − δw w

)
where δ = 0 or 1. Let ε = uw− xv = (−1)n. In the last section we saw how
to use this to construct a matrix of the form in Proposition 1, and so we are
led to a formal continued fraction ezpansion of a quadratic surd. With the
definitions,

r = εw2 − 2εv2 + 2lwv.

At =
rt − 1

w
Bt = 2vAt + δ

m = vAk + εl

d = m2 + 2rk = v2A2
k + 2(εlv + w)Ak + 2

α =
−m +

√
d

2
β = w − 2bᾱ,
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we saw that

Nt = {vAt, a1; a2, . . . , an, Bk−1−t} =

(
w 2brs

brk−1−t q

)
.

This matrix is of the type in Proposition 1, so
√

d =
[
−→
N0,

−→
N1, . . . ,

−→
Nk−1,m,

←−
Nk−1, . . . ,

←−
N1,

←−
N0, 2m

]
.

This almost means that, as a continued fraction,
√

d =
[
m; A0, a1, a2, . . . . . . . . . , an, Bk−1,

A1, a1, a2, . . . . . . . . . , an, Bk−2,

A2, a1, a2, . . . . . . . . . , an, Bk−3,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Ak−2, a1, a2, . . . . . . . . . , an, B1

Ak−1, a1, a2, . . . . . . . . . , an, B0

m,

B0, an, an−1, . . . . . . . . . , a1, Ak−1,

B1, an, an−1, . . . . . . . . . , a1, Ak−2,

B2, an, an−1, . . . . . . . . . , a1, Ak−3,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Bk−2, an, an−1, . . . . . . . . . , a1, A1,

Bk−1, an, an−1, . . . . . . . . . , a1, A0,

2m
]
.

If d is square-free and not equivalent to 1 mod 4, then the calculations also
lead us directly to the fundamental unit of Q[

√
d]. It is

β2k

2α2
.

There is a problem that may arise in the above; the partial quotients
in the continued fraction may not all be positive. In fact, we always have
A0 = 0, and when δ = 0, we also have B0 = 0. Further, r could be negative.
While the identity from Proposition 1 is valid, it may not represent the
correct form of the continued fraction expansion.

The offending zeros are not a major problem, since they do not change
the matrix identity. They can easily be dropped using the original meaning
of a continued fraction. If the sequence [. . . a, b, 0, d, e, . . . ] occurs in a valid
continued fraction identity, it can be replaced by [. . . a, b+d, e, . . . ]. We can
use this to change our identity into the standard continued fraction of the
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surd, but we need borrow a bit from the next repeating cycle to get exactly
what we want.

When δ = 1, only A0 = 0, and we end up with an expansion of length
2(n + 2)k.

√
d =

[
m+a1; a2, . . . . . . . . . , an, Bk−1,(1)

vA1, a1, a2, . . . . . . . . . , an, Bk−2,

vA2, a1, a2, . . . . . . . . . , an, Bk−3,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

vAk−2, a1, a2, . . . . . . . . . , an, B1,

vAk−1, a1, a2, . . . . . . . . . , an, B0,

m

B0 an, an−1, . . . . . . . . . , a1, vAk−1,

B1 an, an−1, . . . . . . . . . , a1, vAk−2,

B2 an, an−1, . . . . . . . . . , a1, vAk−3,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Bk−2, an, an−1, . . . . . . . . . , a1, vA1,

Bk−1, an, an−1, . . . . . . . . . , a2,

2m + 2a1

]
.

When δ = 0, then A0 = B0 = 0. This adjust to an expansion with length
2(n + 2)k − 2.

√
d =

[
m+a1; a2, . . . . . . . . . , an, Bk−1,(2)

vA1, a1, a2, . . . . . . . . . , an, Bk−2,

vA2, a1, a2, . . . . . . . . . , an, Bk−3,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

vAk−2, a1, a2, . . . . . . . . . , an, B1,

vAk−1, a1, a2, . . . . . . . . . , an−1,

2an + m,

an−1, . . . . . . . . . , a1, vAk−1,

B1, an, an−1, . . . . . . . . . , a1, vAk−2,

B2, an, an−1, . . . . . . . . . , a1, vAk−3,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Bk−2, an, an−1, . . . . . . . . . , a1, vA1,

Bk−1, an, an−1, . . . . . . . . . , a2,
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2m + 2a1

]
.

The multiplier r is a bit more trouble because it could be negative. This
can be avoided with the right choice of l:

r = εw2 − 2εv2 + 2lwv.

Since l can be any integer, r can certainly be chosen positive. This quick
fix will always work, but there is another method that will allow us to take
l = 0. Recall that(

u v

x w

)
=

(
0 1

1 a1

)(
0 1

1 a2

)
· · ·

(
0 1

1 an

)
and that

ε = (−1)n.

If r = ε(w2 − 2v2) is negative, then we can change the parity of the length
of the fraction by noting that(

u v

x w

)
= {a1; a2, . . . , an−1, an} = {a1; a2, . . . , an−1, an − 1, 1}.

(We use this in whichever direction is necessary.) If we arrange the a1; a2,
. . . , an so that {

if w2 > 2v2, then ε = 1,

if w2 < 2v2, then ε = −1.

This will guarantee that r > 0.
All this has gotten a bit complicated; so we will summarize with our next

proposition.

Proposition 2. Suppose we have a sequence of integers a1, a2, . . . , an for
which

{a1, a2, . . . , an} =

(
u v

2v − δw w

)
= U

and δ = 0 or 1. From the given values of u, v, w and δ and for any values
of l ≥ 0, k ≥ 1, let

ε = ε(u, v, w, δ) = uw − (2v − δ)v = (−1)n

r = r(u, v, w, δ; l) = ε(w2 − 2v2) + 2lwv

Ai = Ai(u, v, w, δ; l) =
ri − 1

w
Bi = Bi(u, v, w, δ; l) = 2vAi + δ

m = m(u, v, w, δ; l, k) = vAk + εl
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and

d = d(u, v, w, δ; l, k) = m2 + 2rk = v2A2
k + 2(εlv + w)Ak + 2.

We can always choose l large enough that r is positive. However, if we
arrange the a1, a2, . . . , an so that{

ε = 1, if w2 > 2v2,

ε = −1, if w2 < 2v2,

we can choose any l ≥ 0.
From these choices

√
d has a continued fraction expansion

√
d =

[
m, vA0,

→
U,Bk−1, vA1,

→
U,Bk−2, . . . , vAk−1,

−→
U , B0,

m,B0,
←
U, vAk−1, . . . , Bk−1,

←
U, vA0, 2m

]
.

After zeros are removed, this is of form (1) or (2) above. The length of the
repeating pattern is 2k(n+2)+2 minus twice the number of zeros in the set
{A0, B0}.

If d ≡ 2 or 3 (mod 4) and is square free, then the fundamental unit of
Q(
√

d) is
β2k

2α2

where

α =
−m +

√
d

2
and β = w − 2vᾱ.

Section 6.

Of course, there is now the problem of constructing a sequence of integers
a1, a2, . . . , an for which(

0 1

1 a1

)(
0 1

1 a2

)
· · ·

(
0 1

1 an

)
=

(
u v

2v − δw w

)
with δ = 0 or 1. (From this uw − xv = (−1)n = ε.) There are two (roughly
equivalent) approaches to this.

First we can choose any rational number which in reduced form has either
an even numerator or denominator.

w

v
= [a1; a2, . . . , an].

First suppose v = 2v′, and let

{a1; a2, . . . , an} =

(
u 2v′

x w

)
.
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If we then expand the continued fraction 2w
v

2
w

v
= [b1; b2, . . . , bn]

we can assume (
u v′

2x w

)
= [b1; b2, . . . , bm].

Then

{b1; b2, . . . , bm, an; an−1, . . . , a1}

=

(
u v′

2x w

)(
u 2v′

x w

)
=

(
u2 + 2v′2 xu + wv′

2(xu + wv′) 2x2 + w2

)
.

If v is odd, and w = 2w′, a similar trick works for w
v and w

2v .
For an example, start with 1

2 . This leads to the matrix product

{2, 1} =

(
0 1

1 2

)(
0 1

1 1

)
=

(
1 1

2 3

)
,

and in turn to values set in Proposition 2:

ε = 1
r = 7 + 6l

Ai =
ri − 1

3
Bi = 2Ai

m = Ak + l

and

d = m2 + 2rk =
(

(6l + 7)k + 3l − 1
3

)2

+ 2(6l + 7)k.

Then

Nt =
{

(6l + 7)t − 1
3

, 2, 1, 2
(6l + 7)k−1−t − 1

3

}
gives√(

(6l + 7)k + 3l − 1
3

)2

+ 2(6l + 7)k

=
[
m,
−→
N0,

−→
N1, . . . ,

−→
N k−1,m,

←
Nk−1

←
Nk−2, . . . ,

←
N1, 2m

]
.

After the zeros are removed, this is
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(6l + 7)k + 3l − 1

3
+ 2; 1, 2

(6l + 7)k−1 − 1
3

,
−→
N1,

−→
N2, . . . ,

−→
N k−2,

(6l + 7)k−1 − 1
3

, 2,
(6l + 7)k−2 − 1

3
+ 2, 2,

(6l + 7)k−1 − 1
3

,

←
Nk−2,

←
Nk−3, . . . ,

←
N2,

←
N1, 2

(6l + 7)k−2 − 1
3

+ 4
]
.

Since r = 6l+7 is odd, d is not equivalent to 1 (mod 4); so when d is square
free, we have the fundamental unit of Q(

√
d):

β2k

2α2

where α = − (6l+7)k+3l−1
6 + 1

2

√
d and β = 3 + (6l+7)k+3l−1

6 + 1
2

√
d.

If we begin with

N = {a1; a2, . . . , an} =

(
u v

2v w

)
,

then all the powers Nn will have the same matrix form. We can use the
Chebychev polynomials to express these powers explicitly.

First we recall how Chebychev polynomials can be used to deal with
quadratic units. (See page 355 in [LN].) We begin with the identity

xk + yk =
b k

2
c∑

j=0

k

k − j

(
k

k − j

)
(−xy)j(x + y)k−2j .

If we have a quadratic unit β with norm ε,

βk + β̄k =
b k

2
c∑

j=0

k

k − j

(
k

k − j

)
(−ε)j(β + β̄)k−2j .

Therefore if β = s + t
√

d has norm 1

βk + β̄k =
b k

2
c∑

j=0

k

k − j

(
k

k − j

)
(−1)j(2s)k−2j = 2Tk(s)

where Tk(s) is the Chebychev polynomial of the first kind of degree k.
If

N = {a1; a2, . . . , an} =

(
u v

2v w

)
has determinant one, Nn can be explicitly given in terms of the rational
part of the eigenvalues of N . Let

β =
1
2

(
u + w +

√
(u + w)2 − 4

)



CONSTRUCTING FAMILIES OF LONG CONTINUED FRACTIONS 139

and

β̄ =
1
2

(
u + w −

√
(u + w)2 − 4

)
be the eigenvalues, and note that ββ̄ = 1. Then

Nn =

(
U V

2V W

)
where

U =
(βn−2 + β̄n−2)− (βn + β̄n)− u(βn−1 + β̄n−1) + u(βn+1 + β̄n+1)

(u + v)2 − 4

V =
v(βn+1 + β̄n+1)− v(βn−1 + β̄n−1)

(u + w)2 − 4

W =
(βn+2 + β̄n+2)− (βn + β̄n)− u(βn+1 + β̄n+1) + u(βn−1 + β̄n−1)

(u + v)2 − 4
.

So

U =
2Tn−2(u+w

2 )− 2Tn(u+w
2 )− 2uTn−1(u+w

2 ) + 2uTn+1(u+w
2 )

(u + w)2 − 4

V =
2v(Tn+1(u+w

2 )− Tn−1(u+w
2 ))

(u + w)2 − 4

W =
2Tn+2(u+w

2 )− 2Tn(u+w
2 )− 2uTn+1(u+w

2 ) + 2uTn−1(u+w
2 )

(u + w)2 − 4
.

With these two expressions we can use Proposition 2. If we choose l = 0, r
will simplify just a bit:

r = W 2 − 2V 2

=
4v2 + T2n+2(u+w

2 )− 2uT2n(u+w
2 ) + (u2 − 2v2)T2n+1(u+w

2 )
(u + v)2 − 4

.

After this we use the values set in Proposition 2:

Ai =
ri − 1

W
Bi = 2V Ai

m = V Ak

and

d = d(u, v, w, δ; l, k) = m2 + 2rk.
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Then the continued fraction expansion of
√

d is[
m, vA0,

−→
N ,
−→
N ,
−→
N , . . . ,

−→
N ,Bk−1,

vA1,
−→
N ,
−→
N ,
−→
N , . . . ,

−→
N ,Bk−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vAk−1,
−→
N ,
−→
N ,
−→
N , . . . ,

−→
N , ,B0,

m, B0,
←
N,
←
N,
←
N, . . . ,

←
N, vAk−1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B0,
←
N,
←
N,
←
N, . . . ,

←
N, vA0, 2m

]
where each N appears n times.

In particular, if we begin with

N =

(
1 1

2 3

)
,

then

U =
Tn−2(2)− Tn(2)− Tn−1(2) + Tn+1(2)

6

V =
Tn+1(2)− Tn−1(2)

6

W =
Tn+2(2)− Tn(2)− Tn+1(2) + Tn−1(2)

6

r =
4 + Tn+2(2)− 2T2n(2)− 2T2n+1(2)

12
.

After this we use the values set in Proposition 2:

Ai =
ri − 1

W
Bi = 2V Ai

m = V Ak

and

d = d(u, v, w, δ; l, k) = m2 + 2rk.

This leads to
√

d =
[
Ak; A0, 1, 2, 1, 2, . . . . . . . . . , 1, 2, Bk−1,

A1, 1, 2, 1, 2, . . . . . . . . . , 1, 2, Bk−2,

A2, 1, 2, 1, 2, . . . . . . . . . , 1, 2, Bk−3,

. . . . . . . . . . . . . . . . . . . . . . . . . . .
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Ak−2, 1, 2, 1, 2, . . . . . . . . . , 1, 2, B1,

Ak−1, 1, 2, 1, 2, . . . . . . . . . , 1, 2, B1,

Ak,

B0 2, 1, 2, . . . . . . . . . , 2, 1, Ak−1,

B1 2, 1, 2, . . . . . . . . . , 2, 1, Ak−2,

B2 2, 1, 2, . . . . . . . . . , 2, 1, Ak−3,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Bk−2, 2, 1, 2, . . . . . . . . . , 2, 1, A1,

Bk−1, 2, 1, 2, . . . . . . . . . , 2, 1, A0,

2Ak

]
where in each line the (1,2) pair appears n times. After the zeros are removed
the repeating part has length 2k(2n + 2)− 2.

Section 7.

The next technique for finding sequences to start the process involves fac-
toring 2v1 ± 1. To begin, factor 2v2 + ε = ww1. Write

w

v
= [a1; a2, . . . , an].

We can arrange it so that (−1)n = ε. Now(
0 1

1 a1

)(
0 1

1 a2

)
· · ·

(
0 1

1 an

)
=

(
u v

x w

)
.

Since uw − xv = ε, and ww1 − 2v2 = ε. So x ≡ 2v (mod w). This leads us
to Proposition 2.

In practice, this method of producing sequences a1, a2, . . . , an can be used
to produce very explicit, yet complicated, families. For example, let us start
with the prime 3; if v ≡ 2 (mod 3), then 2v2 + 1 ≡ 0 mod 3. (ε = 1.) Let
v = 2 + 3n. Choose

w =
2v2 + 1

3
= 6n2 + 8n + 3.

Then
w

v
=

6n2 + 8n + 3
3n + 2

= 2n + 1 +
6n2 + 8n + 3− 6n2 − 7n− 2

3n + 2

= 2n + 1 +
n + 1
3n + 2

3n + 2
n + 1

= 2 +
n

n + 1
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n + 1
n

= 1 +
1
n

n

1
= n.

Thus
6n2 + 8n + 3

3n + 2
= [2n + 1, 2, 1, n].

The associated matrix is(
u v

2v w

)
=

(
3n− 1 3n + 2

6n + 4 6n2 + 8n + 3

)
.

Now we can set things up according to Proposition 2,

r = w2 − 2v2 + 2lwv.

Since
w

v
=

6n2 + 8n + 3
3n + 2

= 2n + 1 +
n + 1
3n + 2

> 2,

we can even take l = 0. Returning to Proposition 2,

r = 36n4 + (96 + 36l)n3 + (82 + 72l)n2 + (24 + 50l)n + (1 + 12l)

Ai =
ri − 1

w
Bi = 2(3n + 2)Ai

m = (3n + 2)Ak + (3n + 2)l

and
d = m2 + 2rk.

Then
√

d =
[
m+2n + 1; 2, 1, n,Bk−1,

A1, (2n + 1), 2, 1, n,Bk−2,

A2, (2n + 1), 2, 1, n,Bk−3,

. . . . . . . . . . . . . . . . . . . . . . . .

Ak−2, (2n + 1), 2, 1, n,B1,

Ak−1, (2n + 1), 2, 1,

2n + m + 1,

2, (2n + 1), Ak−1,

B1, n, 1, 2, (2n + 1), Ak−2,

B2, n, 1, 2, (2n + 1), Ak−3,

. . . . . . . . . . . . . . . . . . . . . . . .

Bk−2, n, 1, 2, (2n + 1), A1,
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Bk−1, n, 1, 2,

4n + 2 + m
]
.

Section 8.

The final method of constructing continued fractions allows us to produce
very intricate expansions by embedding the ones constructed above inside
recurring patterns within the repeating quotients of larger fractions. As we
have seen, the key to such embeddings is finding finite continued fractions
[a1, a2, . . . . . . , an] that lead to fractions of the form(

u v

2v − δw w

)
with δ = 0 or 1. As it turns out, the first half of all the repeating patterns
above will do this.

Let us return to the calculation (and the notation) of Section 1. We
started with a family of matrices

Ni =

(
p 2bri

brk−1−i q

)
.

Without going into the details of the calculation, a return to original identity
shows that

(Nk−1 . . . N1N0)T

has the form (
u v

2v w

)
.

Since the Nt are products of matrices from continued fractions, we can
embed the associated sequence of partial quotients inside a complementary
pair Ai, Bi to recur any number of times within the repeating pattern.

Returning to our first example:√
(b(2bl + 1)k + l)2 + 2(2bl + 1)k

=
[
b(2bl + 1)k + l;

b, 2b(2bl + 1)k−1, b(2bl + 1)k−2, b(2bl + 1)2, . . . ,

b(2bl + 1)k−2, 2b(2bl + 1)1, b(2bl + 1)k−1, 2b,

b(2bl + 1)k + l,

2b, b(2bl + 1)k−1, 2b(2bl + 1), b(2bl + 1)k−2, 2b(2bl + 1)2, . . . ,

2b(2bl + 1)k−2, b(2bl + 1)1, 2b(2bl + 1)k−1, b, 2b(2bl + 1)k + 2l
]
.
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If we take b = 1 and l = 5, (and k = n), we get√
112n + 12 · 11n + 25

=
[
11n + 5;

1, 2 · 11n−1, 11, 2 · 11n−2, 112, 2 · 11n−3, . . . , 11n−2, 2 · 11, 11n−1, 2,

11n + 5,

2, 11n−1, 2 · 11, 11n−2, 2 · 112, . . . , 2 · 11n−2, 11, 2 · 11n−1, 1,

2 · 11n + 10
]
.

And in the notation above

β = 6 + 11n +
√

112n + 12 · 11n + 25.

Then according to the calculation above

{1, 2 · 11n−1, 11, 2 · 11n−2, 112, 2 · 11n−3, . . . 11n−2, 2 · 11, 11n−1, 2}

=

(
s−mt 2t

t (11)−n(s + mt)

)
= Un

where βn = s + t
√

112n + 12 · 11n + 25. If we now reset our notation and
use Proposition 2 and set l = 0, we define

ε = 1

r = w2 − 2v2

= (s2 + 2(11n + 5)st + (25 + 10 · 11n − 112n)t2)/112n

Ai =
ri − 1

w
Bi = 2vAi + δ

m2 = vAk + εl

and

d = m2
2 + 2rk = v2A2

k + 2(εlv + w)Ak + 2.

Then
√

d =
[
ak; a0,

←−
U n, Bk−1, A1,

←−
U n, Bk−2, . . . , Ak−1,

←−
U n, B0, Ak,

B0,
−→
U n, Ak−1, B0,

−→
U n, Ak−1, . . . , B0,

−→
U n, Ak−1, 2Ak

]
.

After removing the zeros, the repeating part of this expansion has length
2k(2n + 2)− 2.
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Section 9.

We conclude with a few specific examples that can be constructed using our
techniques. Let

r = 2473892093033277097181734801

A′t = 863109604528081677152276000
t−1∑
i=0

ri

d = A′2k + 2rk.

Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; V = {5, 18, 4, 14, 3, 10, 2, 6}. Then
√

d =
[
A′k;A

′
0,
→
U,
→
V , 2A′k−1, A

′
1,
→
U,
→
V , 2A′k−2, . . . , A′k−1,

→
U,
→
V , , 2A′0,

A′k, 2A′0,
←
V ,
←
U,A′k−1, 2A′1,

←
V ,
←
U,A′k−2, . . . , 2A′k−1,

←
V ,
←
U,A′0, 2A′k

]
.

Next consider

U = {1, 10, 1, 4, 1, } =

(
54 65

2 · 65− 71 71

)
.

This is an example of a matrix with, in the notation we have been using,
δ = 1. Using Proposition 2,

ε = −1
r = 9230l + 3409

Ai = (130l + 48)
i−1∑
j=0

(9230l + 3409)j

Bi = 130Ai + 1
m = 130Ak − l

and

d = (71)−2(16900r2k − (9230l + 23718)rk + (5041l2 + 9230l + 16900)).

Then
√

d =
[
m, vA0,

→
U,Bk−1, vA1,

→
U,Bk−2, . . . , vAk−1,

−→
U , B0,

m,B0,
←
U, vAk−1, . . . , Bk−1,

←
U, vA0, 2m

]
.

Next consider our very first family:√
(b(2bn + 1)k + n)2 + 2(2bn + 1)k

=
[
b, (2bn + 1)k + n;
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b, 2b(2bn + 1)k−1, b(2bn + 1), 2b(2bn + 1)k−2, b(2bn + 1)2, . . . ,

b(2bn + 1)k−1, b(2bn + 1)1, 2b(2bn + 1)k−1, 2b,

b(2bn + 1)k + n,

2b, b(2bn + 1)k−1, 2b(2bn + 1), b(2bn + 1)k−2, 2b(2bn + 1)2, . . . ,

2b(2bn + 1)k−2, b(2bn + 1)1, 2b(2bn + 1)k−1, b, 2b(2bn + 1)k + 2n
]
.

If we take n = b, we get√
b2((2b2 + 1)k + 1)2 + 2(2b2 + 1)k

=
√

b2(2b2 + 1)2k + 2(b2 + 1)(2b2 + 1)k + 1

=
[
b(2b2 + 1)k + b;

b, 2b(2b2 + 1)k−1, b(2b2 + 1), 2b(2b2 + 1)k−2, b(2b2 + 1)2, . . . ,

b(2b2 + 1)k−2, 2b(2b2 + 1)1, b(2b2 + 1)k−1, 2b,

b(2b2 + 1)k + b,

2b, b(2b2 + 1)k−1, 2b(2b2 + 1), b(2b2 + 1)k−2, 2b(2b2 + 1)2, . . . ,

2b(2b2 + 1)k−2, b(2b2 + 1)1, 2b(2b2 + 1)k−1, b, 2b(2b2 + 1)k + 2b
]
.

We can multiply this by b to get a new expansion:√
b4(2b2 + 1)2k + 2b2(b2 + 1)(2b2 + 1)k + b2

=
[
b2(2b2 + 1)k + b2;

1, 2b2(2b2 + 1)k−1, (2b2 + 1), 2b2(2b2 + 1)k−2, (2b2 + 1)2, . . . ,

(2b2 + 1)k−2, 2b2(2b2 + 1)1, (2b2 + 1)k−1, 2b2,

(2b2 + 1)k + 1,

2b2, (2b2 + 1)k−1, 2b2(2b2 + 1), (2b2 + 1)k−2, 2b2(2b2 + 1)2, . . . ,

2b2(2b2 + 1)k−2, (2b2 + 1)1, 2b2(2b2 + 1)k−1, 1, 2b2(2b2 + 1)k + 2b2
]
.
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