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We give a simple construction yielding homology classes in
(non-simply-connected) symplectic four-manifolds which ad-
mit infinitely many pairwise non-isotopic symplectic repre-
sentatives. Examples are constructed in which the symplectic
curves can have arbitrarily large genus. The examples are
built from surface bundles over surfaces and involve only el-
ementary techniques. As a corollary we see that a blow-up
of any simply-connected complex projective surface contains
a connected symplectic surface not isotopic to any complex
curve.

1. Symplectic tori.

The existence of symplectic submanifolds realising certain homology classes
has had a significant impact on our understanding of symplectic topology,
particularly in dimension four. This raises the natural question as to the
uniqueness of symplectic representatives for homology classes in instances
when they exist at all. In complex geometry the uniqueness (or finiteness) of
complex representatives for (co)homology classes is well-known; for instance
if X is a projective surface then an element α of H2(X) is dual to a coho-
mology class α∗, and complex representatives of α correspond to transverse
holomorphic sections of one of finitely many line bundles with first Chern
class α∗. (If the surface is simply connected the line bundle is unique.) These
sections are points of certain projective spaces PH0(X,Lα∗); since the lo-
cus of non-transverse sections in each such space is a complex subvariety,
its complement is connected, and there are at most finitely many isotopy
classes of submanifold. Our main result shows that this cannot be true in
the symplectic category:

Theorem 1.1.

• For every odd genus g 6= 3 there is a symplectic four-manifold X
and a homology class C ∈ H2(X,Z) such that C may be represented
by infinitely many pairwise non-isotopic connected symplectic surfaces
{Sa}a∈Z of genus g inside X.
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• For every odd g 6= 3 there is a simply-connected projective surface Zg

which admits a connected symplectic surface of genus g not isotopic
to any complex curve. Indeed, some blow-up of any simply connected
projective surface contains a symplectic non-complex curve.

In fact it shall follow from the proof that there is no homeomorphism of
pairs (X,Sa) ≡ (X,Sb) where Sa, Sb are a distinct pair of such symplectic
surfaces. More precisely we shall show:

Proposition 1.2. The homology class 2m[Σg] in the four-manifold Σg×S2

(for m ≥ 2 an integer and any g ≥ 1) can be represented by infinitely many
pairwise non-isotopic connected symplectic surfaces, each of which has genus
r where

2− 2r = 2m(2− 2g).

The restriction to curves of odd genus arises since our construction involves
branched covers of even degree; it could be removed with the obvious adap-
tation. Similarly one can consider twisted sphere bundles. The first instance
of the proposition contains all the essential ideas and is an immediate corol-
lary of work of Geiges [5]. For any diffeomorphism f of a surface Σ we
write Yf for the mapping torus of f ; in particular for A ∈ SL2(Z) we have
YA = T2 ×A S1. Geiges notes that:

• If A1, A2 ∈ SL2(Z) satisfy |tr (Ai)| > 3 then the torus bundles S1×YAi

are diffeomorphic if and only if A1 = A2.
• For any four-manifold Z = S1×YA as above, and given any cohomology

class a ∈ H2(Z) with a2 > 0 we can find an integral symplectic form
representing the class a. Moreover if a(F ) > 0 where F is a torus
fibre, we can assume the symplectic structure is compatible with the
fibration.

• None of the four-manifolds ZA above admit any complex structure.
Now the mapping class group SL2(Z) for the torus differs only by a central
±I from the braid group for four points in the sphere S2. It follows that
given any matrix A ∈ SL2 we can define a braid on four strands; when the
image of the braid is connected we may view this as a map βA : S1 → S1×S2

with image Γβ. (If the braid is not connected the domain of βA will be some
disjoint union of circles, and we use the same notation for the image.)

Lemma 1.3. For any such braid, the product S1×Γβ ⊂ S1× (S1×S2) is a
symplectic submanifold of T2×S2 with its standard product symplectic form.

Proof. This is a trivial computation. With co-ordinates (θ, φ), (u, v) on
T2 × S2 the symplectic form locally has the shape dθ ∧ dφ+ du ∧ dv whilst
the tangent space at any point to the submanifold is spanned (in a suit-
able normalisation) by ∂/∂θ and ∂/∂φ+ α∂/∂u+ γ∂/∂v for some α, γ not
both zero. The only non-zero term arises from the θ, φ component of the
symplectic form and this is always positive. �
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For any braid βA we have built a symplectic submanifold in the homology
class 4[Torus] ⊂ T2×S2. It is obviously possible to choose an infinite family
of matrices Ai for which the corresponding braids βAi are connected and
the matrices have trace |trAi| > 3. We claim that all of the associated
symplectic submanifolds are non-isotopic (indeed not equivalent under any
diffeomorphism of pairs). For given any such submanifold, we can form the
double cover of T2 × S2 branched over this class, and the result is precisely
the torus bundle S1 × YA. Since all of these manifolds are non-complex,
but the branched cover of a complex manifold over a complex divisor does
admit a complex structure, the submanifolds are not isotopic to complex
curves. Again, since the S1 × YA represent infinitely many diffeomorphism
types, so we must have infinitely many isotopy classes of branch locus. The
genus formula given in (1.2) holds since symplectic submanifolds satisfy the
adjunction formula. This establishes the proposition in the case m = 2, g =
1. The second part of (1.1) for these special values is now immediate.

Corollary 1.4. Let En denote the n-th fibre sum of the rational elliptic
surface with itself. Then En contains a connected symplectic surface not
isotopic to any complex curve.

Proof. The En are all elliptically fibred, and we may take a trivial fibre sum
with T2×S2 to exhibit a connected symplectic torus representing the homol-
ogy class 4[Fibre]. On the other hand, the (unique) complex representative
for this homology class is a disjoint union of four parallel fibres, which is
clearly not isotopic to any connected curve. �

For n = 1, 2 this gives connected symplectic non-complex submanifolds in
CP2]9CP2 and K3. A conjecture due to Siebert and Tian asserts that there
are no such symplectic surfaces in minimal rational ruled manifolds, and the
example serves to demonstrate the necessity of the minimality assumption.

Via the same method of fibre summation, and taking higher m in (1.2)
one obtains a homology class on a simply connected complex surface with
N distinct symplectic representatives for any required N , distinguished by
connectivity. However, Fintushel and Stern [4] have observed that for any
braid βA if we include the associated symplectic submanifold S1 × ΓβA

into
an elliptic surface E for which π1(E\{Fibre}) = 0 using this fibre sum
trick, then the fundamental group of the complement is cyclic, independent
of A. Hence we cannot use the same naive algebraic topological methods
to give infinite families of representatives. With more sophistication, tak-
ing branched covers and using the Seiberg-Witten invariants, Fintushel and
Stern have nonetheless shown that the above submanifolds do remain pair-
wise non-isotopic inside Ei. Their methods of computation do not apply,
unfortunately, to distinguish curves of higher genus.
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2. Generalisations.

In this section we will extend the previous discussion to cover the other
cases of (1.2), in particular proving (1.1). The first step is to move from
the homology class 4[Fibre] inside T2 × S2 to 2m[Fibre]. For this we just
need an analogue of Geiges’ result: Then we can work with branched covers
and the submanifolds S1×Γβ for β a braid corresponding to a hyperelliptic
mapping class at some genus h, and the above proof will hold. (In particular
precisely the same proof that the submanifolds are symplectic will apply.) It
is straightforward to adapt Geiges’ proof. Since we have used the notation Γβ

to denote a graph above, we will write Out(π1(Σg)) to denote the mapping
class group of a genus g surface, typically denoted Γg.

Proposition 2.1.
Let g ≥ 1 and γ ∈ Out(π1(Σg)) be such that:
• γ is not periodic,
• 1 is not an eigenvalue of the action on cohomology γ∗ : H1(Σg) →
H1(Σg).

Then the manifold Xγ = S1 × (S1 ×γ Σg) is a symplectic fibration with no
compatible Kähler metric. Indeed the manifold has no complex structure at
all.

Proof.
• The manifolds we are considering are smooth fibrations of surfaces over
tori; since base and fibre are aspherical, it follows that so is the total space.
Thus

H∗(Σg×̃T2; Z) = H∗(π1(Σg×̃T2); Z)
where we define the group homology in the usual way1 [3]. There is an
extension of groups

0 → π1(Σg) → G → Z2 → 0(2.2)

where Z2 acts on π1(Σg) via the monodromies γi ∈ Out(π1(Σg)), and
G = π1(X). We will later assume one monodromy is trivial (so the four-
manifold is S1 times a mapping torus). In any case, there is a Hochschild-
Serre spectral sequence - the group homology analogue of the Leray-Serre
spectral sequence, valid because of the asphericity - for which

E2
p,q = Hp(Z2;Hq(π1Σ2)) =⇒ Hp+q(G; Z) = Hp+q(Xγ1,γ2 ; Z).

The arguments of Thurston [8] show the total space of the fibration is sym-
plectic iff E∞0,2 = Z = E2

0,2.
Riemann surfaces are Eilenberg-Maclane spaces so

H∗(π1Σg) = H1(Σg) = Z2g.

1That is, for a group Γ take a projective resolution RΓ of Z over Z[Γ] and define
H∗(Γ; M) to be the homology of the sequence R⊗Γ M .
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We get the following free (projective!) resolution:

0 → Z2g θ∗−→ Z4g φ∗−→ Z2g(2.3)

where the maps are defined by

θ∗ :
(
x

y

)
7→

(
[(γ1)∗ − I]

(
x
y

)
[I − (γ2)∗]

(
x
y

) )

φ∗ :
((

x

y

)
,

(
z

t

))
7→ [(γ1)∗ − I]

(
x

y

)
+ [(γ2)∗ − I]

(
z

t

)
.

From this we see that kerφ∗/im θ∗ = E2
1,1 and since d2 : E2

1,1 → E2
−1,2 = 0

we have E2
1,1 = E∞1,1. Also E2

0,2 = Z for H2(π1) is a trivial module. Since

H2 = E∞0,2 + E∞1,1 + E∞2,0

we see that if rank(E2
1,1) = b2 − 2 then there is a compatible symplectic

structure. To find bi(X) we make the assumption that the first monodromy
γ1 is trivial ; for then the E2-page of the spectral sequence for the 3-manifold
Yγ = S1 ×γ Σg is trivial with all differentials zero. It follows from the
analogous free resolution in the 3-dimensional case that

H1(Yγ) = Z⊕ ker(γ∗ − id : Z2g → Z2g)

and in particular, if 1 6∈ {Eigenvalues γ∗} then b1(Xγ) = b1(Yγ) + 1 = 2.
But in this case, b2(X) = 2 and rank[E2

1,1] = 0 ⇔ symplectic structures
exist. Equivalently, we require (2.3) to have rank zero when (γ2)∗ = id. But
the complex has H1 term with rank equal to (2 · rank[ker(γ∗ − I)]), giving
the result.

To see there are no possible complex structures, when g > 1 one can most
easily resort to the classification of surfaces, and check that these manifolds
are not on the list; for they have c2 = 0 despite being minimal, and have
b1 = 2 so cannot be Kodaira surfaces or minimal surfaces of class VII.
The g = 1 case (already used in the first section) was covered by Geiges’
work. �

Remark 2.4. A few words on notation. By Γhyp
g we shall denote the hy-

perelliptic mapping class group; if we fix a hyperelliptic Riemann surface Σg

then there is a distinguished hyperelliptic involution ι ∈ Out(π1(Σg)) inside
the mapping class group of Σg, and Γhyp

g denotes the set of elements of the
mapping class group commuting with ι. We also have the familiar groups
Γ2g+2

0 and Br2g+2(S2) - the mapping class group of the marked sphere and
the braid group on (2g + 2)-strands in the sphere, respectively [2]. There
are isomorphisms (for instance from explicit presentations)

Γ2g+2
0 ∼ Γhyp

g

/
〈ι〉 ∼ Br2g+2(S2)

/
〈∆〉
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where ∆ generates the centre Z(Br2g+2(S2)) ∼= Z2. In particular, given any
braid in the sphere, we have a hyperelliptic mapping class defined uniquely
up to composition with the involution ι, and all mapping classes arise this
way. (Indeed given a mapping class we can build a braid inside S2×I and the
central Z2-ambiguity corresponds to the different possible twistings of the
sphere bundle over the circle S1 obtained by closing the ends of the interval
I.) With these delicacies understood, we shall pass freely between braids
and mapping classes henceforth; required choices can be made arbitrarily
by the reader.

It is easy to obtain in this way infinitely many diffeomorphism types of
symplectic non-complex surface bundle over a torus. Indeed, for different
monodromies in general the homeomorphism types will differ, distinguished
by the fundamental group. If we choose the non-trivial monodromy to be
hyperelliptic then we can associate to the surface bundle a braid (on 2g+ 2
strands, where the fibre has genus g) such that the surface bundle is the
double cover of T2 × S2 over the surface S1 × Γβ as before. For connected
braids, this surface is a symplectic torus in the homology class (2g+2)[Fibre].
The genus one case of the Proposition (1.2) follows.

To obtain symplectic surfaces of higher genus we use the fibre sum opera-
tion. Recall that given two symplectic fibrations Z1 → B1, Z2 → B2 with
diffeomorphic fibre, then after scaling the symplectic forms to give the fibres
equal area we may glue tubular neighbourhoods of fixed fibres to obtain a
new fibration Z1]FZ2 → B1]B2 which covers the (usual) connected sum of
the base surfaces. One of the choices in this construction is of a twisting
diffeomorphism of the fibre with which we make the identification. In par-
ticular, given any two hyperelliptic genus g surface bundles over a torus, we
may take a fibre sum (twisted by an element of the hyperelliptic mapping
class group) to produce a hyperelliptic surface fibration by genus g surfaces
over a genus two base; this new fibration still admits a symplectic structure
compatible with the fibration.

Now think of our two surface bundles Zi as branched covers of T2×S2 → T2

over symplectic torus multi-sections. We may fibre sum the two sphere
bundles along a sphere fibre. Moreover, by the relative form of Gompf’s
surgery, once we fix a fibre in each Zi we distinguish a set of 2g+2 points in
the fibre which are the intersection points with the symplectic branch curve.
View the hyperelliptic diffeomorphism as (induced by) an element of the
braid group for 2g+2 points on the sphere and choose a lift of this homotopy
class of diffeomorphisms to a diffeomorphism fixing the marked points. We
can glue the two sphere bundles with a twist by this diffeomorphism and
Gompf’s theorems [6] provide a symplectic structure on the new sphere
bundle over Σ2 with respect to which the two tori glue to give a symplectic
surface of genus 2g+3. This is an unramified cover of the base Σ2 of degree
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2g+ 2. As we vary the original torus bundles and hyperelliptic gluing map,
we obtain infinite families of symplectic fibrations over a genus two curve
which we can view as branched covers of sphere bundles over connected
symplectic surfaces.

Lemma 2.5. The above techniques yield infinite families of symplectic non-
complex curves of any genus 2g + 3 with g ≥ 1 inside Σ2 × S2.

Proof. From the above, we need show first that the symplectic curves are not
complex, and secondly that they are not pairwise isotopic; it will therefore
be sufficient to show that the hyperelliptic surface bundles we construct
represent infinitely many non-complex diffeomorphism types. Indeed once
we know we have infinitely many diffeomorphism types the statement on
complex structures will follow: Since a smooth complex fibre bundle will be
determined by a representation π1(Base) → Aut(Fibre) where Aut denotes
the holomorphic automorphism group. For curves of genus g > 1 this is
finite, and there can only be finitely many such automorphisms; for curves
of genus one, the fibre bundles have c2 = 0 and the classification of complex
surfaces applies (over a genus two base we will have b1 ≥ 4 and hence they
cannot be minimal surfaces of class VII).

We are reduced to the homeomorphism classification of hyperelliptic surface
bundles. Since base and fibre are again aspherical, the topology is completely
encoded in the fundamental group; in the homotopy exact sequence

0 → π1(Fibre) → π1(Z) → π1(Σ2) → 0

the extension is determined by the monodromies which can be viewed as
relations amongst generators for π1(Z). Indeed the bundle is given by a
representation π1(Σ2) → Γhyp

g into the hyperelliptic genus g mapping class
group. Given any two hyperelliptic mapping classes φ, ψ and a presentation

π1(Σ2) = 〈a, b, c, d | [a, b][c, d] = 1〉

we may take a 7→ φ, b 7→ 1, c 7→ q−1ψq, d 7→ 1 to obtain a representation
as above. Here q is an arbitrary element of the hyperelliptic mapping class
group, and as it varies we can obtain infinitely many different conjugacy
classes of representation (since there are infinitely many conjugacy classes
of element in Γhyp

g ). It then follows from the homotopy exact sequence
that we can obtain infinitely many distinct fundamental groups for the total
space. The result follows. �

To complete the proof of (1.1) observe that there is a simply connected pro-
jective surface with a Lefschetz fibration of genus 2 curves - for instance blow
up the K3 given by double covering P2 over a sextic at the two preimages of
the basepoint of a pencil of lines. We can fibre sum Σ2 × S2 into this genus
two fibration, carrying with us a symplectic surface of arbitrarily large odd
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genus from the above construction (choosing the braid to obtain the trivial
sphere bundle Σ2×S2 and not some twisted bundle). The symplectic surface
represents a homology class 2m[Fibre] for some m and the unique complex
representative of this fibre is again disconnected. The result of the fibre
summation remains simply connected since in K3]2CP2 the fundamental
group of the complement of a fibre is trivial. Now for any complex projec-
tive surface Z we may find a Lefschetz pencil of curves of some large genus.
Blowing up the base-points of this pencil we have a Lefschetz fibration, in-
side which we can identify a trivial fibration Σr × D for a complex disc
D ⊂ P1. Iterating the fibre sum construction above, we can find a symplec-
tic curve of any large odd genus inside Σr × S2 which is disjoint from some
fibre S2 and hence can be assumed to lie in the disc bundle Σr×D ⊂ Z. The
usual arguments show this is not the complex representative of the relevant
homology class 2m[Fibre] (which is unique when the surface is 1-connected).
This completes the proof.

Remark 2.6. In complex geometry one is often as interested in nodal and
cuspidal curves as smooth curves; for instance these appear as branch loci of
generic projections of projective surfaces to CP2. Following Auroux’s work
on symplectic four-manifolds [1] the symplectic geometry of these surfaces is
now of interest. Moishezon [7] gave examples of nodal cuspidal curves in CP2

which were not isotopic to complex nodal cuspidal curves; all of his examples
contained cusps. The surfaces we construct in T2×S2 can be pushed down to
S2 × S2 where they acquire nodes (but not worse singularities). For careful
braids (for instance of several components) the resulting surfaces can be
made symplectic. It is not clear if this is of interest, however, since the
symplectic surfaces built in this way appear always to have nodes of both
positive and negative intersection.
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